雷宏軍 胡世國(guó) 潘紅衛(wèi) 臧 明 劉 鑫 李 軻
(華北水利水電大學(xué)水利學(xué)院,鄭州 450045)
土壤通氣性與加氧灌溉研究進(jìn)展*
雷宏軍 胡世國(guó) 潘紅衛(wèi) 臧 明 劉 鑫 李 軻
(華北水利水電大學(xué)水利學(xué)院,鄭州 450045)
水、肥、氣、熱是保障土壤肥力的四大要素,傳統(tǒng)的灌溉方式往往忽視了氣這一重要因素。土壤通氣性不足,四個(gè)因素之間的平衡被打破,土壤理化性質(zhì)變差,對(duì)作物生長(zhǎng)造成不利影響,進(jìn)而引起減產(chǎn)。良好的土壤通氣性是作物正常生長(zhǎng)發(fā)育的保證。加氧灌溉通過(guò)采用合理的方法改善土壤通氣狀況,協(xié)調(diào)土壤四大要素之間的關(guān)系,提高土壤肥力,滿足作物生長(zhǎng)的需要。研究表明,加氧灌溉可提高作物產(chǎn)量、改善作物品質(zhì)。本文從根區(qū)低氧脅迫的影響分析入手,評(píng)述了土壤通氣性的量化指標(biāo)、測(cè)算方法和控制標(biāo)準(zhǔn),綜述了加氧灌溉技術(shù)及其應(yīng)用,總結(jié)了加氧灌溉研究中存在的問(wèn)題,探討了加氧灌溉對(duì)土壤通氣性的改善作用,提出了加氧灌溉與土壤通氣性研究展望,以期為今后的研究提供參考。
低氧脅迫;加氧灌溉;溶解氧;土壤通氣性;評(píng)價(jià)指標(biāo)
土壤通氣性對(duì)作物正常的生長(zhǎng)發(fā)育至關(guān)重要[1-3]。土壤通氣性是土壤中氣體和大氣之間不停地進(jìn)行氣體互換的功能;由于互換的氣體主要是氧氣與二氧化碳,故又稱為土壤呼吸作用。土壤呼吸作用主要由土壤微生物呼吸和根系呼吸組成。根系呼吸作用不但為植物生命活動(dòng)供給能源,而且呼吸作用的中間代謝產(chǎn)物為植物的物質(zhì)合成提供了原料[4]。通過(guò)微生物呼吸作用完成底物的分解和細(xì)胞物質(zhì)的合成,實(shí)現(xiàn)了土壤養(yǎng)分的循環(huán)與轉(zhuǎn)化[5]。為了保持正常的土壤呼吸作用,土壤中必須富含空氣。土壤氧氣濃度較低時(shí)會(huì)造成根區(qū)低氧脅迫,進(jìn)而影響作物正常的生理代謝和生長(zhǎng)發(fā)育[6]。低氧脅迫是由于土壤緊實(shí)或者地下水位較高或者不合理灌溉導(dǎo)致的土壤通氣性不暢,根系及微生物呼吸作用減弱,作物呼吸作用和生長(zhǎng)發(fā)育表現(xiàn)異常的現(xiàn)象[7]。低氧脅迫會(huì)對(duì)作物產(chǎn)生一些不利的影響,包括:(1)作物的新陳代謝速率下降,生長(zhǎng)和發(fā)育進(jìn)程延緩[8-9],植物有氧呼吸受阻或者中斷,呼吸作用產(chǎn)生的三磷酸腺苷(ATP,高能磷酸化合物)水平下降[10]。(2)低氧脅迫下作物根系進(jìn)行無(wú)氧呼吸,一些根系死亡,植物地上部分則表現(xiàn)為葉片萎縮[11]。由于根系缺乏足夠的氧氣供應(yīng),作物水分和養(yǎng)分利用效率下降,作物鮮重和干重顯著下降[12-14]。(3)低氧脅迫下作物根區(qū)無(wú)氧呼吸酶活性顯著提高[15],土壤微生物數(shù)量下降,土壤動(dòng)物的正常生理活動(dòng)受到阻礙[7]。為緩解低氧脅迫對(duì)作物造成的不利影響,應(yīng)提高土壤中氧氣的濃度[8],改善土壤通氣性。土壤通氣性是表征土壤透氣性和土壤中氧含量的綜合指標(biāo),也是表示土壤肥力的綜合指標(biāo)之一[1-2],反映了土壤生物耗氧和二氧化碳產(chǎn)生過(guò)程及其與土壤與大氣之間的氣體傳輸過(guò)程之間的相互關(guān)系[16]。加氧灌溉是地下滴灌技術(shù)(Subsurface drip irrigation,SDI)的改進(jìn),至今有20多年的歷史。加氧灌溉通過(guò)地下滴灌系統(tǒng)將氧氣或者含氧物質(zhì)輸送到作物的根區(qū),滿足根系生長(zhǎng)發(fā)育的需要改善土壤通氣性,協(xié)調(diào)土壤水、肥、熱條件,促進(jìn)作物生長(zhǎng)發(fā)育[17-18],有效提高作物產(chǎn)量和品質(zhì)[19-20]。本文在系統(tǒng)論述土壤通氣性與加氧灌溉研究的基礎(chǔ)上,探討土壤通氣性與加氧灌溉研究中存在的問(wèn)題,提出未來(lái)的研究熱點(diǎn)與方向。
1.1 土壤通氣性的作用
研究表明,氧氣在水中和空氣中的擴(kuò)散系數(shù)差異較大,氧氣在空氣中的擴(kuò)散速率近似于水中的10 000倍[3]。灌溉過(guò)程中隨著土壤濕度的不斷升高,土壤孔隙中的空氣被水所驅(qū)替,直至整個(gè)土壤孔隙全部被水填充。由于土壤中氧氣擴(kuò)散速率的下降,空氣中的氧氣進(jìn)入到土壤中的部分與灌水之前相比變得很少。因作物根系持續(xù)消耗氧氣,所以灌溉過(guò)程中土壤氧氣濃度快速下降、二氧化碳含量呈現(xiàn)升高趨勢(shì),根系有氧呼吸作用受到抑制。同時(shí),根區(qū)的微生物與根系爭(zhēng)奪氧氣;缺氧條件下,作物根部無(wú)氧呼吸產(chǎn)生的乙醇對(duì)植物有害,ATP和一些呼吸代謝產(chǎn)物供應(yīng)不足影響植物的生物合成[4]。根系氧氣濃度持續(xù)低下,有氧呼吸受阻,厭氧微生物得到繁殖,根系生長(zhǎng)出現(xiàn)異常,嚴(yán)重時(shí)作物死亡,造成農(nóng)業(yè)減產(chǎn)。土壤通氣性對(duì)作物種子萌發(fā)至關(guān)重要[21],土壤通氣性對(duì)土壤微生物的活性和養(yǎng)分的轉(zhuǎn)化也有影響[17]。土壤通氣性對(duì)土壤中元素的氧化還原狀況有重要影響,如氮、硫、鐵等在通氣不良時(shí)產(chǎn)生一些還原性物質(zhì),對(duì)植物生長(zhǎng)發(fā)育極為不利[22]。
良好的土壤通氣性可保障土壤空氣質(zhì)量,有利于作物生長(zhǎng)發(fā)育,保持較高的土壤肥力[23]。土壤通氣不暢,作物生長(zhǎng)發(fā)育受到抑制[24],產(chǎn)量大幅度下降。土壤通氣性改善促進(jìn)了作物干物質(zhì)積累,增加了塊根的產(chǎn)量[25]。提高土壤氧氣濃度,協(xié)調(diào)土壤水、肥、氣、熱狀況,是解決水稻氮素利用效率低下的有效途徑[26]。根際土壤通氣可有效提升作物水分和養(yǎng)分利用效率,促進(jìn)作物生長(zhǎng)潛力的發(fā)揮,提高作物根鮮重、根干重和根系活力,增強(qiáng)呼吸作用速率和氣孔導(dǎo)度,改善光合作用,提高作物產(chǎn)量[27-28]。
1.2 土壤通氣性量化指標(biāo)
土壤中氣體的擴(kuò)散包括氣體在土壤剖面的宏觀擴(kuò)散以及因土壤空間變異導(dǎo)致的微觀擴(kuò)撒和氣體透過(guò)水膜到達(dá)根表的擴(kuò)散兩個(gè)過(guò)程。Stepniewski等[22]認(rèn)為,氣體的擴(kuò)散直接依賴于土壤氣體擴(kuò)散系數(shù),土壤氣體擴(kuò)散系數(shù)由充氣孔隙度狀況,即土壤水分?jǐn)?shù)量及土壤孔隙的連通狀況決定;土壤氣體擴(kuò)散間接依賴于土壤緊實(shí)度、耕作、灌溉和排水等其他影響因素。描述土壤通氣性的過(guò)程指標(biāo)包括:土壤氣體擴(kuò)散系數(shù)、土壤透氣性、土壤充氣孔隙度和土壤氣體組成等4個(gè)方面。但是這4個(gè)方面的指標(biāo)很少能成功刻畫與作物生長(zhǎng)的關(guān)系[29]。這是因?yàn)橥寥劳庑赃^(guò)程中氧的供應(yīng)包括三個(gè)連續(xù)的環(huán)節(jié),首先,氧氣從大氣擴(kuò)散到土壤孔隙中,其次,氧氣以溶解氧方式通過(guò)根外水膜擴(kuò)散到根系表面,最后,是氧氣由根系表面擴(kuò)散到根組織內(nèi)[30]。土壤通氣性指標(biāo)可歸為三類[31]:第一類為容量指標(biāo),氣體填充土壤孔隙的體積比例(簡(jiǎn)稱為土壤充氣孔隙度);第二類為強(qiáng)度指標(biāo),孔隙中的氧氣分壓或土壤溶液中的氧氣含量(Dissolved oxygen,DO);第三類為傳輸速率,氧氣向土壤中某點(diǎn)的供應(yīng)速率。第三類指標(biāo)又可分為擴(kuò)散指標(biāo)及對(duì)流指標(biāo)兩類。氧氣擴(kuò)散速率(Oxygen diffusion rate,ODR)最能反映原位土壤中的氧氣水平,它與植物的生理反應(yīng)、營(yíng)養(yǎng)特性和植物生長(zhǎng)密切相關(guān);對(duì)流指標(biāo)可通過(guò)對(duì)流測(cè)量氧氣儀準(zhǔn)確測(cè)量進(jìn)入土壤的質(zhì)量通量,或者直接測(cè)定大氣與土壤之間的空氣壓力梯度來(lái)計(jì)算。通常,土壤通氣性的具體指標(biāo)包括土壤充氣孔隙度[32-33]、土壤氧氣濃度或土壤溶解氧濃度(DO)[34-35]、氧氣擴(kuò)散速率(ODR)、土壤透氣性(Ka)、土壤氣體擴(kuò)散系數(shù)(Ds)等[36-37]。
Lemon和Erickson[30,38]實(shí)驗(yàn)證實(shí),鉑金微電極可模擬土壤溶液向根系供氧的速率,因?yàn)殂K金微電極通過(guò)電化學(xué)反應(yīng)消耗氧氣。Stolzy和Letey[39]對(duì)ODR與植物生長(zhǎng)響應(yīng)之間進(jìn)行了綜述,得出ODR與植物生長(zhǎng)具有良好的響應(yīng)關(guān)系。Feng等[37]通過(guò)對(duì)不同質(zhì)地土壤多個(gè)通氣性指標(biāo)的同時(shí)監(jiān)測(cè)發(fā)現(xiàn),土壤通氣性容量指標(biāo)不能有效反映與植物生長(zhǎng)的關(guān)系;ODR直接反映了氧氣對(duì)植物的有效性,是最具代表性的土壤通氣性指標(biāo)。Wolińska 和Stpniewska[40]研究表明,土壤充氣孔隙度、土壤氧氣擴(kuò)散速率與土壤氧化還原電位(ORP,Oxydation-Reduction Potential的縮寫,也稱為Eh)呈顯著負(fù)相關(guān);土壤含水量下降,土壤氧化性加強(qiáng),土壤通氣性得到改善。氧化還原電位表征介質(zhì)氧化性或還原性的相對(duì)程度,土壤中的物理、化學(xué)和生物學(xué)過(guò)程共同導(dǎo)致了氧化還原電位的變化[41]。土壤中常見(jiàn)的氧化還原離子對(duì)有NO3-/ NO2-、Fe3+/Fe2+和Mn4+/Mn2+,反映了土壤的氧化還原狀況。ORP是土壤通氣性的重要參數(shù),與底物的可利用性和能量轉(zhuǎn)化相關(guān),在調(diào)節(jié)土壤微生物數(shù)量、多樣性和群落結(jié)構(gòu)方面發(fā)揮著重要作用[42]。田間條件下影響ORP的因素很多,并且ORP存在著較高的變異性,這些阻礙了ORP成為土壤質(zhì)量和土壤綜合條件的有效評(píng)價(jià)指標(biāo)[43]。土壤透氣性是反映氣體透過(guò)土壤孔隙能力的一個(gè)重要物理性質(zhì)。它既包括單位時(shí)間透過(guò)單位面積氣體的數(shù)量,也包括土壤空氣交換率對(duì)土壤特性的總體影響。土壤透氣性能全面地反映土壤質(zhì)地、結(jié)構(gòu)、緊實(shí)度、干濕狀況。首先,土壤透氣性對(duì)土壤氧含量存在顯著影響,而且還受土壤質(zhì)地和容重的影響。其次,灌溉可能會(huì)影響土壤的滲透性。土壤透氣性的影響因素包括質(zhì)地、容重、含水量和土壤孔隙度[44]。氣體的相對(duì)擴(kuò)散系數(shù)(Ds/D0,D0為大氣中空氣的擴(kuò)散系數(shù),Ds為土壤氣體擴(kuò)散系數(shù))與含氣孔隙率之間的關(guān)系與氣體種類無(wú)關(guān),僅僅由土壤性質(zhì)決定,因此,當(dāng)討論土壤氣體擴(kuò)散時(shí)常用相對(duì)擴(kuò)散系數(shù)來(lái)代替擴(kuò)散系數(shù),以此來(lái)消除具體氣體的理化性質(zhì)對(duì)擴(kuò)散系數(shù)的復(fù)雜影響[45]。相對(duì)擴(kuò)散系數(shù)通常通過(guò)模型計(jì)算獲得[46]。對(duì)Ds及Ds/D0的同時(shí)測(cè)算也可驗(yàn)證變化土壤水分條件下相對(duì)擴(kuò)散系數(shù)變化特征及其準(zhǔn)確性[45]。Uteau等[47]研究了三種不同作物的根系構(gòu)型對(duì)土壤結(jié)構(gòu)和通氣性的影響,建立了空氣擴(kuò)散系數(shù)、土壤透氣性和含氣孔隙率與作物種類及種植時(shí)間的關(guān)系。
土壤具有一定數(shù)量的充氣孔隙,這些孔隙中充滿著氣體。因此,只要采集到土壤氣體樣本,便可確定土壤氧氣濃度。通常用特制的空心圓筒鋼管垂直深入土壤樣品中抽取土壤中的空氣[17]。對(duì)于ODR的測(cè)量,由于氧氣擴(kuò)散速率在空氣中較在水中快得多,土壤中存在著可以被作物吸收利用的水分,因此根區(qū)供氧的限制可能就是土壤中圍繞根區(qū)的水膜[48]。Lemon和Erickson[30,38]介紹了一種利用鉑電極測(cè)量的方法,用一個(gè)鉑電極和一個(gè)參考電極,同時(shí)插入土壤中,與土壤水分保持良好接觸時(shí),對(duì)兩電極之間施加一定的電勢(shì);在通電的情況下,鉑電極附近的氧被快速消耗,幾分鐘之內(nèi),其中的氧被土壤周圍的氧取代,并且達(dá)到平衡。土壤透氣性的測(cè)量方法有穩(wěn)態(tài)測(cè)量方法和瞬態(tài)測(cè)量方法,又可分為一維測(cè)定方法和三維測(cè)定方法等多種[49-51]。土壤氣體擴(kuò)散系數(shù)一般通過(guò)實(shí)測(cè)或者模型估算得到[52]。
1.3 土壤通氣性指標(biāo)的臨界值
根系呼吸速率隨著土壤氧氣濃度的增大而增加,而根系細(xì)胞在二氧化碳濃度2%的條件下4 h就會(huì)死亡[53]。當(dāng)土壤濃度不能滿足作物正常呼吸作用的需要時(shí),一些植物就會(huì)減緩生長(zhǎng)甚至停止生長(zhǎng)[54],而且,較低濃度的氧氣會(huì)破壞土壤微生物群系,厭氧微生物也會(huì)更加活躍,并且毒害植物[55]。所以存在這樣一個(gè)臨界值,即臨界氧氣濃度,由于氧氣濃度限制了根系的呼吸作用,根部的生長(zhǎng)活動(dòng)受到限制,植物生長(zhǎng)受到影響[56]。作物不同生長(zhǎng)階段的低氧脅迫氧氣濃度臨界值在3%至0.5%之間,最大的臨界氧氣濃度可能超出15%[57]。對(duì)ODR和ORP而言,同樣也存在著臨界值。不同的植物對(duì)氧氣的吸收利用速率不同。對(duì)植物生長(zhǎng)而言,氧氣的供應(yīng)速率越快,作物呼吸速率也就越快,植物生長(zhǎng)和營(yíng)養(yǎng)物積累速率也越快,所以相對(duì)于氧氣濃度指標(biāo)而言,氧氣供應(yīng)速率要重要得多。Stolzy和Letey[39]研究指出,對(duì)大多數(shù)植物根區(qū)而言,臨界ODR為20×10-8g cm-2min-1,對(duì)一般植物生長(zhǎng)而言,ODR為40×10-8g cm-2min-1就可以滿足需要。不同的作物臨界ORP值不同。pH為7時(shí)土壤氧化還原電位通常位于414~120 mV之間,高于414 mV時(shí)為好氧狀況,低于120 mV時(shí)為缺氧或厭氧狀況[43]。當(dāng)土壤ORP為350 mV時(shí),土壤中僅含有極少的氧氣或根本沒(méi)有氧氣[58]。Glinski和Stepniewski[59]指出,相對(duì)氧氣擴(kuò)散速率(Ds/D0)的下限值為0.005,此時(shí)土壤呼吸速率達(dá)到最低值;上限值為0.02,此時(shí)呼吸速率達(dá)到最高值。
1.4 提高土壤通氣性的方法
目前提高土壤通氣性常用的方法有:(1) 改良土壤質(zhì)地和結(jié)構(gòu)。由于砂質(zhì)土通氣性較好,壤土次之,黏土較差,砂土中摻入黏土或者淤泥,黏土中摻入沙子或砂土,可以改變土壤質(zhì)地,有利于改善土壤通氣性[17]。(2)進(jìn)行耕作管理,深翻改土。通過(guò)翻土,可以改變土壤緊實(shí)的狀況,降低土壤容重,增加孔隙含量,提高土壤通氣性[60]。(3)秸稈還田。合理的秸稈還田措施能增加土壤腐殖質(zhì),疏松土體,提高孔隙率,有利于土壤生物和植株根系的生長(zhǎng)[61]。(4)加氧灌溉。加氧灌溉提高了土壤氧氣濃度,增強(qiáng)了土壤呼吸,改善了土壤通氣性[1,17]。這些方法對(duì)應(yīng)于作物生長(zhǎng)的不同階段,在種植作物之前,可以進(jìn)行耕作深翻,還可以在土壤中摻入不同性質(zhì)的成分來(lái)改善土壤通氣性。在作物生長(zhǎng)階段,加氧灌溉是適宜有效的方法,在作物收成之后,利用秸稈還田技術(shù)不僅可以改善土壤通氣性,還能減少秸稈污染,增加有機(jī)質(zhì),提高肥力。
2.1 灌溉水加氧方法
加氧灌溉的方法包括機(jī)械通氣、化學(xué)加氧、文丘里空氣射流器加氧等方法。機(jī)械通氣是利用空氣壓縮機(jī)對(duì)灌溉土壤進(jìn)行通氣的灌溉方法[62-63]。化學(xué)加氧是利用過(guò)氧化氫等化學(xué)物質(zhì)進(jìn)行加氧的方法[20]。文丘里空氣射流器加氧是通過(guò)文丘里空氣射流器的水流在入口段流速變緩、壓力減小而吸入空氣或者氧氣的方式[64]。Mazzei空氣射流器加氧是文丘里空氣射流器加氧的一種[20]。關(guān)于不同加氧灌溉方式的部分研究結(jié)果列于表1。
2.2 加氧灌溉的生物效應(yīng)與效益
加氧灌溉改善了作物根區(qū)的生長(zhǎng)環(huán)境[65,69],提高了作物的光合作用效率[1,70],增加了作物生長(zhǎng)速率,促進(jìn)根系生長(zhǎng)[64],增加了棉花的產(chǎn)量、提升棉花品質(zhì)和水分利用效率[66],利用Mazzei空氣射流器對(duì)根區(qū)加氧,提高根區(qū)土壤通氣狀況,有利于菠蘿生長(zhǎng),提高果實(shí)產(chǎn)量和品質(zhì)[18]。通氣灌溉可改善作物根系生長(zhǎng)環(huán)境,它首先提高了根系的生長(zhǎng)速度和水肥的吸收利用[71],增加葉綠素含量和提高產(chǎn)量[14]。當(dāng)土壤水吸力超過(guò)進(jìn)氣值時(shí)玉米根系伸長(zhǎng)速率達(dá)到最大[72],根冠比顯著增大[64]。相對(duì)于常規(guī)滴灌,采用增氧滴灌可以快速緩解作物根區(qū)缺氧狀況,根系代謝速率加快[63,73]。通過(guò)對(duì)作物水肥氣一體化控制灌溉,可提高肥料利用效率,實(shí)現(xiàn)作物高產(chǎn)[74]。
土壤微生物是土壤中物質(zhì)轉(zhuǎn)化的驅(qū)動(dòng)力,直接影響著土壤氧化、硝化、氨化、固氮等過(guò)程,促進(jìn)土壤中有機(jī)質(zhì)的分解和物質(zhì)的轉(zhuǎn)化[5]。加氧灌溉過(guò)程中土壤ORP升高,對(duì)提高過(guò)氧化氫酶活性有明顯作用[75]。作物生長(zhǎng)發(fā)育與土壤環(huán)境密切相關(guān),在土壤水分和養(yǎng)分供應(yīng)充分的條件下,加氧灌溉提供了充足的氧氣,改善了土壤通氣性,促進(jìn)了土壤微生物數(shù)量的增加和活性的提高,有利于根系吸收水分和養(yǎng)分。溫室甜瓜加氧灌溉試驗(yàn)表明,加氧滴灌處理后的甜瓜綜合效益始終高于溝灌[76]。通過(guò)地下滴灌系統(tǒng),加氧灌溉的養(yǎng)分分解成小微粒溶解在水中,更易被作物吸收,而且養(yǎng)分直接輸送到根部,有效減少地表徑流,可最大幅度減少地下水及地表水污染[77]。
2.3 加氧灌溉的拓展應(yīng)用
加氧灌溉技術(shù)可用于地下或者地表灌溉,最大限度地發(fā)揮灌溉水的作用。加氧灌溉技術(shù)可采取水肥氣相耦合的灌溉方式[78],實(shí)現(xiàn)作物適時(shí)適量的精確灌溉[74,79]。社會(huì)經(jīng)濟(jì)快速發(fā)展的同時(shí),污水?dāng)?shù)量日益增多,發(fā)展再生水灌溉成為迫切需求。由于再生水中一般均含有氮、磷等營(yíng)養(yǎng)元素,這樣還可以減少肥料的使用,對(duì)污水進(jìn)行處理使其滿足農(nóng)業(yè)灌溉的要求;同時(shí)通過(guò)曝氣灌溉向灌溉水中進(jìn)行摻氣,快速提高水中氧氣含量,既滿足了作物生長(zhǎng)的需求,又實(shí)現(xiàn)了節(jié)水增產(chǎn)的目的[74]。摻氣灌溉與噴灌技術(shù)相結(jié)合形成摻氣水射流[80],改變了噴頭的雨滴粒徑分布,提高了1倍間距的正方形組合噴灌均勻性;同時(shí),在摻氣噴頭工作水壓低至100 kPa情況下,噴頭仍具有76 mm汞柱高差的摻氣負(fù)壓能力,通過(guò)與噴頭連接農(nóng)藥或水溶性肥料,可實(shí)現(xiàn)噴灌條件下水肥氣藥的一體化管理。
3.1 灌溉與土壤通氣性的關(guān)系
灌溉對(duì)土壤通氣性的影響首先表現(xiàn)在對(duì)大氣和土壤中氧氣及二氧化碳互換的影響上。灌溉過(guò)程中土壤含水量急劇上升而驅(qū)替土壤空氣,由于微生物和生物等對(duì)土壤氧氣的消耗,使得土壤氧氣濃度降低,根系呼吸作用受到抑制,對(duì)作物生長(zhǎng)不利[9]。而且,灌溉不當(dāng)可能導(dǎo)致破壞土壤團(tuán)粒結(jié)構(gòu),增大土壤緊實(shí)度,降低土壤通氣性。所以灌水導(dǎo)致土壤通氣性降低,N2O排放增加[81],嚴(yán)重時(shí)會(huì)使得作物死亡[82]。灌水過(guò)多不僅會(huì)增加前期投入,導(dǎo)致土壤長(zhǎng)時(shí)間缺乏氧氣[83],降低光合作用速率[84],二氧化碳濃度增加,土壤通氣性降低,作物生長(zhǎng)受到抑制[85],最終降低產(chǎn)量[86-87]。

表1 不同加氧灌溉方法的部分研究結(jié)果Table 1 Research results of different oxygation methods
3.2 加氧灌溉對(duì)土壤通氣性的改善作用
對(duì)于植物根系而言,單一目的的灌溉降低了土壤的通氣性,有可能造成根系缺氧,嚴(yán)重時(shí)會(huì)影響作物正常的呼吸作用及生長(zhǎng)發(fā)育,限制著作物生長(zhǎng)潛力的發(fā)揮,這一點(diǎn)在黏重和緊實(shí)性土壤表現(xiàn)明顯。所以在灌水中加入氧氣就可以改善土壤通氣性不足的局面。加氧灌溉能提高土壤中氧氣的濃度,促進(jìn)土壤二氧化碳的排放,根系活力增強(qiáng),有利于作物對(duì)養(yǎng)分和水分的吸收利用,土壤呼吸作用加強(qiáng),土壤通氣性改善[17,88],表現(xiàn)為促進(jìn)作物生長(zhǎng)和營(yíng)養(yǎng)元素吸收利用,產(chǎn)量顯著提高[89-90]。
3.3 土壤通氣性改善與土壤性質(zhì)的響應(yīng)
土壤物理性質(zhì)包括土壤質(zhì)地、土壤結(jié)構(gòu)、土壤孔隙度等,涉及土壤的緊實(shí)度、通氣性、排水、蓄水能力等等,并且這些性質(zhì)互相關(guān)聯(lián)。加氧灌溉改善了土壤通氣性,不僅滿足植物對(duì)氧氣的需求,而且改變了土壤性質(zhì)。不良的灌溉會(huì)破環(huán)土壤的團(tuán)粒結(jié)構(gòu),在土壤表面形成結(jié)塊,降低了土壤孔隙度,影響植物的生長(zhǎng)環(huán)境。土壤含水量一定時(shí),土壤緊實(shí)度越大,土壤穿透阻力越大,越不利于作物的生長(zhǎng)[91]。由于根系生長(zhǎng)在土壤之間的孔隙中,通過(guò)改善土壤通氣性,有利于根系的生長(zhǎng)發(fā)育,達(dá)到促進(jìn)作物生長(zhǎng)和提高產(chǎn)量的目的。在水肥供應(yīng)充足的條件下,良好的土壤通氣性有利于作物生長(zhǎng)發(fā)育[92-93]。土壤容重對(duì)玉米苗期生長(zhǎng)有顯著影響,而且土壤容重過(guò)大會(huì)限制玉米根系的生長(zhǎng)[94]。土壤通氣性提高時(shí)土壤緊實(shí)度下降[95],有利于作物生長(zhǎng)發(fā)育和產(chǎn)量的提高。土壤化學(xué)性質(zhì)包括土壤中的物質(zhì)組成、固液兩相之間的化學(xué)反應(yīng)、離子及分子在固液相界面上發(fā)生的化學(xué)反應(yīng)。土壤通氣性的改善對(duì)提高土壤中氧氣含量有很大幫助,可避免在低氧環(huán)境下土壤中還原物質(zhì)的大量積累,避免因物質(zhì)還原造成的土壤酸化,降低土壤酸化對(duì)植物生長(zhǎng)的不利影響。除碳酸鹽和二氧化碳以外,土壤中的含碳化合物主要由植物、動(dòng)物和微生物等生物殘?bào)w轉(zhuǎn)化而來(lái),氧氣濃度的提高可促進(jìn)土壤生物的活動(dòng)與繁育,加速有機(jī)物的氧化降解[96],有利于生物殘?bào)w轉(zhuǎn)化為土壤養(yǎng)分。
土壤中的動(dòng)物、植物、微生物等總稱為土壤生物。微生物分為好氣微生物和嫌氣微生物兩種,土壤通氣良好可促進(jìn)好氣微生物的活動(dòng)和繁殖[66],分解有機(jī)物質(zhì),為植物制造出所需的氮素化合物和營(yíng)養(yǎng)元素,提高水肥利用效率;土壤通氣性不良時(shí),有機(jī)質(zhì)的分解速度和養(yǎng)分的有效性將會(huì)降低,作物根系無(wú)法正常生長(zhǎng)[8],所以良好的通氣性對(duì)維持土壤微生物的數(shù)量和活性至關(guān)重要。土壤動(dòng)物在生命歷程中對(duì)土壤理化性質(zhì)產(chǎn)生顯著的影響,是物質(zhì)小循環(huán)的活躍參與者。土壤脫氫酶與相對(duì)氣體擴(kuò)散系數(shù)成正相關(guān),過(guò)氧化氫酶與氧化還原電位成正相關(guān)[97]。
3.4 土壤通氣性改善與作物的響應(yīng)
土壤通氣性的改善,有利于促進(jìn)土壤與大氣中的氣體交換、提高根系呼吸,改善植物生長(zhǎng)[72]。根際通氣性良好時(shí),土壤氧氣的充足供應(yīng)能促進(jìn)植物呼吸作用和產(chǎn)生能量,根系會(huì)向地上部分提供植物生長(zhǎng)所需的能量和物質(zhì),從而促進(jìn)植物莖和葉的生長(zhǎng),促進(jìn)光合作用,有利于葉綠素的合成和積累營(yíng)養(yǎng)物質(zhì)[67]。低氧脅迫情況下作物新陳代謝發(fā)生紊亂,植物無(wú)氧呼吸會(huì)產(chǎn)生乙醇等有害物質(zhì),損害作物根系,能量供應(yīng)不足,葉片氣孔關(guān)閉,植物蒸騰作用降低,地上部光合作用減少[6]。良好的通氣性能使得作物根系功能處于最佳狀態(tài),有利于根區(qū)微生物的活動(dòng),最終使作物生長(zhǎng)發(fā)育得到改善。提高土壤通氣性,最終能夠促進(jìn)作物產(chǎn)量和品質(zhì)的提升[17]。
3.5 加氧灌溉研究中存在的問(wèn)題
由于加氧灌溉需要添加一些基礎(chǔ)設(shè)施,鋪設(shè)各種管道和建造加壓設(shè)備,同時(shí)也需要消耗電力和需要人工來(lái)管理,還需要增加設(shè)備的維護(hù)和更換的費(fèi)用,這樣增加了生產(chǎn)投入,盡管加氧灌溉的方法可以提高產(chǎn)量和品質(zhì),獲取更大的經(jīng)濟(jì)效益,但是相比之下增加的投入應(yīng)該小于因?yàn)樵霎a(chǎn)增收帶來(lái)的經(jīng)濟(jì)收入,并且所有的新增投入應(yīng)該在一段時(shí)期內(nèi)收回成本。所以,加氧灌溉多適合于蔬菜、水果、花卉等經(jīng)濟(jì)作物,對(duì)于一些附加值較低的作物而言不太經(jīng)濟(jì)。隨著滴灌技術(shù)的改進(jìn)和滴灌系統(tǒng)投資成本的下降,加氧灌溉同樣可應(yīng)用于糧食作物。實(shí)際生產(chǎn)中,文丘里空氣射流器加氧灌溉管道百米以外的沿程水氣均勻性呈下降的趨勢(shì),導(dǎo)致田間作物產(chǎn)量不均勻[70,98]。化學(xué)加氧技術(shù)比較簡(jiǎn)便,可以快速緩解根區(qū)缺氧狀況[21];但是過(guò)氧化氫為強(qiáng)氧化劑,施用不當(dāng)可能傷害作物,改變土壤生物的構(gòu)成。連續(xù)曝氣的條件下,水稻的根表面積和氧化強(qiáng)度提高,葉片葉綠素含量減少,干物質(zhì)量下降;曝氣過(guò)量也會(huì)破壞土壤微生物群落,長(zhǎng)遠(yuǎn)來(lái)看,對(duì)作物生長(zhǎng)不利[99]。
隨著加氧技術(shù)的日趨成熟,加氧灌溉的推廣應(yīng)用將為水資源短缺和糧食安全保障提供解決方案。未來(lái)的研究可以從以下幾個(gè)方面開(kāi)展:(1)構(gòu)建反映作物水肥高效利用、優(yōu)質(zhì)高產(chǎn)的綜合性土壤通氣性指標(biāo),強(qiáng)化加氧灌溉對(duì)土壤通氣性的改善效應(yīng)和定量評(píng)價(jià)方面的研究。(2)加強(qiáng)土壤水分、氧氣和溶質(zhì)耦合運(yùn)移規(guī)律研究,優(yōu)化調(diào)控土壤碳氮循環(huán)轉(zhuǎn)化,提高土壤養(yǎng)分利用效率、降低溫室氣體的環(huán)境足跡。(3)研發(fā)用于地表、畦灌和溝灌等灌溉方式的新型加氧灌溉技術(shù),制定適宜的水肥氣一體化灌溉技術(shù)參數(shù)、灌溉周期、灌溉用量和適宜的土壤氧氣濃度。(4)深化研究水氣耦合灌溉下農(nóng)田環(huán)境水分和養(yǎng)分的環(huán)境效應(yīng)。(5)加氧灌溉對(duì)土壤生物群落和土壤理化性質(zhì)長(zhǎng)效的作用機(jī)制。
[1]Bhattarai S P,Pendergast L,Midmore D J. Root aeration improves yield and water use efficiency of tomato in heavy clay and saline soils. Scientia Horticulturae,2006,108(3):278—288
[2]Shahien M M,Abuarab M E,Magdy E. Root aeration improves yield and water use efficiency of irrigated potato in sandy clay loam soil. International Journal of Advanced Research,2014,2(10):310—320
[3]Grable A R. Soil aeration and plant growth. Advances in Agronomy,1966,18:57—106
[4]Atkin O K,Edwards E J,Loveys B R. Response of root respiration to changes in temperature and its relevance to global warming. New Phytologist,2000,147(1):141—154
[5]賈丙瑞,周廣勝,王風(fēng)玉,等. 土壤微生物與根系呼吸作用影響因子分析. 應(yīng)用生態(tài)學(xué)報(bào),2005,16(8):1547—1552 Jia B R,Zhou G S,Wang F Y,et al. Affecting factors of soil microorganism and root respiration(In Chinese). Chinese Journal of Applied Ecology,2005,16(8):1547—1552
[6]Jamison V C,Domby C W. The effect of a dense soil layer and varying air-water relations on the growth,root development,and nutrient uptake of cotton in commerce silt loam. Soil Science Society of American Journal,1956,20(4):447—453
[7]汪天,王素平,郭世榮,等. 植物低氧脅迫傷害與適應(yīng)機(jī)理的研究進(jìn)展. 西北植物學(xué)報(bào),2006,26(4):847—853
Wang T,Wang S P,Guo S R,et al. Research advances about hypoxia-stress damage and hypoxiastress-adapting mechanism in plants(In Chinese). Acta Botanica Boreali-Occidentalia Sinica,2006,26 (4):847—853
[8]Armstrong W,Drew M C. Root growth and metabolism under oxygen deficiency//Waisel Y,Eshel A,Kafkafi U. Plant roots:The hidden half. 3rd ed. New York:Marcel Dekker,2002:729—761
[9]Drew M C. Sensing soil oxygen. Plant,Cell and Environment,1990,13(7):681—693
[10]Sey B K,Manceur A M,Whalen J K,et al. Root derived respiration and nitrous oxide production as affected by crop phenology and nitrogen fertilization. Journal of Experimental Psychology—Animal Behavior Processes,2010,326(1/2):369—379
[11]Kang Y Y,Guo S R,Duan J J. Effects of root zone hypoxia on respiratory metabolism of cucumber seedlings roots. Chinese Journal of Applied Ecology,2008,19 (3):583—587
[12]Sharma D P,Swarup A. Effect of short-term waterlogging on growth,yield and nutrient composition of wheat in alkaline soils. The Journal of Agricultural Science,1989,112(2):191—197
[13]Guo S R,Tachibana S J. Effect of dissolved O2levels in a nutrient solution on the growth and mineral nutrition of tomato and cucumber seedlings. Journal of the Japanese Society for Horticultural Science,1997,66(2):331—337
[14]Wolf B. The fertile triangle:The interrelationship of air,water,and nutrients in maximizing soil productivity. Soil Science,2000,165(8):677—679
[15]胡曉輝,郭世榮,李璟,等. 低氧脅迫對(duì)黃瓜幼苗根系無(wú)氧呼吸酶和抗氧化酶活性的影響. 植物科學(xué)學(xué)報(bào),2005,23(4):337—341
Hu X H,Guo S R,Li J,et al. Effects of hypoxia stress on anaerobic respiratory enzyme and antioxidant enzyme activities in roots of cucumber seedlings(In Chinese). Plant Science Journal,2005,23(4):337—341
[16]Neira J,Ortiz M,Morales L,et al. Oxygen diffusion in soil:Understanding the factors and processes needed for modeling. Chilean Journal of Agricultural Research,2015,75:35—44
[17]Bhattarai S P,Su N,Midmore D J. Oxygation unlocks yield potentials of crops in oxygen-limited soil environments. Advances in Agronomy,2005,88 (5):313—377
[18]陳新明,Dhungel J,Bhattarai S P,等. 加氧灌溉對(duì)菠蘿根區(qū)土壤呼吸和生理特性的影響.排灌機(jī)械工程學(xué)報(bào),2010,28(6):543—547
Chen X M,Dhungel J,Bhattarai S P,et al. Impact of oxygation on soil respiration and crop physiological characteristics in pineapple(In Chinese). Journal of Drainage and Irrigation Machinery Engineering,2010,28(6):543—547
[19]Lei H J,Bhattarai S,Balsys R,et al. Temporal and spatial dimension of dissolved oxygen saturation with fluidic oscillator and Mazzei air injector in soilless irrigation systems. Irrigation Science,2016,34 (6):421—430
[20]Bhattarai S P,Huber S,Midmore D J. Aerated subsurface irrigation water gives growth and yield benefits to zucchini,vegetable soybean and cotton in heavy clay soils. Annals of Applied Biology,2004,144(3):285—298
[21]Rajashekar C B,Baek K H. Hydrogen peroxide alleviates hypoxia during imbibition and germination ofbean seeds(Phaseolus vulgaris L.). American Journal of Plant Sciences,2014,5(24):3572—3584
[22]Stepniewski W,Stepniewska Z,Przywara G,et al. Relations between aeration status and physical parameters of some selected Hungarian soils. International Agrophysics,2000,14(4):439—448
[23]Peterson J B. Relations of soil air to roots as factors in plant growth. Soil Science,1950,70(3):175—186
[24]Simojoki A. Response of soil respiration and barley growth to modified supply of oxygen in the soil. Agricultural and Food Science in Finland,2000,9 (4):303—318
[25]史春余,王振林,余松烈. 土壤通氣性對(duì)甘薯產(chǎn)量的影響及其生理機(jī)制. 中國(guó)農(nóng)業(yè)科學(xué),2001,34(2):173—178 Shi C Y,Wang Z L,Yu S L. Effects of soil aeration on sweet potato yield and its physiological mechanism (In Chinese). Scientia Agricultura Sinica,2001,34 (2):173—178
[26]趙霞,徐春梅,王丹英,等. 根際溶氧量在水稻氮素利用中的作用機(jī)制研究. 中國(guó)水稻科學(xué),2013,27 (6):647—652 Zhao X,Xu C M,Wang D Y,et al. Effects of rhizosphere dissolved oxygen on nitrogen utilization of rice(In Chinese). Chinese Journal of Rice Science,2013,27(6):647—652
[27]牛文全,郭超. 根際土壤通透性對(duì)玉米水分和養(yǎng)分吸收的影響. 應(yīng)用生態(tài)學(xué)報(bào),2010,21(11):2785—2791 Niu W Q,Guo C. Effects of rhizosphere soil permeability on water and nutrient uptake by maize (In Chinese). Chinese Journal of Applied Ecology,2010,21(11):2785—2791
[28]Pezeshki S R. Photosynthesis and growth in Spartina alterniflora in relation to root zone aeration. Photosynthetica,1998,34(1):107—114
[29]McIntyre D S. The platinum microelectrode method for soil aeration measurement. Advances in Agronomy,1970,22:235—283
[30]Lemon E R,Erickson A E. The measurement of oxygen diffusion in the soil with a platinum microelectrode. Soil Science Society of America Journal,1952,16(2):160—163
[31]Sojka R,Scott H. Aeration measurement. Encyclopedia of Soil Science,2006,1:33—35
[32]Jayawardane N S,Meyer W S. Measuring air-filled porosity changes in an irrigated swelling clay soil. Soil Research,1985,23(1):15—23
[33]Hodgson A S,Macleod D A. Use of oxygen flux density to estimate critical air-filled porosity of a vertisol. Soil Science Society of America Journal,1989,53(2):355—361
[34]Meyer W S,Barrs H D. Roots in irrigated clay soils:Measurement techniques and responses to root zone conditions. Irrigation Science,1991,12(3):125—134
[35]van Bochove E,Beauchemin S,Theriault G. Continuous multiple measurement of soil redox potential using platinum microelectrodes. Soil Science Society of America Journal,2002,66(6):1813—1820
[36]Niu W Q,Guo Q,Zhou X B,et al. Effect of aeration and soil water redistribution on the air permeability under subsurface drip irrigation. Soil Science Society of America Journal,2012,76(3):815—820
[37]Feng G,Wu L,Letey J. Evaluating aeration criteria by simultaneous measurement of oxygen diffusion rate and soil-water regime. Soil Science,2002,167(8):495—503
[38]Lemon E R,Erickson A E. Principle of the platinum microelectrode as a method of characterizing soil aeration. Soil Science,1955,79(5):383—392
[39]Stolzy L H,Letey J. Measurement of oxygen diffusion rates with the platinum electrodes. III. Correlation of plant response to soil oxygen diffusion rates. Hilgardia,1964,35(20):567—576
[40]Wolińska A,Stpniewska Z. Soil aeration variability as affected by reoxidation. Pedosphere,2013,23(2):236—242
[41]Bohrerova Z,Stralkova R,Podesvova J,et al. The relationship between redox potential and nitrification under different sequences of crop rotations. Soil and Tillage Research,2004,77(1):25—33
[42]Pett-Ridge J,F(xiàn)irestone M K. Redox fluctuation structures microbial communities in a wet tropical soil. Applied and Environmental Microbiology,2005,71 (11):6998—7007
[43]Unger I M,Motavalli P P,Muzika R M. Changes in soil chemical properties with flooding:A field laboratory approach. Agriculture,Ecosystems and Environment,2009,131(1):105—110
[44]Deepagoda T K K,Moldrup P,Schjonning P,et al. Density-corrected models for gas diffusivity and air permeability in unsaturated soil. Vadose Zone Journal,2011,10(1):226—238
[45]Boon A,Robinson J S,Nightingale P D,et al. Determination of the gas diffusion coefficient of a peat grassland soil. European Journal of Soil Science,2013,64(5):681—687
[46]Pingintha N,Leclerc M Y,Beasley J J,et al. Assessment of the soil CO2gradient method for soil CO2efflux measurements:Comparison of six models in the calculation of the relative gas diffusion coefficient. Tellus B:Chemical and Physical Meteorology,2010,62(1):47—58
[47]Uteau D,Pagenkemper S K,Peth S,et al. Root and time dependent soil structure formation and its influence on gas transport in the subsoil. Soil and Tillage Research,2013,132:69—76
[48]Aachib M,Mbonimpa M,Aubertin M. Measurement and prediction of the oxygen diffusion coefficient in unsaturated media,with applications to soil covers. Water,Air and Soil Pollution,2004,156(1):163—193
[49]Springer D S,Loaiciga H A,Cullen S J,et al. Air permeability of porous materials under controlled laboratory conditions. Ground Water,1998,36 (4):558—565
[50]Poulsen T G,Moldrup P. Air permeability of compost as related to bulk density and volumetric air content. Waste Management and Research,2007,25(4):343—351
[51]李陸生,張振華,潘英華,等. 一種田間測(cè)算土壤導(dǎo)氣率的瞬態(tài)模型. 土壤學(xué)報(bào),2012,49(6):1252—1256
Li L S,Zhang Z H,Pan Y H,et al. Transient-flow model for in-situ measuring of soil air permeability(In Chinese). Acta Pedologica Sinica,2012,49(6):1252—1256
[52]蘇志慧,吳兵,龔元石. 不同孔隙度土壤氣體擴(kuò)散系數(shù)測(cè)定. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(15):108—113
Su Z H,Wu B,Gong Y S. Determination of gas diffusion coefficient in soils with different porosities (In Chinese). Transaction of the Chinese Society of Agricultural Engineering,2015,31(15):108—113
[53]Palta J A,Nobel P S. Influence of soil O2and CO2on root respiration for agave desert. Physiologia Plantarum,1989,76(2):187—192
[54]Shi K,Hu W H,Dong D K,et al. Low O2supply is involved in the poor growth in root-restricted plants of tomato(Lycopersicon esculentum Mill.). Environmental and Experimental Botany,2007,61 (2):181—189
[55]Drew M C,Lynch J M. Soil anaerobiosis,microorganisms,and root function. Annual Review of Phytopathology,1980,18(1):37—66
[56]Uteau D,Hafner S,Pagenkemper S K,et al. Oxygen and redox potential gradients in the rhizosphere of alfalfa grown on a loamy soil. Journal of Plant Nutrition and Soil Science,2015,178(2):278—287
[57]Scotter D R,Thurtell G W,Tanner C D. Measuring oxygen uptake by the roots of intact plants under controlled conditions. Soil Science,1967,104(5):374—378
[58]Carter C E. Redox potentials and sugarcane yield relationship. Transactions of the ASAE,1980,23 (4):924—927
[59]Glinski J,Stepniewski W. Soil aeration and its role for plants. Boca Raton,F(xiàn)lorida:CRC Press Inc,1985:240
[60]Currie J A. The importance of aeration in providing the right conditions for plant growth. Journal of the Science of Food and Agriculture,1962,13(7):380—385
[61]勞秀榮,孫偉紅,王真,等. 秸稈還田與化肥配合施用對(duì)土壤肥力的影響. 土壤學(xué)報(bào),2003,40(4):618—623
Lao X R,Sun W H,Wang Z,et al. Effect of matching use of straw and chemical fertilizer on soil fertility(In Chinese). Acta Pedologica Sinica,2003,40(4):618—623
[62]Li Y,Niu W Q,Liu L,et al. Effects of artificial soil aeration volume and frequency on soil enzyme activity and microbial abundance when cultivating greenhouse tomato. Soil Science Society of America Journal,2016,80:1208—1221
[63]Abuarab M,Mostafa E,Ibrahim M. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil. Journal of Advanced Research,2013,4(6):493—499
[64]雷宏軍,臧明,張振華,等. 循環(huán)曝氣地下滴灌的溫室番茄生長(zhǎng)與品質(zhì). 排灌機(jī)械工程學(xué)報(bào),2015,33 (3):253—259
Lei H J,Zang M,Zhang Z H,et al. Growth and quality of greenhouse tomato under cycle aerated subsurface drip irrigation(In Chinese). Journal of Drainage and Irrigation Machinery Engineering,2015,33(3):253—259
[65]Goorahoo D,Carstensen G,Zoldoske D F,et al. Using air in sub-surface drip irrigation(SDI)to increase yields in bell peppers. International Water Irrigation,2002,22(2):39—42
[66]Pendergast L,Bhattarai S P,Midmore D J. Benefits of oxygation of subsurface drip-irrigation water for cotton in a Vertosol. Crop and Pasture Science,2013,64 (11):1171—1181
[67]Dhungel J,Bhattarai S P,Midmore D J. Aerated water irrigation(oxygation)benefits to pineapple yield,water use efficiency and crop health. Advances in Horticultural Science,2012,26(1):3—16
[68]溫改娟,蔡煥杰,陳新明,等. 加氣灌溉對(duì)溫室番茄生長(zhǎng)、產(chǎn)量及品質(zhì)的影響. 干旱地區(qū)農(nóng)業(yè)研究,2014,32(3):83—87
Wen G J,Cai H J,Chen X M,et al. Impact of aerated subsurface irrigation to growth,yield and quality of greenhouse tomato(In Chinese). Agricultural Research in the Arid Areas,2014,32(3):83—87
[69]Chen X M,Dhungel J,Bhattarai S P,et al. Impact of oxygation on soil respiration,yield and water use efficiency of three crop species. Journal of Plant Ecology,2011,4(4):236—248
[70]Zhu L F,Yu S M,Jin Q Y. Effects of aerated irrigation on leaf senescence at late growth stage and grain yield of rice. Rice Science,2012,19(1):44—48
[71]Wiegand C L,Lemon E R. A field study of some plant-soil relations in aeration. Soil Science Society of American Journal,1958,22(3):216—221
[72]Grable A R,Siemer E G. Effects of bulk density,aggregate size,and soil water suction on oxygen diffusion,redox potentials,and elongation of corn roots. Soil Science Society of America Journal,1968,32(2):180—186
[73]Bhattarai S P,Midmore D J. Oxygation enhances growth,gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol. Journal of Integrative Plant Biology,2009,51(7):675—688 [74]Bhattarai S P,Midmore D J,Su N. Sustainable irrigation to balance supply of soil water,oxygen,nutrients and agro-chemicals//Lichtfouse E. Biodiversity,biofuels,agroforestry and conservation agriculture. London,New York:Springer Dordrecht Heidelberg,2010:253—286
[75]Balota E L,Kanashiro M,F(xiàn)ilho A C,et al. Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agro-ecosystems. Brazilian Journal of Microbiology,2004,35(4):300—306
[76]謝恒星,蔡煥杰,張振華. 溫室甜瓜加氧灌溉綜合效益評(píng)價(jià). 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(11):79—83
Xie H X,Cai H J,Zhang Z H. Evaluation of comprehensive benefit in greenhouse muskmelon under aeration irrigation(In Chinese). Transactions of the Chinese Society for Agricultural Machinery,2010,41 (11):79—83
[77]Midmore D J,Bhattarai S P,Prendergast L. Oxygation:Aeration of subsurface drip irrigation water and its advantages for crop production. Proceedings of the ANCID Conference 2007,Australia:ANCID,2007:1—3
[78]雷宏軍,張振華. 水氣耦合高效灌溉理論與技術(shù). 北京:科學(xué)出版社,2016:1—6
Lei H J,Zhang Z H. Theory and technique on high efficiency of water-gas coupled irrigation(In Chinese). Beijing:Science Press,2016:1—6
[79]邵東國(guó),劉武藝,張湘隆. 灌區(qū)水資源高效利用調(diào)控理論與技術(shù)研究進(jìn)展. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(5):251—257
Shao D G,Liu W Y,Zhang X L. Review of the researches on theory and technology of regulation for high efficient utilization of water resources in the irrigation and drainage system(In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2007,23(5):251—257
[80]向清江,許正典,陳超,等. 摻氣水射流應(yīng)用于低壓搖臂噴頭的試驗(yàn). 農(nóng)業(yè)工程學(xué)報(bào),2016,32(16):54—58
Xiang Q J,Xu Z D,Chen C,et al. Experiment on aeration water jet applied to low pressure impact sprinkler irrigation(In Chinese). Transaction of the Chinese Society of Agricultural Engineering,2016,32 (16):54—58
[81]Simojoki A,Jaakkola A. Effect of nitrogen fertilization,cropping and irrigation on soil air composition and nitrous oxide emission in a loamy clay. European Journal of Soil Science,2000,51(3):413—424
[82]Drew M C. Oxygen deficiency and root metabolism:injury and acclimation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology,1997,48(1):223—250
[83]Bhattarai S P,Midmore D J,Pendergast L. Yield,water-use efficiencies and root distribution of soybean,chickpea and pumpkin under different subsurface drip irrigation depths and oxygation treatments in vertisols. Irrigation Science,2008,26(5):439—450
[84]Shi K,Ding X T,Dong D K,et al. Root restrictioninduced limitation to photosynthesis in tomato (Lycopersicon esculentum Mill.)leaves. Scientia Horticulturae,2008,117(3):197—202
[85]Nobel P S,Palta J A. Soil O2and CO2effects on root respiration of cacti. Plant and Soil,1989,120(2):263—271
[86]Greenway H,Armstrong W,Colmer T D. Conditions leading to high CO2(>5 kPa)in waterlogged-flooded soils and possible effects on root growth and metabolism. Annals of Botany,2006,98(1):9—32
[87]Meyer W S,Barrs H D,Smith R C G,et al. Effect of irrigation on soil oxygen status and root and shoot growth of wheat in a clay soils. Crop and Pasture Science,1985,36(2):171—185
[88]Pendergast L,Midmore D J. Oxygation:Enhanced root function,yields and water use efficiencies through aerated subsurface drip irrigation,with a focus on cotton. Proceedings of 13th Agronomy Conference 2006. The Australian Society of Agronomy,2006. http://www.regional.org.au/au/asa/2006/concurrent/ technology/4702_pendergastl.htm
[89]Zhu J,Liang J,Xu Z,et al. Root aeration improves growth and nitrogen accumulation in rice seedlings under low nitrogen. European Journal of Gastroenterology and Hepatology,2015,7(3):225—228
[90]Li Y,Niu W Q,Wang J W,et al. Review on advances of airjection irrigation. International Journal of Agricultural and Biological Engineering,2016,9 (2):1—10
[91]黃細(xì)喜. 土壤緊實(shí)度及層次對(duì)小麥生長(zhǎng)的影響. 土壤學(xué)報(bào),1988,25(1):59—65 Huang X X. The wheat growth affected by the soil compaction and layers(In Chinese). Acta Pedologica Sinica,1988,25(1):59—65
[92]Ayres K W,Button R G,Jong E D. Soil morphology and soil physical properties. I. Soil aeration. Canadian Journal of Soil Science,1972,52(3):311—321
[93]Dye M H. Soil physical conditions of winter and the growth of rye grass plants:II. Effects of soil atmosphere. New Zealand Journal of Agricultural Research,1967,10(3/4):425—434
[94]李潮海,李勝利,王群,等. 下層土壤容重對(duì)玉米根系生長(zhǎng)及吸收活力的影響. 中國(guó)農(nóng)業(yè)科學(xué),2005,38 (8):1706—1711
Li C H,Li S L,Wang Q,et al. A study on corn root growth and activities at different soil layers with special bulk density(In Chinese). Scientia Agricultura Sinica,2005,38(8):1706—1711
[95]Czyz E A. Effects of traffic on soil aeration,bulk density and growth of spring barley. Soil and Tillage Research,2004,79(2):153—166
[96]Kechavarzi C,Dawson Q,Bartlett M,et al. The role of soil moisture,temperature and nutrient amendment on CO2efflux from agricultural peat soil microcosms. Geoderma,2010,154(3/4):203—210
[97]Wlodarczyk T,Glinski J,Stepniewski W,et al. Aeration properties and enzyme activity on the example of Arenic Chernozem. International Agrophysics,2001,15(2):131—138
[98]Torabi M,Midmore D J,Walsh K B,et al. Analysis of factors affecting the availability of air bubbles to subsurface drip irrigation emitters during oxygation. Irrigation Science,2013,31(4):621—630
[99]Zhao F,Zhang W J,Zhang X F,et al. Effect of continuous aeration on growth and activity of enzymes related to nitrogen metabolism of different Rice Genotypes at tillering stage. Acta Agronomica Sinica,2012,38(2):344—351
Advancement in Research on Soil Aeration and Oxygation
LEI Hongjun HU Shiguo PAN Hongwei ZANG Ming LIU Xin LI Ke
(School of Water Resources,North China University of Water Conservancy and Electric Power,Zhengzhou 450045,China)
Water,nutrients,gas and heat are the four main factors in soil to ensure soil fertility. Traditional irrigation management often ignores the importance of soil aeration. Hypoxia stress is often attributed to soil compaction,high ground water table or unreasonable irrigation. Under hypoxia stress,plants declined in aerobic respiration with part plant root dying,and leaves atrophying,thus leading to a low water and nutrient use efficiency. As an integrated index of soil permeability and status of soil oxygen,soil aeration represents one of the overall properties of soil fertility,which reflects the relationships between soil biological oxygen consumption,carbon dioxide production and gas exchange between soil and atmosphere. Insufficient soil aeration would surely disturb the balance between the four factors of soil fertility,making the soil deteriorating in soil physical and chemical properties,which in turn negatively affect crop growth and yield. Irrigation displaces air in soil pores with water,causing temporal hypoxia,which may be localizedand last a long time,particularly in heavy clay soils,where a wetting front is maintained due to frequent pulsing irrigation events. A system,termed oxygation or aerated irrigation,has been developed,mixing pure oxygen,air bubbles or hydrogen peroxide solution into the irrigation water that flows and carries oxygen to the plant root zone. Researches have demonstrated that oxygation or adding oxygen into irrigation water may improve crop yield and quality. In order to explore mechanism of the improvement by oxygation,this review begins with the effects of hypoxia stress on soil biology,crop physiology and crop production,and influencing factors,quantitative indicators and evaluation criteria,and measuring and calculating methods of soil aeration. Then it summarizes characteristics,application methods,and biological effects of different oxygation technologies,and furthermore,problems existing in the researches. Besides,it discusses effects of oxygation or aerated irrigation on soil aeration. In the end,it brings forth prospects of the researches on oxygation or aerated irrigation in anticipation of providing some reference for future researches.
Hypoxia stress;Oxygation or aerated irrigation;Dissolved oxygen;Soil aeration;Evaluation indicator
S151
A
10.11766/trxb201607060270
(責(zé)任編輯:盧 萍)
* 國(guó)家自然科學(xué)基金-河南人才培養(yǎng)聯(lián)合基金(U150452)、河南省科技創(chuàng)新杰出青年基金(174100510021)、華北水利水電大學(xué)博士研究生創(chuàng)新基金資助 Supported by the NSFC-Joint Research Fund of Henan Province(No. U150451),the Excellent Youth Foundation of Henan Scientific Committee(No. 174100510021)and the NCWU Ph.D Student Innovation Fundation
雷宏軍(1975—),男,湖北大冶人,博士,副教授,主要研究節(jié)水灌溉理論與技術(shù)及水資源高效利用。
E-mail:hj_lei2002@163.com
2016-07-06;
2016-11-11;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-01-05