999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

硫粉為硫源,多元醇輔助合成硫化鉬納米片

2017-05-11 00:45:57鄒德春
物理化學(xué)學(xué)報 2017年5期

王 輝 鄒德春,2,*

(1中國科學(xué)院北京納米能源與系統(tǒng)研究所,國家納米科學(xué)中心,北京100083;2北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871)

硫粉為硫源,多元醇輔助合成硫化鉬納米片

王 輝1鄒德春1,2,*

(1中國科學(xué)院北京納米能源與系統(tǒng)研究所,國家納米科學(xué)中心,北京100083;2北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871)

本文以普通硫粉和鉬酸鈉為原料,通過兩相法在170-200°C下經(jīng)8 h制備得到二硫化鉬納米片,同時基于聚集-聚并模型提出其三步法生長機理。其中,硫粉的再組裝保證了其向H2S的轉(zhuǎn)化,使鉬酸鈉得以還原,因此在本方法中起到關(guān)鍵作用。本法制備得到的硫化鉬納米片富含可能由于各種位錯引起的未飽和硫原子,有利于其在催化加氫等領(lǐng)域的應(yīng)用。此外,由于二維過渡金屬硫族化合物結(jié)構(gòu)相似,所以本方法及其機理可能同樣適用于其他二維過渡金屬硫族化合物。本方法為綠色、便捷制備二硫化鉬納米片提供了一個選擇。

二硫化鉬納米片;硫粉;聚集和聚并模型;乙二醇;兩相法

1 Introduction

Molybdenum disulfide(MoS2)nanosheets have received increasing attention as a promising materialfor Hydrogen evolution reaction(HER)catalysis,energy storage,and semiconductor device because of its excellent chemical,physical,optical and electrical properties and low cost during the last decades1-4. However,the HER activity of MoS2nanosheets,as has been reported by both experimentaland theoretical studies,are limited to the density per unit surface area and turnover frequency of catalytically active edge sites5-13.Therefore,many efforts have beendevoted to prepare MoS2nanosheets with abundantexposed edge sites13-25.However,the effective scale-up of MoS2nanosheets still remains a major challenge.

Currently,four main approaches have been employed to obtain MoS2nanosheets in laboratories14-25,including micromechanical cleavage,chemical vapor deposition,Li ion intercalation,and liquid-phase exfoliation.The micromechanicalcleavage method is reported to have low yield and time-consuming14.Chemical vapor deposition method,in spite of good crystallinity of the resulting MoS2nanosheets also has the limitation of its high cost, poor transferability and complex manipulation15.The latter two methods can be achieved by taking advantage of the sandwiched S-Mo-S layer structure of MoS2thatare held togetherby weak van der Waals interaction.The interaction and hydration of lithium cations combined with the strong affinity of organic solvents or surfactants give rise to the exfoliation of MoS2in organic solvents16-20,whereas it is still challenging for effective scale-up because of expensive intercalating agents used,long reaction time (atleastseveraldays),strictstorage,high sensitivity to environmentconditions,and possible structure deformations.The liquidphase exfoliation of MoS2powder is achievable in appropriate organic solution or aqueous surfactants solution by means of sonication and centrifugation21-25.Nevertheless,both organic solvents and aqueous surfactant exfoliated MoS2usually show multilayer stacks with size as large as 200-400 nm,which results in the reducing number of active sites.Moreover,the dispersed concentrations of resulting MoS2nanosheets are generally too low to require large quantities of exfoliated MoS2nanosheets.Due to the aforementioned limitations of approaches to obtain MoS2nanosheets,a green,convenient,low-cost,and large-scale approach for preparing MoS2has been pursued for a long time.

Herein,we reportthe preparation of MoS2nanosheets of with abundantactive sites by a revised one-pot,polyol-mediated method for the first time and propose a three-step growth mechanism of the MoS2nanosheets based on the aggregation and coalescence model.Compared with the aforementioned methods,this method is proved to be able to prepare scale-up MoS2nanosheets more easily without any hazardous chemicals in 8 h,in which only sulfur powder,polyol(ethylene glycol,diethylene glycol),and Na2MoO4were used.Meanwhile,the size of nanosheets could be adjusted by changing the polyol-to-water ratio.More importantly, the growth mechanism may be suitable for other transition metal dichalogenides(TMDCs).

Fig.1(A)XRD patterns ofobtained MoS2nanosheets at170°C for 8 h(red line:after calcination in N2at 400°C for 4 h, black line:before calcination);(B)TEMimage of obtained MoS2nanosheets at 170°C for 8 h(color online)

2 Experimental

2.1 Chemicals and materials

Ethylene glycol(EG,≥95%),diethylene glycol(DEG,≥99%),absolute ethyl alcohol(≥99.7%),sublimed sulfur(≥98%),Na2MoO4(≥99%)were purchased from Beijing Reagent Company.All chemicals were used as received,exceptfor sublimed sulfur slightly ground before use.Deionized(DI)water with a resistivity of 18.2 MΩ·cm was used as well,and MoS2syntheses were conducted in 50 mL PTFE-lined stainless autoclaves.

2.2 Synthesis of MoS2nanosheets

In a standard synthesis,0.14 g ground sublimed sulfur and 0.36 g Na2MoO4were added into a 50 mL PTFE-lined autoclave with 30 mL mixture of H2O and polyol.Then the autoclave was sealed and heated at170°C in an electric drying oven for 24 h.The final black products were precipitated with DI water and absolute ethyl alcohol by centrifugation at4000 rpm for 30 min thrice to wash out polyoland possible sulfur particles.The average yield is about 92%.

2.3 Characterization

X-ray diffraction(XRD)patterns of the samples were recorded with Cu Kαradiation(Bruker/AXS D8 Advance,Netherlands). Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)images were obtained by Hitachi SU8020 (Japan)and FEI Tecnai G2 F20 S-TWIN TMP(U.S.A.),respectively.

3 Results and discussion

3.1 Synthesis of MoS2nanosheets

Fig.1A shows that all the diffraction peaks of the MoS2nanosheets agree well with the hexagonal MoS2phase(JCPDS CARDNo.37-1492).These peaks are atapproximately 2θ=14.3°, 32.8°,39.5°,49.6°,58.3°,69.0°,which correspond to the(002),(100),(103),(105),(110),(201)crystalplanes,respectively.The high intensity of(002)peak implies the good stack of MoS2nanosheets.The broadened peaks(as black line shown)suggest the poor crystallinity of as-prepared sample.Fig.2B shows thatthe average length of as-prepared MoS2sheets are ca 150 nm with differentwidth,when reactat170°C for 8 h.The nanosheets are rich in unsaturated sulfur atoms due to the dislocations,which presentas tiny rings11,26,resulted from the random overlap of small nanoflakes composing nanosheets according to the aggregation and coalescence model27-35.Similar structure had been proved to be beneficial for the HER catalysis11,12,and Zhou et al.26has also provided a detailed classification for the dislocations.

3.2 Effects of reaction temperature and holding time on the formation of MoS2nanosheets

In our scheme,the reaction temperature plays a major role on the transformation of sulfur powder and the growth of MoS2nanosheets,and the holding time also matters much as it affects the density of unsaturated sulfur atoms.Generally,sublimed sulfur tends to aggregate into insoluble sulfur above 159°C in open or close systems and totally precipitate owing to their large size(ca 20μm).To avoid such case,the sublimed sulfur was ground for ca.10 min were used in our protocol.The transformation of sulfur powder(composed of S8)into low reactive liquid sulfur beads with appropriate holding temperatures in airtightautoclaves makes the preparation of MoS2nanosheets successful(detailed in Fig.S1 (Supporting Information(SI))).The liquid sulfur beads contains abundantlong free radicalchains(S8)nwhose reactivity decreased with enhancing reaction temperature,which can reach to a maximum atca.190°C36.The liquids beads spread evenly in the whole polyol at last and subsequently reacted with polyol gradually,generating H2S for reducing Na2MoO4.Therefore,a length nucleation occurred mainly due to the slow reaction between the low-activity(S8)nand polyol.For EG,the reaction begins at160°C and can be expressed as37:

Fig.2 TEMimages of MoS2nanosheets prepared with differentholding time at 170°C for(A)8 h,(B)12 h,(C)16 h,(D)20 h The inseted images are selected area electron diffraction(SAED)patterns of the matching samples.

Fig.2(A-D)shows the improved crystallinity of the as-prepared MoS2nanosheets with increasing holding time.When the holding time was less than 7 h,most of time no MoS2nanosheet was obtained,butgrey solutions.After 8 h,smaller black nanosheets with poor crystallinity appeared atthe bottom of the autoclave in a grey solution as shown in Fig.2A.Fig.2B shows thatmany ordered rings emerged after 12 h to reduce surface energy without obvious improvement in crystallinity.Fig.2C shows the crystal planes realign to reduce total system energy and crystal defects during the 12-16 h,which has been detailed by Wang38.At16-20 h,some regions with good crystallinity appeared as shown in Fig.2D,which can improve the electrical conductivity of MoS2nanosheets.

3.3 Influence of polyoland volume ratio of polyolto water

EG and DEG have been widely used in poyloy process as solvents,ruducing and stabilizer agents39,40to prepare various NPs such as metals,alloys,oxides,and Metal chalcogenides41-48due to their exellcent physical and chemical properties.Fig.3(A-F) shows thatthe MoS2nanosheets prepared with EG and DEG differ significantly in dispersity and length atthe same contiditon,which can be attribute to their different reducing powers and viscosities. As shown in Fig.3(A,C,F)the volume ratio of EG to water affects slightly on the size of as-prepared MoS2nanosheets,and the average allare ca 70-100 nm in length.The case can be attribuated to the dramatical decrease of EG viscosity when the temperature increased to 170-200°C.Moreover,every EG molecule only possess two hydrogen bond acceptors,therefore,the affinity of EG molecule on the MoS2nanosheets(or nanoflakes)is poor,giving rise to the free movementof MoS2nanosheets(or nanoflakes)at high temperature.In other words,the thermal energy of MoS2nanosheets is comparable to the aggregation barrier of the systems according Jolte′s stability hypothesis35,thus all the MoS2nanosheets have a similarly finalaverage size.However,as shown in Fig.3(B,D,F),the average size of the MoS2nanosheets prepared with DEG are roughly proportionalto the increasing volume ratio of DEGto water,which increased from ca.70 to 150 nm.The higher viscosity and more hydrogen bond accpetors(three)may accountfor the difference between the MoS2nanosheets prepared with EG and DEG.However,when the volume ratio of EG or DEG to water decreased to 1:4-1:5,high uniform MoS2nanospheres were obtained as Fig.3G(prepared with EG)and Fig.3H(prepared with DEG)show.

3.4 Growth mechanism

The three-step formation proccess of MoS2nanosheets can be expressed as follows:the reassembly of ground sublimed sulfur, the reduction of Na2MoO4to MoS3nuclei,the formation of MoS2nanoflakes,and the formation of MoS2nanosheets(Fig.4).To takeEG as an example for further details.Before heating,mostof the ground sulfur powder floated on the interface of the mixture of water and EG.Atapproximate 100°C,the sulfur powder adsorbed on foams stemming from the boiling water was sprayed on the inner wallof autoclave because of the burstof foams.When the temperature reached to 120°C,the water and EGseparated with Na2MoO4in water,and the sulfur powder began to meltinto liquid beads.Then with the rising temperature,the high viscous liquids beads,which are insoluble in water,slipped into EG by gravity spread evenly in EG finally.At the critical polymerization temperature 159°C,the S8composing of liquid sulfur beads began to transfer into low active insoluble sulfur(S8)n.Meanwhile,EG surmounted the onsetpotentialof oxidation(160°C)40,and began to reactwith S8and(S8)n,followed by the generation of H2S.Increasing H2S then migrated to the water-EG interface gradually, which result in the reduction of Na2MoO4into MoO42-ions gradually(detailed in SI 2).By the aid of sub-criticalwater,the MoO42-

ions transferred into MoS3nuclei49,50,which would be aggregated or coalesced due to van der Wall forces and violent collisions caused by Brownian movement because of the high density of MoS3nearby the water-EG interface33-35.The MoS3then was trapped in EG and decomposed into MoS2soon for their poor thermostability.As a result,the MoS2and NPs grew into MoS2nanofakes with poor crystallinity according to Kotov et al.28just as displayed in Fig.2A.Then,the nanofalkes grew larger gradually untilto the the maximalsize determined by the aggregation barrier ofthe system35.In the process,the crystallinity of MoS2nanosheets improved by the rearrange of atoms and specialcrystalplanes to reduce defects and the totalsystem energy,as elaborated in a latest research of Wang38.However,the crystallinity improvement of MoS2was limited by low reaction temperature,indacated by the discolations shown in Fig.2(B-D)and the smallwhite rings on the nanosheets shown in Fig.4.We speculated that the growth mechanism may be applicable to other TMDCs because of their similar structure and properties.

Fig.3 MoS2nanosheets prepared with EG(A,C,E)and DEG(B,D,F)with different volume ratio of EG/DEG to water at 170°C heating for 8 h (A,B)1:1,(C,D)1:2,(E,F)1:3,(G,H)1:5

Fig.4 Scheme of the three-step growth mechanism of MoS2nanosheets

4 Conclusions

MoS2nanosheets were successfully prepared with a novlonepot,two-phase method with sulfur powder and Na2MoO4at170-200°C for 8 h without transfer agents.The as-prepared MoS2nanosheets are rich in unsaturated S atoms thatare crucialto the HER ctatlysis.Moreover,a possible three-step growth mechansim was proposed,which may be employed for other TMDCs for their similar structures.We hope this facile,green,low-cost method may be an effective method to perpare scale-up TMDCs in the near future.

Supporting Information:available free of charge via the internetathttp://www.whxb.pku.edu.cn.

(1)Radisavljevic,B.;Radenovic,A.;Brivio,J.;Giacometti,V.;Kis, A.Nat.Nanotechnol.2011,6,147.doi:10.1038/nnano.2010.279

(2)Mark,K.F.;He,K.;Shan,J.;Heinz,T.F.Nat.Nanotechnol. 2012,7,494.doi:10.1038/nnano.2012.96

(3)Splendiani,A.;Sun,L.;Zhang,Y.;Li,T.;Kim,J.;Chim,C.Y.; Galli,G.;Wang,F.Nano Lett.2010,10,1271.doi:10.1021/ nl903868w

(4)Li,Y.;Wang,H.;Xie,L.;Liang,Y.;Hong,G.;Dai,H.J.Am.Chem.Soc.2011,133,7296.doi:10.1021/ja201269b

(5)Dagge,M.;Chianelli,R.R.J.Catal.1994,149,414. doi:10.1006/jcat.1994.1308

(6)Jaramillo,T.F.;Jorgensen,K.P.;Bonde,J.;Nielsen,J.H.; Horch,S.;Chorkendorff,I.Science 2007,317,100. doi:10.1126/science.1141483

(7)Karunadasa,H.I.;Montalvo,E.;Sun,Y.;Majda,M.;Long,J. R.;Chang,C.J.Science 2002,335,698.doi:10.1126/ science.1215868

(8)Benck,J.D.;Chen,Z.;Kuritzky,A.L.;Froman,A.J.; Jaramillo,T.F.ACS Catal.2012,2,1916.doi:10.1021/ cs300451q

(9)Benchk,J.D.;Hellstern,T.R.;Kibsgaard,J.;Chakthranont,P.; Jaramillo,T.F.ACS Catal.2014,2,3957.doi:10.1021/ cs500923c

(10)Kibsgarrd,J.;Chen,Z.;Beinecke,B.N.;Jaramillo,T.F.Nat. Mater.2012,11,963.doi:10.1038/nmat3439

(11)Xie,J.;Zhang,J.;Li,S.;Grote,F.;Zhang,X.;Zhang,H.;Wang, R.;Lei,Y.;Pan,B.;Xie,Y.J.Am.Chem.Soc.2013,135,17881. doi:10.1021/ja408329q

(12)Xie,J.;Zhang,H.;Li,S.;Wang,R.;Sun,X.;Zhou,M.;Zhou, J.;Lou,X.W.;Xie,Y.Angew.Chem.Int.Ed.2013,25,5807. doi:10.1039/C4SC02019G

(13)Lee,Y.;Zhang,X.Q.;Zhang,W.;Chang,M.T.;Lin,C.T.; Chang,K.D.;Yu,Y.C.;Wang,J.T.;Chang,C.S.;Li,L.J.;Lin, T.W.Adv.Mat.2012,24,2320.doi:10.1002/adma.201104798

(14)Novoselov,K.S.;Jiang,D.;Schedin,F.;Booth,T.J.; Khotkevich,V.V.;Morozov,S.V.;Geim,A.K.Proc.Natl. Acad.Sci.U.S.A.2005,102,10451.doi:10.1073/ pnas.0502848102

(15)Zhan,Y.;Liu,Z.;Najmaei,S.;Ajayan,P.M.;Lou,J.Small 2012,10,966.doi:10.1002/smll.201102654

(16)Bissessur,R.;Heising,J.;Hirpo,W.;Kanatzidis,M.Chem. Mater.1996,8,318.doi:10.1021/cm950378+

(17)Danot,M.;Mansot,J.L.;Golub,A.S.;Protzenko,G.A.; Fabritchnyi,P.B.;Novikov,Y.N.;Rouxel,J.Mater.Res.Bull. 1994,29,833.doi:10.1016/0025-5408(94)90003-5

(18)Golub,A.S.;Zubavichus,Y.V.;Slovokhotov,Y.L.;Novikov,Y. N.;Danot,M.Solid State Ionics 2000,128,151.doi:10.1016/ S0167-2738(99)00347-1

(19)Tachibana,H.;Yamanaka,Y.;Sakai,H.;Abe,M.;Matsumoto, M.Chem.Mater.2000,12,854.doi:10.1021/cm990664b

(20)Benavente,E.;Santa Ana,M.A.;Mendizabal,F.;Gonzalez,G. Coord.Chem.Rev.2002,224,87.doi:10.1016/S0010-8545(01) 00392-7

(21)Coleman,J.;Lotya,M.;O?Neill,A.;Bergin,S.D.;King,P.J.; Khan,U.;Young,K.;Gaucher,A.;De,S.;Smith,R.J.;Shvets, I.V.;Arora,S.;Stanton,G.;Kim,H.Y.;Lee,K.;Kim,G.T.; Duesberg,G.S.;Hallam,T.;Boland,J.J.;Wang,J.J.;Donegan, J.F.;Grunlan,J.;Moriarty,G.;Shmeliov,A.;Nicholls,R.J.; Perkins,J.M.;Grieveson,E.M.;Theuwissen,K.;McComb,D. W.;Nellist,P.D.;Nicolosi,V.Science 2011,331,568. doi:10.1126/science.1194975

(22)Zhou,K.G.;Mao,N.N.;Wang,H.X.;Peng,Y.;Zhang,H.L. Angew.Chem.Int.Ed.2011,50,10839.doi:10.1002/ ange.201105364

(23)O′Neill,A.;Khan,Umar;Coleman,J.N.Chem.Mater.2012, 24,2414.doi:10.1021/cm301515z

(24)Voiry,D.;Salehi,M.;Silva,R.;Fujita,T.;Chen,M.;Asefa,T.; Shenoy,V.B.;Eda,G.;Chhowalla,M.Nano Lett.2013,13, 6222.doi:10.1021/nl403661s

(25)Jawaid,A.;Nepal,D.;Park,K.;Jespersen,M.;Qualley,A.; Mirau,P.;Drummy,L.F.;Vaia,R.A.Chem.Mater.2016,28, 337.doi:10.1021/acs.chemmater.5b04224

(26)Zhou,W.;Zou,X.L.;Najmaei,S.;Zheng,L.;Shi,Y.M.;Kong, J.;Lou,J.;Ajayan,P.M.;Yakobson,B.I.;Idrobo,J.Nano Lett. 2013,13,2615.doi:10.1021/nl4007479

(27)Kalsin,A.M.;Fialkowski,M.;Paszewski,M.;Smoukov,S.K.; Bishop,K.J.M.;Grzybowski,B.A.Science 2006,321,420. doi:10.1126/science.1125124

(28)Tang,Z.Y.;Zhang,Z.L.;Wang,Y.;Glotzer,S.C.;Kotov,N.A. Science 2006,314,274.doi:10.1126/science.1128045

(29)Glotzer,S.C.;Solomon,M.J.Nat.Mater.2007,6,557. doi:10.1038/nmat1949

(30)Min,Y.J.;Akbulut,M.;Kristiansen,K.;Golan,Y.;Israelachvili, J.Nat.Mater.2008,7,527.doi:10.1038/nmat2206

(31)Schliehe,C.;Juarez,B.H.;Pelletier,M.;Jander,S.;Greshnykh, D.;Nagel,M.;Meyer,A.;Foerster,S.;Kornowski,A.;Klinke, C.;Weller,H.Science 2010,329,550.doi:10.1126/ science.1188035

(32)Xia,Y.S.;Nguyen,T.D.;Yang,M.;Lee,B.;Santos,A.; Podsiadlo,P.;Tang,Z.Y.;Glotzer,S.C.;Kotov,N.A.Nat. Nanotechnol.2011,6,580.doi:10.1038/nnano.2011.121

(33)Plote,J.;Erler,R.;Thunemann,A.F.;Emmerling,F.;Kraehnert, R.Chem.Commun.2010,46,9209.doi:10.1039/C0CC03238G

(34)Polte,J.;Ahner,T.T.;Delissen,F.;Sokolov,S.;Emmerling,F.; Thunemann,A.F.;Kraehnert,R.J.Am.Chem.Soc.2010,132, 1296.doi:10.1021/ja906506j

(36)Fairbrother,F.;Gee,G.;Merrall,G.T.J.Polym.Sci.1955,16, 459.doi:10.1002/pol.1955.120168231

(37)Zheng,Y.;Cheng,Y.;Wang,Y.;Zhou,L.;Bao,F.;Jia,C. J.Phys.Chem.B 2006,110(16),8284.doi:10.1021/jp060351l

(38)Fei,L.F.;Lei,S.J.;Zhang,W.B.;Lu,W.;Lin,Z.Y.;Lam,C. H.;Chai,Y.;Wang,Y.Nat.Commun.2016,7,1.doi:10.1038/ ncomms12206

(39)Yue,H.R.;Zhao,Y.J.;Gong,J.L.Chem.Soc.Rev.2012,41, 4218.doi:10.1039/C2CS15359A

(40)Biacchi,A.J.;Schaak,R.E.ACS Nano 2011,5,8089. doi:10.1021/nn2026758

(41)Fifvet,F.;Lagier,J.P.;Blin,B.Solid State Ionics 1989,32,198.doi:10.1016/0167-2738(89)90222-1

(42)Silvert,P.V.;Tekaia-Elhsissen,K.Solid State Ionics 1995,82, 53.doi:10.1016/0167-2738(95)00198-F

(43)Bonet,F.;Delmas,V.;Grugeon,S.;Urina,H.R.;Silvert,P.Y.; Tekaia-Elhsissen,K.Nano Structured Material1999,11,1277. doi:10.1016/S0965-9773(99)00419-5

(44)Schmitt,P.;Brem,N.;Schunk,S.;Feldmann,C.Adv.Funct. Mater.2011,21,3037.doi:10.1002/adfm.201100655

(45)Feldmann,C.Adv.Funct.Mater.2003,13,101.doi:10.1002/ adfm.200390014

(46)Sun,Y.G.;Xia,Y.N.Science 2002,298,2176.doi:10.1126/ science.1077229

(47)Chen,J.Y.;Herricks,T.;Geissler,M.;Xia,Y.N.J.Am.Chem. Soc.2004,126,10854.doi:10.1021/ja0468224

(48)Rusitskiy,A.;Xia,Y.N.J.Am.Chem.Soc.2016,138,3161. doi:10.1021/jacs.5b13163

(49)Akiya,N.;Savage,P.E.Chem.Rev.2002,102,2725. doi:10.1021/cr000668w

(50)Erickson,B.E.;Helz,G.R.Geochim.Cosmochim.Ac.2000, 64,1149.doi:10.1016/S0016-7037(99)00423-8

Polyol-Mediated Synthesis of MoS2Nanosheets Using Sulfur Powder as the Sulfur Source

WANGHui1ZOU De-Chun1,2,*
(1Beijing Institute of Nanoenergy and Nanosystems,Chinese Academy of Sciences,National Center for Nanoscience and Technology, Beijing 100083,P.R.China;2College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China)

MoS2nanosheets are prepared with sulfur powder and Na2MoO4by a one-pottwo-phase method at170-200°C for 8 h.In addition,a three-step growth mechanism based on the aggregation and coalescence modelis proposed.The reassembly ofsulfur powder ensures the transformation from sulfur powder to H2S to reduce Na2MoO4and plays a key role in the successfulpreparation of MoS2nanosheets.The as-prepared MoS2nanosheets are rich in unsaturated sulfur atoms,probably resulting from the dislocation cores of the MoS2nanosheets,which have been found to be beneficialfor hydrogen evolution reaction catalysis.The method and growth mechanism adopted in this study may be applied to other transition metaldichalogenides for similar structures.The facile and green method provides an alternative for the preparation of MoS2nanosheets.

MoS2nanosheet;Sulfur powder;Aggregation and coalescence model;Ethylene glycol; Two-phase method

O643;O611.4

Polte,J.CrystEngComm 2015,17,6809.

10.1039/ c5ce01014d

doi:10.3866/PKU.WHXB201702081

Received:November23,2016;Revised:February 6,2017;Published online:February 8,2017.

*Corresponding author.Email:dczou@pku.edu.cn;Tel:+86-10-62759799.

The projectwas supported by the“Thousand Talents”Program of China for Pioneering Researchers and Innovative Teams,National Natural Science Foundation of China(51573004,91333107),and Natural Science Foundation of Beijing,China(Z160002).

國家頂尖千人計劃,國家自然科學(xué)基金(51573004,91333107)及北京市自然科學(xué)基金(Z160002)資助項目?Editorialoffice of Acta Physico-Chimica Sinica

主站蜘蛛池模板: 成人免费视频一区二区三区| 欧美综合在线观看| 久久精品欧美一区二区| 欧美亚洲网| 久草视频福利在线观看| 亚洲最大福利视频网| 中文字幕欧美日韩| 99无码中文字幕视频| 中文纯内无码H| 无码'专区第一页| 亚卅精品无码久久毛片乌克兰| 亚洲bt欧美bt精品| 99视频在线看| 色视频久久| 中文字幕久久波多野结衣 | 国产欧美视频综合二区| 热99精品视频| 91人人妻人人做人人爽男同| 亚洲国产理论片在线播放| 亚洲欧美一区二区三区蜜芽| 欧美一级特黄aaaaaa在线看片| 成人午夜免费观看| 国产农村精品一级毛片视频| 女人av社区男人的天堂| 亚洲第一中文字幕| 免费国产不卡午夜福在线观看| 无码有码中文字幕| 国产99精品久久| 色噜噜狠狠狠综合曰曰曰| aⅴ免费在线观看| 国产精品一区在线麻豆| 国产在线日本| 中国一级特黄视频| 日韩精品欧美国产在线| 亚洲精品第1页| 国产成人91精品免费网址在线 | 四虎亚洲国产成人久久精品| 中文国产成人久久精品小说| 久久国产香蕉| 丁香五月婷婷激情基地| 在线国产欧美| 国产av剧情无码精品色午夜| 色成人亚洲| 久久毛片网| 国产永久免费视频m3u8| 中文字幕不卡免费高清视频| 国产精品视频观看裸模 | 国产一区二区三区在线精品专区| 波多野吉衣一区二区三区av| 国产亚洲精品自在久久不卡| 蜜芽一区二区国产精品| 国产在线观看一区二区三区| 国产在线观看高清不卡| 男女精品视频| 国产毛片不卡| 欧美在线导航| 国产乱子伦精品视频| 日韩av手机在线| 中文字幕无码中文字幕有码在线| 青青草国产在线视频| 午夜影院a级片| 亚洲欧美h| 亚洲成aⅴ人在线观看| 久久香蕉国产线| 54pao国产成人免费视频| 亚洲人成网址| 伊在人亚洲香蕉精品播放| 久久精品国产精品国产一区| 国产激情第一页| 一区二区自拍| 久久精品国产电影| 亚洲一道AV无码午夜福利| 欧美一道本| 亚洲色欲色欲www网| 国产极品美女在线| 91久草视频| 久久精品国产一区二区小说| 蝌蚪国产精品视频第一页| 91福利片| 国产欧美日韩va另类在线播放| 亚洲国产第一区二区香蕉| 看av免费毛片手机播放|