由書妍, 于瑞君, 劉紅霞, 李紅葉
(1. 大連市農業科學研究院, 大連 116036; 2. 浙江大學農業與生物技術學院, 杭州 310058)
柑橘綠霉病菌中多聚半乳糖醛酸酶基因(PdPG2)的表達分析
由書妍1, 于瑞君1, 劉紅霞1, 李紅葉2*
(1. 大連市農業科學研究院, 大連 116036; 2. 浙江大學農業與生物技術學院, 杭州 310058)
柑橘綠霉病菌Penicilliumdigitatum是儲藏期柑橘腐爛病最主要的病原之一,嚴重影響柑橘產業的發展。已有研究表明,柑橘綠霉病菌中多聚半乳糖醛酸酶(PdPG2)對其致病性有重要作用,PdPG2基因功能缺失突變株的致病性會下降,然而有關PdPG2基因的表達研究尚不完善。本文研究了PdPG2基因在不同條件下的表達情況,結果表明PdPG2是酸性表達基因,其表達量隨著pH的升高而降低,pH為3.0時其表達量為對照條件下的10倍,pH為8.0時其表達量為對照條件下的0.36倍。柑橘果膠能夠誘導PdPG2的表達,其表達量為對照的3.6倍。因此,在侵染過程中PdPG2表達的升高是由于發病部位酸化以及橘皮降解物誘導共同引起的。
柑橘綠霉病菌; 多聚半乳糖醛酸酶; 基因表達
柑橘綠霉病菌引起的柑橘腐爛病是貯藏期柑橘的主要病害之一,其造成的損失通常占所有損失的90%以上,嚴重影響了我國柑橘的經濟效益[1-2]。柑橘綠霉病菌不形成特定的侵染結構,主要通過采摘等農事操作形成的傷口侵入。在侵入寄主的過程中,細胞壁水解酶起到了重要的作用[3-4]。目前,關于細胞壁水解酶對病原菌致病性的作用在許多真菌中都有報道,在灰葡萄孢Botrytiscinerea中,內切多聚半乳糖醛酸酶基因缺失突變株對番茄的致病性降低[5],果膠甲酯酶基因缺失突變株對幾種作物的致病性均有所下降[6];紫麥角菌Clavicepspurpurea中,兩個多聚半乳糖醛酸酶基因缺失突變株對黑麥花組織致病性嚴重下降[7];在黃曲霉Aspergillusflavus中,內切多聚半乳糖醛酸酶基因缺失突變株對棉鈴的致病性降低[8];在紅球叢赤殼Nectriahematococca中,果膠裂解酶A及果膠裂解酶D同時缺失其致病性降低,而單一突變其中任何一個基因都對致病性沒有影響[9];在膠孢炭疽菌Colletotrichumgloeosporioides中,果膠裂解酶基因缺失突變株的致病性下降[10-11],可見細胞壁水解酶對病原菌的致病性有重要意義。
研究表明柑橘綠霉病菌中多聚半乳糖醛酸酶基因(PdPG2)對其致病性有重要的作用[12],該基因編碼378個氨基酸,屬于內切多聚半乳糖醛酸酶(endo-PG,EC 3.2.1.15)。目前,關于PdPG2表達模式尚不清楚,本試驗對柑橘綠霉病菌PdPG2基因的表達進行研究,以探究該基因在侵染過程中表達量變化的原因,增加對柑橘綠霉病菌致病性分子機制的了解。
1.1 材料
柑橘綠霉病菌菌株Pd01(CBS 130525)由本實驗室從浙江衢州發生腐爛病的柑橘上分離[13],保存于本實驗室;本試驗使用的引物為自己設計(表1),由上海桑尼生物科技有限公司合成,其中PdPG2的擴增片段為184 bp,Actin的擴增片段為218 bp。
表1 本試驗所用引物
Table 1 Primers for this study

引物名稱Primername序列(5'-3')SequencePdPG2-qFGAAGGAACCACCACTTTCGGPdPG2-qRTCAGGCTGTGAGCGTAGAAGAAActin-qFTCCACTACTGCCGAGCGTGAAATActin-qRCCGCCAGACTCAAGACCAAGAAC
1.2 方法
1.2.1PdPG2在侵染過程中的相對表達量分析
從市場上購買成熟蜜橘Citrusnobilis果實,在次氯酸中浸泡10 min后用無菌水沖洗并吹干備用。將PDA培養基上培養7 d的野生型菌株Pd01孢子用雙蒸水洗脫,配制成1.0×106個/mL的孢子懸浮液。在蜜橘果實上用針簇(5根針圍成)刺1個1~2 mm深的傷口,取3 μL孢子懸浮液接種到傷口上,于25℃保濕培養,每組試驗3個重復,分別在接種后12、24、48和96 h采用AxyPrepTMmultisource total RNA miniprep kit(Xygen,杭州)提取病斑組織的總RNA,并利用RNA PCR (AMV) 3.0 kit(TaKaRa,大連)反轉錄成cDNA。以cDNA為模板,PdPG2-qF/PdPG2-qR為引物,采用SYBR Premix ExTaqTM(Perfect Real Time)試劑盒配制PCR 反應液,隨后在7300 Real-time PCR系統(ABI,美國)上完成PCR反應。PCR反應以γ-Actin基因(GenBank, AB030227)為內參,相對表達量的計算方法參考文獻[14]。
1.2.2 果膠對PdPG2相對表達量的影響
柑橘綠霉病菌的野生型菌株孢子懸浮液制作方法同1.2.1,吸取10 μL孢子懸浮液到50 mL PDB中培養3 d,過濾菌絲并用無菌水沖洗3次,將菌絲轉入以果膠為單一碳源的SM培養基中繼續培養60 h,按1.2.1的方法提取菌絲總RNA,測定PdPG2的相對表達量,以相同條件下,用葡萄糖為單一碳源的SM培養基培養的菌絲為對照。
1.2.3PdPG2在不同pH條件下的相對表達量
按1.2.2的方法收集在PDB中培養3 d的菌絲,將菌絲轉入pH分別為3.0、4.0、5.0、6.0、7.0 和8.0的PDB中繼續培養12 h,pH用磷酸檸檬酸緩沖液調節。按1.2.1的方法提取總RNA,測定PdPG2的相對表達量。
2.1PdPG2在侵染過程中的相對表達量
在柑橘發病過程中,PdPG2的表達如圖1所示,在侵染發病24 h后,PdPG2的相對表達量升高,為對照條件下的10倍,在侵染發病48 h后為對照條件下的14倍,在侵染發病72 h后,PdPG2的相對表達量最高,為對照條件下的18倍,在侵染發病96 h后,PdPG2的表達降低。這些結果表明PdPG2基因在侵染發病的過程中迅速升高,對致病性起到了重要的作用。

圖1 在侵染柑橘過程中PdPG2基因的表達Fig.1 Expression of PdPG2 during infection
2.2 果膠對PdPG2相對表達量的影響
試驗結果(圖2)表明,柑橘綠霉病菌野生型菌株Pd01在含果膠的培養基中培養60 h之后,PdPG2的相對表達量明顯升高,其表達量為對照條件下的3.6倍,可見果膠能夠誘導PdPG2的表達。

圖2 不同碳源下PdPG2的表達Fig.2 Expression of PdPG2 under different carbon source
2.3 不同pH條件對PdPG2表達的影響
PdPG2的表達與環境pH相關,在酸性的條件下,PdPG2的表達明顯升高,在pH為3.0時其表達量為對照條件下的10倍,而在pH為8.0時其表達量為對照條件下的0.36倍(圖3),表明PdPG2的表達依賴于外界環境的酸性條件。

圖3 PdPG2基因在不同pH條件下的表達Fig.3 Expression of PdPG2 at different pH values
柑橘綠霉病菌P.digitatum引起的柑橘腐爛病是貯藏期柑橘最重要的病害,給柑橘產業造成了嚴重的損失。研究柑橘綠霉病菌致病的分子機制,有助于增加對柑橘綠霉病菌防控的理論基礎。
本研究對PdPG2的表達模式進行研究,在侵染過程中PdPG2的表達呈現出先升高后下降的趨勢,表明在侵染過程中PdPG2起到了重要的作用。PdPG2的表達依賴于環境的酸性條件,在侵染的過程中,發病部位的pH會降低,特別是在接種后48 h內[12],而這段時期也正是PdPG2相對表達量升高的時期,可見在柑橘綠霉病菌侵染過程中的酸化有利于PdPG2的表達,從而提高原菌的致病性。PdPG2是一個誘導表達的基因,本試驗發現果膠也能夠誘導PdPG2的表達,果膠是柑橘果皮的重要組成成分[15],因此接種后PdPG2表達量的提高可能與發病部位的果皮降解物相關。在侵染過程中,PdPG2的表達呈現先升高后下降,而在接種后第48 h pH最低,此后,發病部位的pH基本不變[12],而PdPG2的表達卻繼續升高,因此我們推測橘皮果膠在誘導過程中也起了重要的作用。
[1] Kanetis L, F?rster H, Adaskaveg J E. Comparative efficacy of the new postharvest fungicides azoxystrobin, fludioxonil, and pyrimethanil for managing citrus green mold[J]. Plant Disease, 2007, 91(11): 1502-1511.
[2] Macarisin D, Cohen L, Eick A, et al.Penicilliumdigitatumsuppresses production of hydrogen peroxide in host tissue during infection of citrus fruit [J]. Pathology, 2007, 97(11): 1491-1500.
[3] Annis S L, Goodwin P H. Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi[J]. European Journal of Plant Pathology, 1997, 103(1): 1-14.
[4] Collmer A, Keen N T. The role of pectic enzymes in plant pathogenesis[J]. Annual Review of Phytopathology, 1986, 24: 383-409.
[5] ten Have A, Mulder W, Visser J, et al. The endopolygalacturonase geneBcpg1 is required for full virulence ofBotrytiscinerea[J]. Molecular Plant-Microbe Interactions, 1998, 11(10): 1009-1016.
[6] Valette-Collet O, Cimerman A, Reignault P, et al. Disruption ofBotrytiscinereapectin methylesterase geneBcpme1 reduces virulence on several host plants[J]. Molecular Plant-Microbe Interactions, 2003, 16(4): 360-367.
[7] Oeser B, Heidrich P M, Müller U, et al. Polygalacturonase is a pathogenicity factor in theClavicepspurpurea/rye interaction [J]. Fungal Genetics and Biology, 2002, 36(3): 176-186.[8] Shieh M T, Brown R L, Whitehead M P, et al. Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread ofAspergillusflavusin cotton bolls[J]. Applied and Environmental Microbiology, 1997, 63(9): 3548-3552.
[9] Rogers L M, Yeon-Ki Kim Y K, Guo Wenjin, et al. Requirement for either a host-or pectin-induced pectate lyase for infection ofPisumsativumbyNectriahematococca[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(17): 9813-9818.
[10]Yakoby N, Beno-Moualem D, Keen N T, et al.ColletotrichumgloeosporioidespelBis an important virulence factor in avocado fruit-fungus interaction[J]. Molecular Plant-Microbe Interactions, 2001, 14(8): 988-995.
[11]Yakoby N, Freeman S, Dinoor A, et al. Expression of pectate lyase fromColletotrichumgloeosporioidesinC.magnapromotes pathogenicity [J]. Molecular Plant-Microbe Interactions, 2000, 13(8): 887-891.
[12]Zhang Tianyuan, Sun Xuepeng, Xu Qian, et al. The pH signaling transcription factor PacC is required for full virulence inPenicilliumdigitatum[J]. Applied Microbiology and Biotechnology, 2013, 97(20): 9087-9098.
[13]Zhu Jinwen, Xie Qingyun, Li Hongye. Occurrence of imazalil-resistant biotype ofPenicilliumdigitatumin China and the resistant molecular mechanism [J]. Journal of Zhejiang University-Science A, 2006, 7: 362-365.
[14]Pfaffl M W, Horgan G W. Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR[J]. Nucleic Acids Research, 2002, 30(9): e36.
[15]Mahmood A U, Greenman J, Scragg A H. Orange and potato peel extracts: Analysis and use asBacillussubstrates for the production of extracellular enzymes in continuous culture [J]. Enzyme and Microbial Technology, 1998, 22(1): 130-137.
(責任編輯:楊明麗)
Expression profiles of polygalacturonase (PdPG2) inPenicilliumdigitatum
You Shuyan1, Yu Ruijun1, Liu Hongxia1, Li Hongye2
(1.DalianAcademyofAgriculturalSciences,Dalian116036,China; 2.CollegeofAgricultureandBiotechnology,ZhejiangUniversity,Hangzhou310058,China)
Penicilliumdigitatumis the most important pathogen causing green mold disease of postharvest citrus. Previous studies indicated thatPdPG2 played an important role in pathogenicity, and disruption ofPdPG2 resulted in attenuated virulence ofP.digitatum. However, the expression profiles ofPdPG2 were not well characterized. In this study, we investigated the expression profiles ofPdPG2. The results indicated thatPdPG2 was up-regulated under acidic conditions. The expression level ofPdPG2 was approximately 10 fold at pH 3.0 and 0.36 fold at pH 8.0 compared with that in the control. Pectin could induce the expression ofPdPG2 and the expression level was about 3.6 fold of that in the control. These results indicated that acidic condition and pectin could inducePdPG2 expression. The decreased pH of citrus rind during infection was suitable forPdPG2 expression, and pectin might be also helpful during infection.
Penicilliumdigitatum; polygalacturonase; gene expression
2016-04-18
2016-06-07
國家自然科學基金(31371961);國家現代農業產業技術體系(CARS-27)
S 432.1
A
10.3969/j.issn.0529-1542.2017.02.023
* 通信作者 E-mail:hyli@zju.edu.cn