隨著堆存時間的增加,赤泥團聚體內礦物結合有機碳含量逐漸增加,在赤泥團聚體內顆粒有機碳組分中,礦物結合有機碳分配比例最高,這表明自然風化過程對赤泥團聚體內礦物結合有機碳分布特征具有一定影響,赤泥團聚體內顆粒有機碳逐漸趨于穩定。赤泥團聚體內礦物結合有機碳含量隨著團聚體粒徑減少而逐漸下降,這一結果符合土壤團聚體等級形成概念,微團聚體與粘粒在有機質和多價陽離子粘結條件下形成較大一級的團聚體,因此大團聚體中有機碳含量高于微團聚體[39]。礦物結合有機碳比閉蓄顆粒有機碳更為穩定,不易被微生物分解,因此在本研究中,赤泥團聚體內礦物結合有機碳分配比例最高。團聚體內礦物結合有機碳貢獻率的變化取決于土壤母質,赤泥堆場在氣候條件及微生物等外界因素作用下,理化性質發生了較大改變,因此其貢獻率也出現了很大的變化。自然風化過程中,赤泥理化性質得到改良,微生物對活性有機碳的分解,使得赤泥團聚體內礦物結合有機碳含量顯著增加,分配比例也呈上升趨勢。本研究中赤泥團聚體內礦物結合有機碳(Mineral<0.05 mm)的貢獻率在微團聚體中比大團聚體中更為明顯,這與一些土壤有機碳含量較低的農田土壤的相關研究結果類似,礦物結合有機碳(Mineral<0.05 mm)多存在于<0.25 mm團聚體中[33]。
自然風化過程不僅提高了赤泥總有機碳含量,也增加了赤泥團聚體水平中有機碳不同組分的含量,對赤泥團聚體各有機碳物理組分分配比例產生極大的影響。隨著堆存時間的增加,赤泥活性有機碳庫變化較小,且以穩定有機碳庫為主,赤泥有機碳趨于穩定。自然風化過程改變了赤泥有機碳組分的結構、穩定和功能,影響了赤泥碳庫的穩定,對于赤泥物理結構的改變和鄉土植物的自然定植具有重要意義。
5 結論
(1)自然風化過程中,赤泥輕重組有機碳組分含量顯著增加,重組有機碳分配比例均在97%以上,以粗顆粒有機碳和礦物結合態顆粒有機碳為主,細顆粒有機碳含量最低;
(2)赤泥團聚體顆粒有機碳分配比例為20%—30%,隨著堆存時間的增加,赤泥團聚體顆粒有機碳分配比例呈現上升趨勢;
(3)隨著堆存時間的增加,赤泥團聚體內顆粒有機碳各組分含量逐漸升高。礦物結合有機碳分配比例最高,其次是閉蓄態顆粒有機碳,游離態顆粒有機碳分配比例最低。
[1] Pan X L, Yu H Y, Tu G F. Reduction of alkalinity in bauxite residue during Bayer digestion in high-ferrite diasporic bauxite. Hydrometallurgy, 2015, 151: 98- 106.
[2] Santini T C, Kerr J L, Warren L A. Microbially-driven strategies for bioremediation of bauxite residue. Journal of Hazardous Materials, 2015, 293: 131- 157.
[3] Liu W C, Chen X Q, Li W X, Yu Y F, Yan K. Environmental assessment, management and utilization of red mud in China. Journal of Cleaner Production, 2014, 84: 606- 610.
[4] Xue S G, Zhu F, Kong X F, Wu C, Huang L, Huang N, Hartley W. A review of the characterization and revegetation of bauxite residues (red mud). Environmental Science and Pollution Research, 2016, 23(2): 1120- 1132.
[5] Kaur N, Phillips I, Fey M V. Amelioration of bauxite residue sand by intermittent additions of nitrogen fertiliser and leaching fractions: the effect on growth of kikuyu grass and fate of applied nutrients. Science of the Total Environment, 2016, 550: 362- 371.
[6] Jones B E H, Haynes R J. Bauxite processing residue: a critical review of its formation, properties, storage, and revegetation. Critical Reviews in Environmental Science and Technology, 2011, 41(3): 271- 315.
[7] Zhu F, Zhou J Y, Xue S G, Hartley W, Wu C, Guo Y. Aging of bauxite residue in association of regeneration: a comparison of methods to determine aggregate stability & erosion resistance. Ecological Engineering, 2016, 92: 47- 54.
[8] Courtney R, Harrington T. Growth and nutrition ofHolcuslanatusin bauxite residue amended with combinations of spent mushroom compost and gypsum. Land Degradation & Development, 2012, 23(2): 144- 149.
[9] Jones B E H, Haynes R J, Phillips I R. Addition of an organic amendment and/or residue mud to bauxite residue sand in order to improve its properties as a growth medium. Journal of Environmental Management, 2012, 95(1): 29- 38.
[10] Banning N C, Sawada Y, Phillips I R, Murphy D V. Amendment of bauxite residue sand can alleviate constraints to plant establishment and nutrient cycling capacity in a water-limited environment. Ecological Engineering, 2014, 62: 179- 187.
[11] Bradshaw A. The use of natural processes in reclamation-advantages and difficulties. Landscape and Urban Planning, 2000, 51(2-4): 89- 100.
[12] Young I W R, Naguit C, Halwas S J, Renault S, Markham J H. Natural revegetation of a boreal gold mine tailings pond. Restoration Ecology, 2013, 21(4): 498- 505.
[13] Santini T C, Fey M V. Spontaneous vegetation encroachment upon bauxite residue (red mud) as an indicator and facilitator of in situ remediation processes. Environmental Science & Technology, 2013, 47(21): 12089- 12096.
[14] Zhu F, Xue S G, Hartley W, Huang L, Wu C, Li X F. Novel predictors of soil genesis following natural weathering processes of bauxite residues. Environmental Science and Pollution Research, 2016, 23(3): 2856- 2863.
[15] 朱鋒, 韓福松, 薛生國, 郭穎, 李萌, 廖嘉欣. 氧化鋁赤泥堆場團聚體的分形特征. 中國有色金屬學報, 2016, 26(6): 1316- 1323.
[16] Courtney R, Harrington T, Byrne K A. Indicators of soil formation in restored bauxite residues. Ecological Engineering, 2013, 58: 63- 68.
[17] Gr?fe M, Klauber C. Bauxite residue issues: IV. old obstacles and new pathways forinsituresidue bioremediation. Hydrometallurgy, 2011, 108(1- 2): 46- 59.
[18] 吳敏, 劉淑娟, 葉瑩瑩, 張偉, 王克林, 陳洪松. 喀斯特地區坡耕地與退耕地土壤有機碳空間異質性及其影響因素. 生態學報, 2016, 36(6): 1619- 1627.
[19] 雷利國, 江長勝, 郝慶菊. 縉云山土地利用方式對土壤輕組及顆粒態有機碳氮的影響. 環境科學, 2015, 36(7): 2669- 2677.
[20] 陳茜, 梁成華, 杜立宇, 陳新之, 王峰. 不同施肥處理對設施土壤團聚體內顆粒有機碳含量的影響. 土壤, 2009, 41(2): 258- 263.
[21] 張軍科, 江長勝, 郝慶菊, 吳艷, 謝德體. 耕作方式對紫色水稻土輕組有機碳的影響. 生態學報, 2012, 32(14): 4379- 4387.
[22] Roscoe R, Buurman P. Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol. Soil and Tillage Research, 2003, 70(2): 107- 119.
[23] 耿瑞霖, 郁紅艷, 丁維新, 蔡祖聰. 有機無機肥長期施用對潮土團聚體及其有機碳含量的影響. 土壤, 2010, 42(6): 908- 914.
[24] Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 1992, 56(3): 777- 783.
[25] Golchin A, Oades J M, Skjemstad J O, Clarke P. Study of free and occluded particulate organic matter in soils by solid state13C Cp/MAS NMR spectroscopy and scanning electron microscopy. Australian Journal of Soil Research, 1994, 32(2): 285- 309.
[26] Sheng H, Zhou P, Zhang Y Z, Kuzyakov Y, Zhou Q, Ge T D, Wang C H. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China. Soil Biology and Biochemistry, 2015, 88: 148- 157.
[27] Liu M Y, Chang Q R, Yang X Y. Soil carbon fractions under different land use types in the tablelands of the Loess Plateau. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1418- 1425.
[28] Tan Z, Lal R, Owens L, Izaurralde R C. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil and Tillage Research, 2007, 92(1- 2): 53- 59.
[29] 廖敏, 彭英, 陳義, 謝曉梅, 吳春艷, 唐旭, 劉玉學, 楊生茂. 長期不同施肥管理對稻田土壤有機碳庫特征的影響. 水土保持學報, 2011, 25(6): 129- 133, 138- 138.
[30] Marín-Spiotta E, Gruley K E, Crawford J, Atkinson E E, Miesel J R, Greene S, Cardona-Correa C, Spencer R G M. Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry, 2014, 117(2- 3): 279- 297.
[31] Beguería S, Angulo-Martínez M, Gaspar L, Navas A. Detachment of soil organic carbon by rainfall splash: experimental assessment on three agricultural soils of Spain. Geoderma, 2015, 245- 246: 21- 30.
[32] 董洪芳, 于君寶, 管博. 黃河三角洲堿蓬濕地土壤有機碳及其組分分布特征. 環境科學, 2013, 34(1): 288- 292.
[33] Six J, Elliott E T, Paustian K, Doran J W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1997, 62(5): 1367- 1377.
[34] Saha D, Kukal S S, Sharma S. Land use impacts on SOC fractions and aggregate stability in Typic Ustochrepts of Northwest India. Plant & Soil, 2011, 339(1- 2): 457- 470.
[35] van Lützow M, K?gel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review. European Journal of Soil Science, 2006, 57(4): 426- 445.
[36] John B, Yamashita T, Ludwig B, Flessa H. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma, 2005, 128(1- 2): 63- 79.
[37] Conant R T, Six J, Paustian K. Land use effects on soil carbon fractions in the southeastern United States. II. changes in soil carbon fractions along a forest to pasture chronosequence. Biology and Fertility of Soils, 2004, 40(3): 194- 200.
[38] Golchin A, Oades J M, Skjemstad J O, Clarke P. Soil structure and carbon cycling. Australian Journal of Soil Research, 1994, 32(5): 1043- 1068.
[39] Bronick C J, Lal R. Soil structure and management: a review. Geoderma, 2005, 124(1/2): 3- 22.
Effects of natural weathering processes on the distribution characteristics of organic carbon and its composition in bauxite residue aggregates
ZHU Feng1,2, LI Meng1, XUE Shengguo1,2,*, ZOU Qi1, WU Hao1, WANG Qiongli1
1SchoolofMetallurgyandEnvironment,CentralSouthUniversity,Changsha410083,China2ChineseNationalEngineeringResearchCenterforControlandTreatmentofHeavyMetalPollution,CentralSouthUniversity,Changsha410083,China
Revegetation is regarded as a promising approach for large-scale remediation of bauxite residue in disposal areas. Formation of an aggregate structure and the dynamic processes of the organic pool are essential factors for achieving revegetation due to the high alkalinity, salinity and poor physical structure of the residues. The physical fractionation of organic carbon may identify specific organic carbon pools that are responsible for carbon management and control. Physical density fractionation facilitates the separation of soil organic carbon fractions and their associated mineral particles from different locations. Spontaneous vegetation encroachment upon bauxite residue at a disposal area in Central China, over a 20-year period, has revealed that natural soil-forming processes may convert the residues to a soil-like medium. Residue samples from three different stacking ages (1 year, 10 years and 20 years) were collected in order to determine the effects of natural soil-forming processes on aggregate formation and organic carbon fractions. The contents and distribution ratios of light fraction organic carbon (LFOC), heavy fraction organic carbon (HFOC), particulate organic carbon (POC) and POC intra-residue aggregates were determined in this study. The results indicated that the content of organic carbon fractions in bauxite residue increased significantly under natural soil-forming processes. The proportion of LFOC of the total organic carbon was 0.36%—2.06%. With increasing stacking age, the distribution ratio of LFOC increased. Most organic carbon (97.24%—99.11%) was held in the HFOC, which indicated that organic carbon dynamics in the residues were controlled by the behavior of this fraction. In the HFOC, coarse POC and mineral-combined organic carbon predominated, whereas the distribution ratio of fine POC was relatively small. POC content was highest in 2—1 mm residue aggregates and lowest was in the 0.25—0.05 mm residue aggregate ranges in the three different stacking ages 1.21—1.85 g/kg (1 year), 2.62—2.95 g/kg (10 years), and 3.52—4.15 g/kg (20 years). Mean weight diameter was positively correlated with total organic carbon, LFOC, HFOC, and POC (r=0.908**, 0.908**, 0.889**, 0.793**respectively;P< 0.01). The content of free POC, occluded POC, and mineral-combined POC (Mineral: Mineral>0.05 mmand Mineral<0.05 mm) decreased with decrease in aggregate sizes. The order in a diminishing sequence for the distribution ratio of POC intra-residue aggregate size was 2—1 mm, 1—0.25 mm, <0.05 mm, and 0.25—0.05 mm. Among these, mineral-combined POC was the major fraction, and the proportion of free POC was the lowest. Natural soil-forming processes increased total organic carbon and fraction contents, and further enhanced the stability of organic carbon in bauxite residues, which was beneficial for organic carbon sequestration. The findings of this study may provide a theoretical basis for understanding carbon sequestration and contribute to improving the physical structure of bauxite residue.
bauxite residue; natural weathering processes; light fraction organic carbon; heavy fraction organic carbon; particulate organic carbon; soil formation
國家自然科學基金面上資助項目(41371475);國家公益性(環保)行業科研專項資助項目(201509048)
2016- 05- 20;
2016- 08- 29
10.5846/stxb201605200976
*通訊作者Corresponding author.E-mail: sgxue70@hotmail.com;sgxue@csu.edu.cn
朱鋒,李萌,薛生國,鄒奇,吳昊,王瓊麗.自然風化過程對赤泥團聚體有機碳組分的影響.生態學報,2017,37(4):1174- 1183.
Zhu F, Li M, Xue S G, Zou Q, Wu H, Wang Q L.Effects of natural weathering processes on the distribution characteristics of organic carbon and its composition in bauxite residue aggregates.Acta Ecologica Sinica,2017,37(4):1174- 1183.