蔣逸駿 胡雪峰舒 穎 蔣 穎 滕 青
(上海大學環境與化學工程學院,上海 200444)
湘北某鎮農田土壤―水稻系統重金屬累積和稻米食用安全研究*
蔣逸駿 胡雪峰?舒 穎 蔣 穎 滕 青
(上海大學環境與化學工程學院,上海 200444)
為研究采礦煉礦活動對農田和稻谷重金屬累積的影響,評估其對人體健康的潛在風險,對湖南北部某鎮一硫鐵礦附近典型污染稻田土壤—水稻系統8種重金屬(錳(Mn)、銅(Cu)、鋅(Zn)、鈷(Co)、鎳(Ni)、鉻(Cr)、鎘(Cd)和鉛(Pb))含量進行監測。結果表明:該冶煉廠附近稻田土壤Cd污染最嚴重,單因素污染指數達12.85,為重度污染;Cu、Zn、Co和Ni為輕度污染。土壤重金屬綜合污染指數達重度污染。重金屬生物富集因子的研究表明:Cd和Mn極易從土壤中被水稻根系吸收,尤其Cd被水稻根系吸收的能力遠超其他重金屬元素;而Cu、Pb、Co、Cr、Zn和Ni相對不易被水稻根系吸收。重金屬在植株組織的分配也表現出差異:Pb、Co、Cu、Cd和Cr被水稻根吸收后,主要蓄積于根部,在根部的濃度百分比分別為82.5%、70.6%、64.8%、59.4%和57.5%;Mn、Zn 和Ni被根系吸收后,會迅速向地上部組織遷移。研究區稻田出產的糙米Cd污染嚴重,Cd的超標率達100%,“鎘米”的產出率達53.3%。糙米Cu和Ni的超標率也分別達到了40%和86.7%。若居民食用研究區稻米,每人每日攝入Cd量高于FAO/WHO推薦的標準限值5.9倍,表明研究區稻米存在很大安全風險。
采礦煉礦;稻田土壤;重金屬;鎘(Cd);糙米
隨著工業發展,重金屬對農田的污染愈發嚴重。據報道[1],中國有接近2.0×107hm2的農田被重金屬污染,其中鎘(Cd)嚴重污染的土壤就有2.8×105hm2。湖南是“中國有色金屬之鄉”,每年從湖南省輸出的重金屬量十分巨大[2]。據報道,2005年,湖南省生產的鋅(Zn)和鉛(Pb)分別占中國Zn、Pb總產量的23.7%和16.9%。在湖南全省,由于采礦和冶煉活動導致土壤污染面積約為2.8×106hm2,占全省面積的13%[3]。大規模的采礦和礦石加工,已經導致湖南稻田土壤和水稻被Cd、砷(As)和Pb等重金屬嚴重污染[4]。
飲食是重金屬進入人體的直接原因,世界上有超過半數的人口以稻米作為主食[5]。中國是世界上最大的水稻生產國和消費國。土壤重金屬污染,不僅影響水稻生長發育,導致產量下降[6],還會在稻谷內大量積累,并沿食物鏈進入人體,危害人體健康。稻谷重金屬含量的高低,直接決定是否會對人體健康產生危害。
本文以湘北某鎮一硫鐵礦冶煉廠附近水稻田為例,研究稻田土壤錳(Mn)、銅(Cu)、Zn、鈷(Co)、鎳(Ni)、鉻(Cr)、Cd和Pb八種重金屬元素的含量及在水稻植株的積累情況,并對研究區稻田出產稻谷的重金屬累積和食用風險進行評估。本研究對揭示礦業活動重金屬污染元素進入農田生態系統的途徑和機理、修復污染土壤、阻止重金屬進入食物鏈進而減少人體健康風險均有重要參考意義。
1.1 研究區概況
研究區位于湖南北部某鎮,屬亞熱帶大陸性季風濕潤氣候,丘陵地貌。該鎮所在縣礦藏資源豐富,是著名的“有色金屬之鄉”。全縣已知的礦床、礦點有140多處,已探明的礦床、礦點40余處。全縣耕地總面積達6.53×104hm2,其中稻田面積5.51×104hm2,占總耕地面積的84.5%[7]。研究土壤為水稻土(水耕人為土),成土母質為第四紀紅土[8],研究區土壤為肥沃型[9]。土壤pH、有機質、全氮、全磷和鹽基離子濃度如表1所示。

表1 研究區稻田土壤基本理化性狀Table 1 Physico-chemical properties of the paddy soils in the studied area
1.2 樣品采集和分析
該鎮有一硫鐵礦冶煉廠,由于冶煉廢水排入鄰近一灌溉溪流,使得溪流兩岸近千畝稻田均不同程度地受污染。野外調查表明,稻田的影響程度,與溪流污染狀況和距離有密切關系。
距冶煉廠約5 km,受污溪流剛入地勢平緩的稻區,兩岸稻田污染最重,有的稻田表土呈褐紅色。本文以此處20 hm2典型污染稻田為研究對象,對土壤—水稻植株系統重金屬含量作監測。于2012年9月下旬湖南中季稻成熟季,采用GPS定位,對研究稻田進行網格化采樣。每個網格單元均用十字交叉法采集耕作層(0 ~ 20 cm)的混合土樣約1 kg,裝入聚乙烯塑料袋中,送回實驗室。土壤樣品共計15個(編號:Y-1~Y-15)。同時,在每個網格單元,用蛇形法采集對應水稻成熟植株樣,共計15個(編號:R-1~R-15)。
土樣于實驗室中自然風干、磨碎,分別過2 mm 和0.149 mm篩,備用。
水稻植株樣品帶回實驗室后,去除雜物,用蒸餾水洗凈。每樣分為根、莖、葉、稻殼和稻米樣,烘干至恒重,用粉碎機粉碎后,密封備用。
土壤和水稻樣品消解方法:稱取0.2000 g 左右過0.149 mm篩的風干土樣于聚四氟乙烯坩堝中,加入混合酸(HF-HClO4-HNO3)進行消解。稱取水稻各組織烘干粉末2.0000 g(稻根樣1.0000 g)置于三角燒瓶中,加HNO330 ml浸泡過夜后,低熱消解,隨后加入2 ml HClO4繼續消解至終點。
土壤和水稻樣品重金屬測定:消解液重金屬(Cu、Zn、Cr、Ni、Co、Mn)含量用電感耦合等離子體發射光譜儀(ICP-AES:Prodigy型,利曼儀器有限公司,美國)測定,儀器誤差為1.52%~3.43%,相對標準偏差1.34%~2.18%;Cd、Pb含量用石墨爐原子吸收法(GF-AAS:Z E E n i t 6 0 0/6 5 0,耶拿公司,德國)測定,儀器誤差為2.3 1%~4.1 3%,相對標準偏差1.85%~2.89%。土壤重金屬分析過程用國家標準土壤樣品(GSS-6)進行分析質量控制;水稻樣品重金屬元素分析過程用湖南大米標準樣品(GBW10045)進行分析質量控制。每測試10個樣品,插入一個居中濃度的標準液校正測定值。
1.3 重金屬污染指標計算
內梅羅指數:表示重金屬污染物對土壤環境和生態環境的危害程度,分為單因素污染指數和綜合污染指數。單因素污染指數[10]:

式中,Pi為土壤中某重金屬 i 的單因素污染指數;Ci為土壤中某重金屬 i 實測平均含量;Si為i的標準參考值(取GB15618-1995的二級含量限值);本研究i包括Mn、Cu、Zn、Co、Ni、Cr、Cd和Pb八種重金屬。

式中,Pimax為樣區某重金屬i單因素污染指數的最大值;P—為單污染指數的加權平均值;wi為重金屬的權重,Hg、Pb、Cd和As為3,Zn、Cu、Cr和Ni 為2[12]。依據上述單因素污染指數和綜合污染指數的大小,將土壤重金屬污染現狀分為如下4個等級:(1)P<1. 0,清潔;(2)P = 1. 0 ~ 2.0,輕度污染;(3)P = 2.0~3.0,中度污染;(4)P >3. 0,重度污染。
生物富集因子(Bioconcentration factor,BCF):表示植物從土壤中吸收某種特定重金屬并積累在植物體內的能力。計算公式[13]:

式中,Cplant和Csoil分別代表了植物某部位的重金屬濃度和對應的土壤重金屬濃度,以烘干重為基準。
遷移因子(Translocation factor,TF):表示植物體內重金屬從根部遷移到地上部位的能力。計算公式[14]

式中,Cshoot和Croot分別表示植物地上部位和植物根部重金屬濃度。
重金屬每人每日攝入量(Per capita daily ingestion of heavy metals,DI):研究區內居民經稻米途徑攝入重金屬量,采用每人每日攝入量來計算。公式表達如下[15]

式中,FIR為食物的攝入率,g person-1d-1。根據我國平均食物消費結構,人均每年消費稻麥等谷類糧食作物206 kg,假設谷類全部為大米,則成人每天消費稻米0.339 kg[16];C為食物中重金屬含量,mgkg-1;1 000為單位轉換系數,使mg d-1person-1轉換成μg d-1person-1。
2.1 稻田土壤重金屬含量
研究區域水稻土發育于第四紀紅土,質地黏重,多呈酸性或強酸性;但由于受淹水作用影響,個別樣點已趨中性(表2)。15個水稻土監測樣點,位于煉礦廢水排放導致的污染溪流兩岸。以國家土壤環境質量二級標準(GB15618-1995)為基準,對稻田土壤重金屬含量(表2)進行評價。結果表明:土壤Cd含量,超標率達到了100%,污染十分普遍;Cu、Zn、Co、Ni的超標率也分別達到了86.7%、60%、80%和60%。土壤Cd的單因素污染指數為12.85,達到重度污染;Cu、Zn、Co 和Ni的單因素污染指數依次為1.54、1.26、1.15和1.13,均為輕度污染(圖1),依然不可忽視。研究區稻田綜合污染指數達到9.39,已達到重度污染程度,表明該區域土壤已遭受嚴重污染。
2.2 水稻重金屬生物富集因子
根據研究區域水稻根部重金屬生物富集因子(表3),所研究重金屬可以分為兩大類:一類為Cd、Mn,極易從土壤中被水稻根系吸收;另一類為Cu、Pb、Co、Cr、Zn和Ni,相對不易被水稻根系吸收。可以看出,Mn、Cu、Zn、Co、Ni、Cr、Cd和Pb八種重金屬中,Cd從土壤遷移至水稻根系的能力遠超其他重金屬,生物富集因子平均值為11.84,最高值達到了22.24。Cd更易從土壤被水稻根系吸收[17]。Cu、Pb和Zn等重金屬在水稻生長中后期基本不會再被水稻根系吸收進入體內,但對Cd的吸收卻依然十分旺盛[18]。Mn也很容易被水稻根系吸收,生物富集因子平均為2.25。Cu、Pb、Co、Cr、Zn和Ni的生物富集因子多數小于1.00,說明均不易從土壤遷移至水稻根部;但也有個別樣點超過1.00(表3),可能與不同樣點重金屬共存情況、土壤理化性質和肥料施用不同等因素有關[19]。
2.3 水稻植株重金屬積累和分布
依據重金屬元素在水稻植株各部位(根、莖、葉、糙米和稻殼)的濃度百分比(圖2),也可以將所研究重金屬分為兩大類:一類為Pb、Co、Cu、Cd和Cr,主要累積于植株根部,在根部的濃度百分比依次為82.5%、70.6%、64.8%、59.4%和57.5%;另一類為Mn、Zn和Ni,根部的濃度百分比只為16.3%、29.9%、49.9%,而在地上部莖、葉和稻谷各部位濃度顯著增加。

表2 研究區稻田土壤重金屬含量Table 2 Contents of heavy metals in the studied paddy soils

圖1 研究區稻田土壤重金屬單因素污染指數Fig. 1 Singe-factor pollution indices of heavy metals in the studied paddy fields

表3 研究區稻田水稻根部重金屬生物富集因子Table 3 Heavy metals bioconcentration factors in rice roots in the studied paddy fields
植物地上部重金屬過量會毒害和抑制植物生長。對于非必需重金屬元素,植物自身會通過減少吸收或截留在根部細胞等調節方式,使體內重金屬含量維持在一定水平[20-21]。Pb主要富集在水稻根部,少量分布于莖、葉和稻殼中,而在糙米中的濃度非常低。前人[22]的研究也表明,水稻根部Pb濃度在抽穗期達到峰值,在莖和葉中的含量也會持續增大,但在糙米中的含量很低。Pb在水稻體內含量分配的差異與Pb在植株各組織及細胞中的存在形式和移動性有關[23]。Cu主要截留在水稻根部,會使根病變成棕色,作物發芽減少,從而降低產量[24]。本研究也表明,根部Cu濃度百分比達60%以上,莖、葉和殼的濃度較低,但稻米中的濃度接近葉部濃度。說明Cu主要被攔截于水稻的根部,只有少部分轉移至水稻的其他部位,包括稻米中。Cr和Co也大部分在根部截留,較地上部富集量大很多。Cd對水稻有很大的毒害作用,水稻根部吸收Cd后主要富集在根部,根部Cd濃度百分比達59.4%,但有近40%的濃度比集中在水稻地上部。研究表明,木質部的傳輸決定Cd從水稻根部遷移至地上部,遷移至糙米中則主要由韌皮部的傳輸決定[25]。
Mn、Zn和Ni對水稻的毒害較小,且作為水稻的營養元素大量遷移至水稻地上部。Mn主要蓄積在水稻葉部,葉部Mn濃度百分比達50%以上(圖2),當葉部濃度達到0.5 ~ 2 mg kg-1時,會降低水稻的光合作用[26]。植物葉中Mn含量的高低往往受體內磷含量影響,當體內磷含量較低時會釋放較多羧化物,從而使植物葉中Mn含量維持在較高的水平[27]。Zn作為動植物的營養元素被吸收后,并不會被根部截留,而是主動由木質部傳輸至地上部,為植物提供營養[28]。Zn主要蓄積在水稻莖部,莖部Zn濃度百分比達51.2%(圖2)。Zn在植物體內含量還受磷含量影響,體內磷含量較高時,Zn含量較低,但在不同生長期會有不同的影響[29]。Ni在水稻根部和地上部的濃度百分比基本相同,均為50%左右(圖2)。Ni在水稻地上部主要蓄積在莖和葉部,且濃度百分比也十分接近。這說明水稻各組織對Ni的吸收和富集具有相似性[30]。雖然Ni是植物必需的微量元素,但過量的Ni會降低水稻呼吸作用[31],削弱水稻的氮同化作用,毒害水稻幼苗[32]。

圖2 水稻植株各組織重金屬濃度百分比Fig. 2 Distribution of heavy metals(in percentage)in different tissues of a rice plant
2.4 水稻糙米重金屬含量
本研究對水稻地上部各組織的重金屬遷移因子進行計算,結果見表4。總體看,水稻莖、葉的重金屬遷移因子顯著高于糙米。因為重金屬對水稻的毒害作用,使水稻產生一系列耐性機理阻礙其遷移,防止進一步轉移至籽實[33]。
稻米是主糧,稻米重金屬含量會深刻影響人體健康。Mn在糙米中的含量遠低于莖和葉,Cr和Pb遷移至糙米的能力幾乎為零。Zn不易向糙米富集,但相對于其他非必需元素,Zn遷移至糙米的能力最強(表4)。Cu遷移至糙米的能力僅次于Zn(表3)。水稻能通過暫存在葉中的Cu直接從根部遷移至糙米中[34]。微量的Ni有助于植物的氮代謝,但過量的Ni則會毒害水稻分蘗,使穗重量降低[35]。研究表明[36],水稻籽實能選擇性地“優先”吸收Cd。糙米對Cd的吸收有顯著的基因型差異,此外,Cd在土壤中的有效性以及土壤種類、酸堿度、肥料使用和氣候條件等也會影響糙米Cd含量[37]。
水稻糙米中,Mn、Cu和Zn含量顯著高于Cd(表5)。但前者生理毒性低,且又是水稻的營養元素。Cd對水稻無任何營養意義,且有很強的生理毒性。糙米Cd含量是評估稻米安全和質量的一個重要指標。在食品安全國家標準(GB2762-2012)中,糙米Cd 含量0.2 mg kg-1為限制值。糙米Cd含量超過1 mg kg-1時,稱為“鎘米”[38],食用后會對人體健康產生嚴重危害,因而又稱“毒大米”。對研究區稻田產出糙米的Cd含量進行評價,糙米Cd超標率達100%,與農田土壤Cd污染程度一致;“鎘米”的產出率達53.3%。充分說明由于受煉礦廢水排放的影響,研究區域已受到Cd的嚴重污染,尤其毒大米產出比例很高,應引起高度重視。糙米Cu和Ni的超標率也分別達到了40%、 86.7%,同樣不容忽視。

表4 研究區稻田水稻植株地上部重金屬遷移因子Table 4 Heavy metals translocation factors in rice shoots in the studied paddy fields

表5 研究區稻田糙米重金屬含量Table 5 Contents of heavy metals in the brown rice produced in the studied paddy fields
2.5 稻米食用風險評價

圖3 研究區居民食用研究稻田產出稻米每人每日重金屬攝入量Fig. 3 Per capita daily ingestion of heavy metals of the local residents through consumption of the rice produced in the studied paddy fields
假定研究區域周邊居民以當地出產的稻米為主食,估算出居民因食用稻米攝入的Cu、Zn、Ni、 Cr、Cd和Pb量分別為2 732、7 085、464、85、410和37 μg d-1person-1(圖3)。其中,Cu、Zn、Ni、Cr和Pb的攝入量低于FAO/WHO推薦限量標準[39],但Cd攝入量為FAO/WHO推薦允許限量標準的5.9倍(圖3)。重金屬在稻米中主要與蛋白質結合[40];進入人體后,可溶性蛋白質能絡合Cd等重金屬,可一定程度緩和重金屬對人體的毒性[41]。另一方面,還應考慮多種重金屬被人體吸收后的復合效應,不能只考慮單一暴露源進行評價[42]。因此,這一評價方式也有局限。研究區域稻米Cd的累積,對當地居民身體健康構成潛在威脅。
湘北某鎮一硫鐵礦冶煉廠廢水排放,污染灌溉溪流,使得溪流兩岸約20 hm2稻田土壤重金屬污染嚴重:土壤Cd的超標率達100%,Cd單因素污染指數達重度污染,Cu、Zn、Co和Ni也達到輕度污染,重金屬綜合污染指數達重度污染。Cd和Mn極易從土壤被水稻根部吸收,其他重金屬元素相對不易被水稻根吸收。重金屬元素Pb、Co、Cu、Cd 和Cr被水稻根部吸收后,主要累積于根部;Mn、Zn和Ni被根部吸收后,會迅速遷移至地上部。研究區稻田出產的糙米Cd污染嚴重,Cd的超標率達100%,“鎘米”的產出率達53.3%。糙米Cu、Ni的超標率也分別達40%和86.7%。若居民食用研究區出產稻米,每人每日攝入Cd量高于FAO/WHO推薦的標準限值5.9倍。表明該典型污染區稻米已存在很大食用風險。
[1]Li P,Wang X,Zhang T,et al. Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil. Journal of Environmental Sciences,2008,20(4):449—455
[2]Liao B,Guo Z,Probst A,et al. Soil heavy metal contamination and acid deposition:Experimental approach on two forest soils in Hunan,southern China. Geoderma,2005,127(1/2):91—103
[3]Li Z,Feng X,Li G,et al. Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan Province,China. Applied Geochemistry,2011,26(2):160—166
[4]Wang M,Chen W,Peng C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan,southern China. Chemosphere,2016,144:346—351
[5]Wu W,Cheng S. Root genetic research,an opportunity and challenge to rice improvement. Field CropsResearch,2014,165:111—124
[6]Nayak A K,Raja R,Rao K S,et al. Effect of fly ash application on soil microbial response and heavy metal accumulation in soil and rice plant. Ecotoxicology and Environmental Safety,2015,114:257—262
[7]Du Y,Hu X F,Wu X H,et al. Affects of mining activities on cd pollution to the paddy soils and rice grain in Hunan province,central south China. Environmental Monitoring and Assessment,2013,185 (12):9843—9856
[8]張甘霖,王秋兵,張鳳榮,等. 中國土壤系統分類土族和土系劃分標準. 土壤學報,2013,50(4):826—834
Zhang G L,Wang Q B,Zhang F R,et al. Criteria for establishment of soil family and soil series in Chinese Soil Taxonomy(In Chinese). Acta Pedologica Sinica,2013,50(4):826—834
[9]孫波,張桃林,趙其國. 南方紅壤丘陵區土壤養分貧瘠化的綜合評價. 土壤,1995,27(3):119—128
Sun B,Zhang T L,Zhao Q G. Evalution of soil nutrient depletion in hilly red soil region of southern China(In Chinese). Soils,1995,27(3):119—128
[10]杜艷,常江,徐笠. 土壤環境質量評價方法研究進展.土壤通報,2010,41(3):749—756
Du Y,Chang J,Xu L. Progress on assessing methods of soil environmental quality(In Chinese). Chinese Journal of Soil Science,2010,41(3):749—756
[11]胡淼,吳家強,彭佩欽,等. 礦區耕地土壤重金屬污染評價模型與實例研究. 環境科學學報,2014,34 (2):423—430
Hu M,Wu J Q,Peng P Q,et al. Assessment model of heavy metal pollution for arable soils and a case study in a mining area(In Chinese). Acta Scientiae Circumstantiae,2014,34(2):423—430
[12]崔立強,嚴金龍,丁成,等. 鹽城市不同功能區地表灰塵重金屬污染特征及評價. 環境污染與防治,2014,36(9):712,17
Cui L Q,Yan J L,Ding C,et al. Characteristic and assessment of heavy metals pollution in urban surface dust of different functional areas of Yancheng(In Chinese). Environmental Pollution and Control,2014,36(9):7—12,17
[13]Galal T M,Shehata H S. Bioaccumulation and translocation of heavy metals by plantago major l. Grown in contaminated soils under the effect of traffic pollution. Ecological Indicators,2015,48:244—251 [14]Zhang Y,Luo XJ,Mo L,et al. Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L)planted in paddy soil collected from an electronic waste recycling site,south China. Chemosphere,2015,137:25—32
[15]Fang Y,Sun X,Yang W,et al. Concentrations and health risks of lead,cadmium,arsenic,and mercury in rice and edible mushrooms in China. Food Chemistry,2014,147:147—151
[16]雷鳴,曾敏,王利紅,等. 湖南市場和污染區稻米中As、Pb、Cd污染及其健康風險評價. 環境科學學報,2010,30(11):2314—2320
Lei M,Zeng M,Wang L H,et al. Arsenic,lead,and cadmium pollution in rice from Hunan markets and contaminated areas and their health risk assessment(In Chinese).Acta Scientiae Circumstantiae,2010,30 (11):2314—2320
[17]Z h a o K,L i u X,X u J,e t a l. H e a v y m e t a l contaminations in a soil-rice system:Identification of spatial dependence in relation to soil properties of paddy fields. Journal of Hazardous Materials,2010,181 (1/3):778—787
[18]朱姍姍,張雪霞,王平,等. 多金屬硫化物礦區水稻根際土壤中重金屬形態的遷移轉化. 農業環境科學學報,2013,32(5):944—952
Zhu S S,Zhang X X,Wang P,et al. Effect of rhizospheric environment of rice on bioavailability and mobility of Cd,Cu,Pb and Zn in AMD polluted paddy soil(In Chinese). Journal of Agro-Environment Science,2013,32(5):944—952
[19]喬振芳,彭世彰,徐俊增,等. 稻田土壤重金屬賦存形態·運移規律及灌溉的影響. 安徽農業科學,2011,39(16):9698—9700,9702
Qiao Z F,Peng S Z,Xu J Z,et al. Chemical forms and migration of soil heavy metals in paddy and effects of irrigation(In Chinese). Journal of Anhui Agricultural Sciences,2011,39(16):9698—9700,9702
[20]Hameed A,Rasool S,Azooz M M,et al. Chapter 24 - heavy metal stress:Plant responses and signaling// Ahmad P. Plant metal interaction. India:Elsevier,2016:557—583
[21]Kumar R,Mishra R K,Mishra V,et al. Chapter 13 -detoxification and tolerance of heavy metals in plants// Ahmad P. Plant metal interaction. India:Elsevier,2016:335—359
[22]楊玉峰,黃標,齊雁冰,等. 長江三角洲典型地區水稻籽粒中重金屬含量及空間分布特征. 土壤,2009,41 (1):42—48
Yang Y F,Huang B,Qi Y B,et al. Spatial variation of heavy metals in rice grains in a typical area of Yangtze River Delta Region(In Chinese). Soils,2009,41 (1):42—48
[23]楊祥田,周翠,何賢彪,等. 田間試驗條件下不同基因型水稻對Cd和Pb的吸收分配特征. 農業環境科學學報,2013,32(3):438—444
Yang X T,Zhou C,He X B,et al. Uptake and partition of Cd and Pb among rice genotypes in contaminated paddy soil(In Chinese). Journal of Agro-Environment Science,2013,32(3):438—444
[24]Huang Y,Hu Y,Liu Y. Heavy metal accumulation in iron plaque and growth of rice plants upon exposure to single and combined contamination by copper,cadmium and lead. Acta Ecologica Sinica,2009,29(6):320—326
[25]Uraguchi S,Fujiwara T. Cadmium transport and tolerance in rice:Perspectives for reducing grain cadmium accumulation. Rice,2012,5(1):1—8
[26]Lidon F C,Barreiro M G,Ramalho J C. Manganese accumulation in rice:Implications for photosynthetic functioning. Journal of Plant Physiology,2004,161 (11):1235—1244
[27]Lambers H,Hayes P E,Laliberte E,et al. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends in Plant Science,2015,20(2):83—90
[28]虞銀江,廖海兵,陳文榮,等. 水稻吸收、運輸鋅及其籽粒富集鋅的機制. 中國水稻科學,2012,26(3):365—372
Yu Y J,Liao H B,Chen W R,et al. Mechanism of Zn uptake,translocation in rice plant and Zn-enrichment in rice grain(In Chinese). Chinese Journal of Rice Science,2012,26(3):365—372
[29]Zhang W,Liu D,Li C,et al. Zinc accumulation and remobilization in winter wheat as affected by phosphorus application. Field Crops Research,2015,184:155—161
[30]K a m r a n M A,E q a n i S A,B i b i S,e t a l. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria PGPRs)under nickel stress. Ecotoxicology and Environmental Safety,2016,126:256—263
[31]Llamas A,Sanz A. Organ-distinctive changes in respiration rates of rice plants under nickel stress. Plant Growth Regulation,2007,54(1):63—69
[32]Mishra P,Dubey R S. Nickel and Al-excess inhibit nitrate reductase but upregulate activities of aminating glutamate dehydrogenase and aminotransferases in growing rice seedlings. Plant Growth Regulation,2011,64(3):251—261
[33]仲曉春,陳京都,郝心寧. 水稻作物對重金屬鎘的積累、耐性機理以及栽培調控措施進展. 中國農學通報,2015,31(36):1—5
Zhong X C,Chen J D,Hao X N. Research process of accumulation,tolerance mechanism and cultivation control measures of heavy metal cadmium in rice crops (In Chinese). Chinese Agricultural Science Bulletin,2015,31(36):1—5
[34]Yan Y P,He J Y,Zhu C,et al. Accumulation of copper in brown rice and effect of copper on rice growth and grain yield in different rice cultivars. Chemosphere,2006,65(10):1690—1696
[35]康立娟,謝忠雷. 鎳對玉米和水稻污染效應及累積規律的研究. 農業環境科學學報,2008,27(6):2315—2318
Kang L J,Xie Z L. Pollution effects and accumulation rules of nickel in corn and rice(In Chinese). Journal of Agro-Environment Science,2008,27(6):2315—2318
[36]魏建宏,范美蓉,廖育林,等. 赤泥施用量在鉛鋅礦區土壤-水稻系統中的改良效應. 土壤通報,2013,44 (3):723—729
Wei J H,Fan M R,Liao Y L,et al. Effects of red mud on the remediation in soil-rice system on lead and zinc mining area soil(In Chinese). Chinese Journal of Soil Science,2013,44(3):723—729
[37]李先喆,徐慶國,劉紅梅. 栽培條件對水稻鎘積累的影響研究進展. 湖南農業科學,2015(3):144—147
Li X Z,Xu Q G,Liu H M. Research advance in effects of cultivation conditions on cadmium absorption and accumulation in rice(In Chinese).Hunan Agricultural Sciences,2015(3):144—147
[38]孫聰,陳世寶,宋文恩,等. 不同品種水稻對土壤中鎘的富集特征及敏感性分布(SSD). 中國農業科學,2014,47(12):2384—2394 Sun C,Chen S B,Song W E,et al. Accumulation characteristics of cadmium by rice cultivars in soils and its species sensitivity distribution(In Chinese). Scientia Agricultura Sinica,2014,47(12):2384—2394
[39]Akinyele I O,Shokunbi O S. Concentrations of Mn,Fe,Cu,Zn,Cr,Cd,Pb,Ni in selected nigerian tubers,legumes and cereals and estimates of the adult daily intakes. Food Chemistry,2015,173:702—708
[40]周顯青,王鈴釗,張玉榮,等. 稻米籽粒中鎘的分布、形態和檢測方法研究進展. 糧食與飼料工業,2014 (7):9—13
Zhou X Q,Wang L Z,Zhang Y R,et al. Reviews of distribution,forms and inspection methods of cadmium in rice kernel(In Chinese).Cereal and Feed Industry,2014(7):9—13
[41]楊居榮,查燕. 食品中重金屬的存在形態及其與毒性的關系. 應用生態學報,1999,10(6):766—770
Yang J R,Zha Y. Existing forms of heavy metals andtheir toxicity in foods(In Chinese).Chinese Journal of Appled Ecology,1999,10(6):766—770
[42]涂杰峰,劉蘭英,羅欽,等. 福建省稻米鎘含量及其健康風險. 農業環境科學學報,2015,34(4):695—701
Tu J F,Liu L Y,Luo Q,et al. Contents and health risk assessment of cadmium in milled rice in Fujian Province(In Chinese). Journal of Agro-Environment Science,2015,34(4):695-701
Accumulation of Heavy Metals in the Soil-Rice System and Assessment of Dietary Safety of the Rice Produced in the Paddy Fields ― A Case Study of a Town in the Northern Part of Hunan Province,China
JIANG Yijun HU Xuefeng?SHU Ying JIANG Ying TENG Qing
(School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China)
【Objective】Hunan Province in Central South China,is a well known nonferrous metal mining base in China. The activities of mining and smelting,however,pose great threat to the cultivated land in the province. This study is to investigate the influences of mining and smelting on heavy metal pollution of soils and rice plants,and to assess its potential risks on human health.【Method】An investigation was carried out in a town in the northern part of Hunan Province rich in mineral resources,and found that a pyrite smelting factory located at Y Town discharged wastewater,severely polluting a creek and the paddy fields around. Contents of Mn,Cu,Zn,Co,Ni,Cr,Cd and Pb in the soil-rice system of the paddy field on the two sides of the polluted creek nearby the pyrite mine at the town were monitored.【Result】Results show that the soils were heavily polluted by Cd,with an over-standard rate being 100%,and by Cu,Zn,Co and Ni,too,with an over-standard rate being 86.7%,60%,80% and 60%,respectively. The single-factor pollution index of Cd in the soils reached 12.85,indicating a heavy pollution level,and that of Cu,Zn,Co and Ni was 1.54,1.26,1.15 and 1.13,respectively,indicating a light pollution level. The comprehensive pollution index of the eight heavy metal elements in the soils was 9.39,also indicating that the soils as a whole,were heavily polluted. Analysis of heavy metals bio-accumulation factors indicates that Cd and Mn in the soils were easily taken up by rice roots,especially,Cd,of which the availability to rice was much higher than that of all the others,with bio-accumulating factor being 11.84 on average,but Cu,Pb,Co,Cr,Zn and Ni were relatively hard. Pb,Co,Cu,Cd and Cr was mainly accumulated in rice roots,making up 82.5%,70.6%,64.8%,59.4% and 57.5%,respectively,of the total in the plant. Mn,Zn and Ni,however,was rapidly translocated to the shoots of rice plants after being taken up by roots,with only 16.3%,29.9% and 49.9%,respectively,left in the roots. The brown rice produced in the studied paddy fields was commonly heavily polluted by Cd. The brown rice produced in the fields was found with Cd exceeding the allowable limit(0.2 mg kg-1)by 100%,and about 53.5% of the brown rice was called“Cadium rice”with Cd concentration over 1 mg kg-1. In addition,the brown rice also contained Cu and Ni exceeding the allowable limits by 40% and 86.7%,respectively. The per capita daily ingestion(PDI)of Cu,Zn,Ni,Cr,Cd and Pb through consumption of the rice grain reached 2 732,7 085,464,85,410 and 37 μg,respectively. The PDI of Cu,Zn,Ni,Cr and Pb was lower than their respective safe levels,but that of Cd reached 5.9 times the safe level set by FAO/WHO.【Conclusion】All the findings in this study demonstrate that the rice produced in the studied area has posed a serious health risk to the local residents.
Mining and smelting;Paddy soils;Heavy metals;Cd;Rice
S151.9
A
10.11766/trxb201603300061
(責任編輯:陳榮府)
* 國家自然科學基金項目(41130526,41471174)資助 Supported by the National Natural Science Foundation of China(Nos. 41130526 and 41471174)
? 通訊作者 Corresponding author,E-mail:xfhu@shu.edu.cn
蔣逸駿(1990—),男,浙江紹興人,碩士研究生,主要從事農田土壤與水稻重金屬研究。E-mail:610131889@qq.com
2016-03-30;
2016-06-09;優先數字出版日期(www.cnki.net):2016-11-03