張穎,翟勇祥
?
木質素的催化加氫轉化
張穎,翟勇祥
(能源材料化學協同創新中心,中國科學技術大學化學系,中科院城市污染物轉化重點實驗室,安徽合肥 230006)
木質素是來源于木質纖維素的一種重要的可再生生物質資源,可用于制備化學品和燃料。由于木質素本身結構的復雜性和穩定性使其難以有效利用。目前大量的制漿和造紙工業的木質素沒有得到有效利用,大部分用于燃燒供能,并且造成了一定程度的環境污染。為了保護環境、實現可持續發展,催化轉化木質素制備高附加值化學品成為了研究的熱點。木質素轉化的研究眾多,但是進展依然相對緩慢。目前主要的轉化方法包括堿催化解聚、酸催化解聚、熱化學轉化、加氫處理解聚、氧化解聚等。由于加氫處理解聚木質素可以獲得低聚木質素、酚類等有價值的化學品和制備烴類燃料,是目前研究的熱點和最有效的方法之一。但是,催化劑失活和解聚產物產率不高等依然是需要進一步解決的問題。基于此,梳理了近年來木質素加氫處理主要的催化體系和相關結果,提出了尚待解決的問題,以期為今后建立有效的木質素解聚體系并實現其高值化利用的相關研究提供參考。
生物質;木質素;催化劑;加氫;降解
木質素是植物的重要組成結構之一,在自然界中的儲量豐富[1]。木質素是復雜的三維無定形聚合物,主要由芥子醇、松柏醇、香豆醇3種結構單元(表1)[2]通過碳氧鍵(包括-O-4, 4-O-5,-O-4等)和碳碳鍵(包括-,-5,-4, 5-5等)(圖1)[1,3]無規聚合形成,是自然界中非石油資源的可再生芳香化合物的主要來源[4]。

表1 木質素結構單元在各種植物中的含量[2]
木質素轉化研究的難點在于其結構和組成的不確定性。而木質素結構的差別,是由生物質自身的種類不同,生長環境和生長季節甚至來源部位不同造成的[5]。對木質素進行結構分析需要將木質素先分離出來,這就導致了分析出來的結構與分離過程相關,木質素的天然結構依然難以確定[6]。木質素結構和預處理方法相關,不同的處理方法得到的木質素結構有時差異巨大[7]。Dale等[8]將不同的預處理方法分為4類:物理處理法(例如球磨)、溶劑分離法、化學方法和生物處理方法。每種處理方法得到的木質素都有其自身的優點和缺點,對于進一步降解木質素得到的產物和降解過程也都有一定的影響[7]。目前,木質素的主要來源是制漿和造紙工業(如堿木素、木質素磺酸等)以及專門用于生物質生產的能源作物(如有機溶劑木質素)。根據工藝的不同,主要獲得的是磺酸木質素、堿木質素、酶解木質素和有機溶劑木質素等。堿木質素和磺酸木質素是堿法和亞硫酸法造紙的副產物。
木質素的復雜酚類聚合結構具有化學穩定性,其轉化所需條件非常苛刻。目前應用于木質素解聚的方法眾多,主要有堿催化的解聚、酸催化的解聚、熱化學催化的木質素解聚、氧化解聚、加氫處理的解聚等[9]。其中木質素的加氫處理是木質素轉化最常見和最有效的方法之一,報道的文獻眾多,但是所用的催化劑體系復雜,且仍有許多問題未解決。因此,本文主要介紹加氫處理木質素的解聚方法,歸納總結目前報道的催化劑及其產率,并展望未來木質素加氫處理的催化劑發展方向,以期對木質素加氫解聚工作提供理論指導。
木質素的加氫處理過程就是利用氫(氫氣或其他氫源)對木質素進行熱還原的過程。通過加氫處理,可以獲得解聚的木質素、酚類和其他具有高附加值的化學品,以及制備小分子量的碳氫燃料。木質素的加氫處理過程涉及的主要反應類型包括氫解(hydrogenolysis)、加氫烷基化(hydroalkylation)、加氫脫氧(hydrodeoxygenation)、加氫(hydrogenation)以及綜合的加氫過程(integrated hydrogen-processing)[9]。
氫解是氫斷裂碳碳鍵或碳雜原子(O、N、S等)鍵的化學反應[10]。氫解是木質素中加氫處理斷裂碳氧鍵的主要方式。加氫脫氧(HDO)可以去除酚類分子中的氧,用于制備碳氫化合物。加氫脫氧是生物油轉化的重要方法,屬于氫解的一種反應。加氫反應是利用一對氫原子飽和或者還原有機化合物的化學反應。碳碳雙鍵、碳碳叁鍵、碳氧雙鍵在加氫過程中飽和,增加了產物中氫原子的含量。通過選擇合適的催化劑[11-12]和反應條件可以選擇性控制芳香基團中的碳碳雙鍵和非芳香環中的碳碳雙鍵、碳碳叁鍵、碳氧雙鍵的飽和。通常加氫反應和氫解反應是同時發生的。由于木質素的復雜結構,難以獲得單一的產物。其加氫過程也不是單一的一種反應,在氫解或加氫過程中,實際上還包含其他的反應過程。綜合的加氫過程既包括木質素的解聚也包括解聚產物的轉化。
加氫處理過程對反應條件的要求較高,因此催化劑對于加氫處理就顯得非常重要。其中用于木質素加氫處理研究較多且效果較好的金屬主要是鎳、鉬、鈀、銠、釕和鉑等。單金屬催化劑、雙金屬催化劑和雙功能催化劑用于加氫處理木質素及其模型物的工作也有報道。
早在20世紀40年代,鎳基催化劑就已經應用于木質素的加氫、氫解反應[13]。Wenkert等[14]報道了鎳化合物和格氏試劑高效催化氫解芳基碳氧鍵的研究結果。
Sergeev等[15]報道了可溶性鎳化合物用于催化氫解二芳醚的研究。該催化劑對于底物有較寬的適用范圍,不論是富電子基團取代還是缺電子基團取代的二芳基醚都能有效氫解。其對于碳氧鍵的斷裂活性為Ar—O—Ar>>Ar—OMe>ArCH2—OMe。隨后,非均相的鎳基催化劑[16]也相繼出現,并且在負載量低至0.25%(mol)時,催化效果依然明顯。在這些鎳催化的反應中,添加堿很重要,但是具體的堿在反應中的作用依然不是很清楚。同時,均相和非均相的鎳催化劑對于產物的選擇性有很大的影響,這些結果都列在表2中。
Zhao等[24]報道的Ni/SiO2催化劑,能在水相中催化斷裂芳香基的碳氧鍵。與之前報道的均相催化體系不同,該催化劑可以在水相中使用。通過催化氫解可以解開-O-4和-O-4鍵中碳氧鍵連接。由于水的存在,4-O-5鍵的斷裂是氫解和水解共同作用的結果。但是,在斷裂碳氧鍵的同時,不可避免地發生了苯環的加氫,在產物中能檢測到環己醇的存在。
鎳負載在碳和氧化鎂上制成的催化劑不但能催化氫解模型物中的碳氧鍵,也能斷裂磺酸木質素中的-O-4鍵,并使苯環不加氫[19,25]。Wang等[20]利用Ni/AC催化劑在醇溶劑中直接氫解真實木質素。在該反應中,醇溶劑亦可以作為氫源。Rinaldi等[26]也發現了相似的氫轉移解聚木質素的反應,并用鎳基催化劑直接解聚白楊木質素。
對于許多反應,在催化劑中引入第2種金屬可以有效地提升催化效果[27]。Zhang等發現Ni-W2C負載在碳上制備的催化劑,不但可以催化纖維素轉化到乙二醇[28-30],還可以催化木質素得到單酚類,產率可以達到46.5%[21]。有趣的是,不論單獨使用Ni/AC還是單獨使用W2C/AC進行反應,單酚的產率都不超過20%,Ni和W2C的協同作用影響了木質素的轉化反應。相似的Ni-TiN[18]、NiAu[23]和NiM(M=Rh,Ru,Pd)[22]也都被制備并用于催化有機溶劑木質素氫解。協同作用的機理研究[17, 22]顯示主要有3個方面的影響因素:①增加了表面金屬活性位點;②提高了H2和底物的反應活性;③阻礙了苯環的進一步加氫。

表2 鎳催化的木質素加氫處理

表3 鉬催化的木質素加氫處理
20世紀80年代鉬氧化物、鉬硫化物、鉬氮化物和鉬碳化物已用于催化木質素及其模型物的加氫脫氧反應[31]。在氧化鉬催化的木質素模型物加氫脫氧的反應中,氧化鉬優先斷裂Ph—O—Me鍵中酚氧鍵[32]。在碳化鉬催化的苯甲醚加氫脫氧[33]的反應中也有相同的結果。在載體和氮化方法的研究中發現,載體通過對活性位點的修飾可以改變產物的選擇性,同時,分散度和氮化程度對于鉬的催化活性也有很大的影響[10, 34]。碳負載的硫化鉬作為催化劑用于木質素加氫脫氧反應,硫化鉬的活性與所用的碳的結構和化學性質并沒有太大關系[35]。Smith等[36]比較了沒有負載的低表面積的鉬基催化劑(MoS2、MoO2、MoO3和MoP)在4-甲苯酚加氫脫氧反應中的活性。基于CO脫附的催化TOF值為MoP>MoS2>MoO2>MoO3,活化能遞增順序為MoP 在涉及氫的反應中,鉑族金屬(鉑、鈀、釕、銠、銥)擁有優異的催化性能[9]。與鎳基催化劑不同,鉑族金屬擁有更高的加氫活性,常常用于原始木質素或預處理的木質素直接加氫。不過,鉑族催化劑更傾向于使用溫和的催化條件,鉑族催化劑催化氫解得到的氫解產物在較高的條件下不穩定。在溫和條件下,Al-SBA-15負載的Ni、Pd、Pt、Ru[39]和Pd/C[40]催化降解木質素得到單酚,二聚體和低聚物,選擇性地斷裂Ar—O—R和Ar—O—Ar鏈接。單體單元(芥子醇、松柏醇、香豆醇)組成比例不同的稻殼木質素可以通過釕碳[41]選擇性地催化轉化得到4-乙基苯酚。來自不同原料的木質素和不同方法提取的木質素有明顯的區別,Bouxin等[42]研究了Pt/Al2O3催化的不同木質素氫解產物的區別。他們發現木質素中-O-4鍵的含量越高,單體的產率也就越高。高度縮合的木質素產生的主要是無烷基的酚類產物,而沒有縮合的木質素主要產生的是保留了側鏈碳的酚類。 木質素二聚體模型物氫解[19]的反應中,鈀碳催化解聚的產物主要是二聚體、環己烷和Ni/C的產物。鈀碳不僅催化-O-4鍵的斷裂還會使得芳環加氫。Abu-Omar等[43]證明在鈀催化劑中加入鋅可以有效增加催化劑的活性,相較于鈀碳催化劑更加有效地斷裂了-O-4鍵。氫解之后芳香醇的加氫脫氧反應沒有對芳環進行加氫,保留了產物的芳香性減少了氫氣的消耗。當對真實的木質素原料進行氫解時,加入一定量的無機酸[44]或者固體酸[45]可以有效降低氫解的條件并提升解聚效率。通常,鉑族催化[46]的氫解反應都伴隨有加氫反應。根據反應條件的不同,兩步反應相繼或同時發生。 除了芳香醚結構,木質素中還存在許多脂肪族醚和呋喃結構,然而這些碳氧鍵因為缺少烯丙基和芐基連接,反應活性較低。Marks等[47]利用均相三氟磺酸過渡金屬鹽和負載型鈀納米粒子催化劑在離子液中催化醚鍵氫解。形成飽和醇并且不會有芳香基團的損失。如果反應是在Hf(OTtf)4和Pd/AC催化下的無溶劑體系中反應,底物范圍可以拓寬到脂肪醚和呋喃。 均相釕催化劑在催化-O-4鍵斷裂中也表現出很高的催化活性,并且能保留芳香環[46, 48-49]。均相釕催化劑,如Ru(Cl)2(PPh3)3、RuH2(CO)(PPh3)3、Ru-xantphos,通過氧化還原過程同時發生脫氫和C—O鍵斷裂過程。 Ni2P、Fe2P、Co2P和WP都被應用于木質素衍生產物的加氫脫氧反應(表4)。與貴金屬催化劑相比,這些金屬磷化物催化劑在轉化率沒有降低的情況下可以提高產物的選擇性;與商業的CoMoS催化劑相比,在氣相加氫脫氧反應中有更好的穩定性[52-55]。 表4 金屬磷化物催化的木質素加氫處理 與單金屬催化劑相比較,雙金屬催化劑能調節催化性能和產物的選擇性。Co、Ni、Mo和W的混合硫化物催化劑以及PtSn[56]、PtRh[57]、NiRe[58]、PtRe[59]和ZnPd[49]等雙金屬催化劑常用于木質素的加氫脫氧反應。這些雙金屬催化劑相較于單金屬催化劑在加氫脫氧反應中表現出了更好的選擇性。早在約130年前就有工作報道了CoMo催化劑在苯酚加氫脫氧反應中表現出了較高的反應活性[60]。與單獨的MoS2催化劑相比,Co或Ni提高了Mo催化芳香化合加氫脫氧反應的速率[61-63]。 木質素的加氫脫氧主要包括兩條路徑:加氫然后脫氧或者直接的脫氧[62, 64]。一些報道指出,Co或者Ni添加到Mo催化劑中可以顯著增強直接脫氧的能力[62],但是也有報道認為是脫甲氧基能力增強的結果[61, 63]。硫化CoMo催化劑在愈創木酚加氫脫氧反應中受載體效應影響。與γ-氧化鋁和二氧化鈦相比,二氧化鈦載體的催化劑在HDO反應中表現出更好的催化活性[61]。 在木質素加氫脫氧反應中,CoMo催化劑要優于Ni化合物,因為CoMo較低的加氫活性可以很好地保留原料中的芳環[63, 65-66]。在不同底物的反應中,Weckhuysen等[60]發現CoMo硫化催化劑加氫脫氧反應中-O-4和-5比5-5連接更易解開,并且主要的產物是不完全脫氧的酚或者兒茶酚。 引入第2種金屬的優點主要可以歸結為:① 增加催化活性;② 增加催化劑穩定性;③ 改變選擇性。而這又主要由4種效應控制,分別是:幾何效應、電子效應、協同效應和雙功能效應[67]。一般來說,催化活性和選擇性主要受幾何效應和電子效應影響,而反應速率受到協同效應和雙功能效應的影響。值得注意的是,后兩種效應的影響往往會產生新的反應路徑。 雙金屬催化的優點顯而易見,但是仍然有許多問題需要克服。首先,碳在(Ni,Co)和(Mo,W)催化劑[68]表面的沉積就是一個大問題,結焦隨催化劑酸性的增加而增加,但是加氫脫氧反應又需要酸性位點[69]。其次,催化劑容易發生氧化失活現象,但是生物油中氧和硫的含量是比較高的[70]。氧化物(底物)的性質和載體的表面性質對催化劑中毒都有重要的影響[71]。為了解決這些問題,Yang等[70, 72]發展了一系列無定形的(Co,Ni)-(Mo,W)基催化劑。其中,Mo和W氧化物主要作為布朗斯特酸位點起到脫水的作用,而Ni和Co起到催化加氫的作用。再之,催化劑和雜質間的相互作用也尚未明確。這個問題在真實木質素作為原料時尤為突出。對于結構和催化效果之間的關系仍需要大量的研究。有關雙金屬催化劑的反應結果列于表5。 表5 雙金屬催化劑催化的木質素加氫處理 為了克服傳統含硫催化劑的失活問題,科學家構建了包括金屬和酸性化合物的雙功能催化劑。Kou等[74]報道了Pd/C、Pt/C、Ru/C或Rh/C和磷酸組成的催化體系,可以選擇性地催化酚類化合物加氫脫氧得到環烷烴和甲醇。與含硫催化劑不同[75-76],在該反應中,金屬催化加氫,酸催化水解或脫水,兩者耦合在一起。系統的動力學研究[77]表明兩種催化能力是相互獨立的,但是酸催化的步驟決定了加氫脫氧反應速率。因此,高效的加氫脫氧催化劑中需要高濃度的酸性位點。此外,Kou等[78]將Pd/C替換為金屬納米粒子和布朗斯特酸離子液,可以更加有效地催化反應進行。 固體布朗斯特酸組成的雙功能催化劑在加氫脫氧反應中同樣有效[79-83]。與其他固體酸(硫酸氧化鋯、大孔樹脂15、全氟磺酸/SiO2、Cs2.5H0.5OW12O40)相比,HZSM-5表現出較高的反應速率和較低的表面活化能,因為沸石孔道較高的酸密度[79]。此外,Pd/C和HZSM-5組成的催化劑體系不僅能催化酚類單體加氫還可以催化酚類二聚體加氫[79]。鎳基的加氫催化劑,如Raney Ni與全氟磺酸(或二氧化硅)[80],Ni/HZSM-5[84-85],Ni/Al2O3-HZSM-5[82]也能有效催化加氫脫氧反應。Ni和酸性沸石分子篩雙組分催化劑[86]用于纖維素水解酶木質素解聚。當使用Raney Ni作為催化劑時單酚產率只有12.9%(質量),只有分子篩時產率不到5%,但是Ni和分子篩的雙功能催化劑可以使單酚的產率增加到21%~27.9%(質量)。有關雙功能催化體系的反應結果列于表6。 表6 雙功能催化劑催化的木質素加氫處理 木質素作為生物質的重要組成部分,其催化轉化制備高附加值的化學品的研究一直是學術界和工業界的關注重點。木質素轉化是現代生物精煉中的重要部分,并且木質素的結構和組成決定木質素制備精細化學品的路徑是獨一無二的。加氫處理作為木質素解聚的一種手段已經取得了一定的成果,但是仍然無法滿足木質素的工業轉化的要求。 目前,含有-O-4、-O-4,4-O-5連接鍵的木質素模型物的加氫解聚催化體系有大量報道并獲得了較好的結果。但是,針對模型物的催化體系在真實木質素的解聚過程中并不是都能起到很好的作用。這主要是因為真實木質素結構的穩定性和復雜性以及解聚過程中的高活性中間產物易重新聚合形成更加穩定的聚合物。雖然Ni、Pd、Ru和Pt的單金屬催化劑在真實木質素解聚中的應用較多,但是雙金屬和雙功能催化劑在真實木質素解聚中表現出更加優異的效果。與單金屬催化劑相比較,雙金屬催化劑可以通過調節金屬間的幾何效應和電子效應從而實現協同調節催化劑的催化性能和產物的選擇性并且具有更高的反應活性。Ni、Ru、Rh、Pd的雙金屬催化劑可以催化有機溶劑木質素解聚得到單酚。由金屬和酸性化合物組成的雙功能催化劑,可以解決傳統催化劑失活的問題,同時也提高了木質素的解聚效率。從現有報道的結果來看,雙金屬和雙功能催化劑更具潛力。 總之,真實木質素催化加氫處理難點主要是兩方面:其一,木質素的三維結構的復雜性,使得其在溶劑中的溶解性以及與金屬活性中心的接觸都受到阻礙,因而難以有效解聚;另外,真實木質素加氫解聚需要較高的反應溫度、催化劑酸性中心易結焦、解聚產物易重聚合、含有大量雜質等[92]都是需要進一步解決的問題。針對上述問題,要實現木質素的有效加氫解聚,需要進一步設計和篩選合適的溶劑體系和具有較高活性和穩定性的催化劑。 [1] HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106: 4044-4098. [2] 李忠正. 可再生生物質資源——木質素的研究[J]. 南京林業大學學報(自然科學版), 2012, 36: 1-7. LI Z Z. Research on renewable biomass resource-lignin[J]. Journal of Nanjing Forestry University(Natural Science Edition), 2012, 36: 1-7. [3] EL HAGE R, BROSSE N, CHRUSCIEL L,Characterization of milled wood lignin and ethanol organosolv lignin from[J]. Polymer Degradation and Stability, 2009, 94: 1632-1638. [4] 孔劼琛, 駱治成, 李愽龍, 等. 木質素解聚和加氫脫氧的進展[J]. 中國科學: 化學, 2015, (5): 7. KONG J C, LUO Z C, LI B L,Advances in depolymerization and hydrodeoxygenation of lignin[J]. Science China Chemistry, 2015, (5): 7. [5] BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54: 519-546. [6] DUVAL A, LAWOKO M. A review on lignin-based polymeric, micro- and nano-structured materials[J]. Reactive and Functional Polymers, 2014, 85: 78-96. [7] ZAKZESKI J, BRUIJNINCX P C, JONGERIUS A L,The catalytic valorization of lignin for the production of renewable chemicals[J]. Chemical Reviews, 2010, 110: 3552-3599. [8] DA COSTA SOUSA L, CHUNDAWAT S P, BALAN V,‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies[J]. Current Opinion in Biotechnology, 2009, 20: 339-347. [9] LI C, ZHAO X, WANG A,Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chem. Rev., 2015, 115: 11559-11624. [10] GHAMPSON I T, SEPúLVEDA C, GARCIA R,Comparison of alumina- and SBA-15- supported molybdenum nitride catalysts for hydrodeoxygenation of guaiacol[J]. Applied Catalysis A: General, 2012, 435: 51-60. [11] GALLEZOT P, RICHARD D. Selective hydrogenation of α, β-unsaturated aldehydes[J]. Catalysis Reviews, 1998, 40: 81-126. [12] CAI H, LI C, WANG A,Biomass into chemicals: one-pot production of furan-based diols from carbohydratestandem reactions[J]. Catalysis Today, 2014, 234: 59-65. [13] PEPPER J M, HIBBERT H. Studies on lignin and related compounds (LXXXVII): high pressure hydrogenation of maple wood[J]. Journal of the American Chemical Society, 1948, 70: 67-71. [14] WENKERT E, MICHELOTTI E L, SWINDELL C S. Nickel-induced conversion of carbon-oxygen into carbon-carbon bonds. One-step transformations of enol ethers into olefins and aryl ethers into biaryls[J]. Journal of the American Chemical Society, 1979, 101: 2246-2247. [15] SERGEEV A G, HARTWIG J F. Selective, nickel-catalyzed hydrogenolysis of aryl ethers[J]. Science, 2011, 332: 439-443. [16] SERGEEV A G, WEBB J D, HARTWIG J F. A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation[J]. Journal of the American Chemical Society, 2012, 134: 20226-20229. [17] WANG X, RINALDI R. Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin[J]. ChemSusChem, 2012, 5: 1455-1466. [18] MOLINARI V, GIORDANO C, ANTONIETTI M,Titanium nitride-nickel nanocomposite as heterogeneous catalyst for the hydrogenolysis of aryl ethers[J]. Journal of the American Chemical Society, 2014, 136: 1758-1761. [19] SONG Q, WANG F, XU J. Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts[J]. Chemical Communications, 2012, 48: 7019-7021. [20] SONG Q, WANG F, CAI J,Lignin depolymerization (LDP) in alcohol over nickel-based catalystsa fragmentation- hydrogenolysis process[J]. Energy & Environmental Science, 2013, 6: 994-1007. [21] LI C, ZHENG M, WANG A,One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin[J]. Energy & Environmental Science, 2012, 5: 6383-6390. [22] ZHANG J, TEO J, CHEN X,A series of NiM (M= Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water[J]. ACS Catalysis, 2014, 4: 1574-1583. [23] ZHANG J, ASAKURA H, VAN RIJN J,Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals[J]. Green Chemistry, 2014, 16: 2432-2437. [24] HE J, ZHAO C, LERCHER J A. Ni-catalyzed cleavage of aryl ethers in the aqueous phase[J]. Journal of the American Chemical Society, 2012, 134: 20768-20775. [25] QI S, JIAYING C, ZHANG J,Hydrogenation and cleavage of the CO bonds in the lignin model compound phenethyl phenyl ether over a nickel-based catalyst[J]. Chinese Journal of Catalysis, 2013, 34: 651-658. [26] FERRINI P, RINALDI R. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions[J]. Angewandte Chemie International Edition, 2014, 53: 8634-8639. [27] TILLY D, CHEVALLIER F, MONGIN F,Bimetallic combinations for dehalogenative metalation involving organic compounds[J]. Chemical Reviews, 2013, 114: 1207-1257. [28] ZHENG M, PANG J, WANG A,One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals: from fundamental discovery to potential commercialization[J]. Chinese Journal of Catalysis, 2014, 35: 602-613. [29] WANG A, ZHANG T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Accounts of Chemical Research, 2013, 46: 1377-1386. [30] JI N, ZHANG T, ZHENG M,Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angewandte Chemie, 2008, 120: 8638-8641. [31] CHUM H L, JOHNSON D K. Liquid fuels from lignins: annual report[R]. National Renewable Energy Laboratory (NREL), 1986. [32] PRASOMSRI T, SHETTY M, MURUGAPPAN K,Insights into the catalytic activity and surface modification of MoO3during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures[J]. Energy & Environmental Science, 2014, 7: 2660-2669. [33] LEE W S, WANG Z, WU R J,Selective vapor-phase hydrodeoxygenation of anisole to benzene on molybdenum carbide catalysts[J]. Journal of Catalysis, 2014, 319: 44-53. [34] GHAMPSON I T, SEPúLVEDA C, GARCIA R,Hydrodeoxygenation of guaiacol over carbon-supported molybdenum nitride catalysts: effects of nitriding methods and support properties[J]. Applied Catalysis A: General, 2012, 439: 111-124. [35] RUIZ P, FREDERICK B, DE SISTO W,Guaiacol hydrodeoxygenation on MoS2catalysts: influence of activated carbon supports[J]. Catalysis Communications, 2012, 27: 44-48. [36] WHIFFEN V M, SMITH K J. Hydrodeoxygenation of 4-methylphenol over unsupported MoP, MoS2, and MoOcatalysts[J]. Energy & Fuels, 2010, 24: 4728-4737. [37] RATCLIFF M, POSEY F, CHUM H L. Catalytic hydrodeoxygenation and dealkylation of a lignin model compound[J]. Prepr. Pap., Am. Chem. Soc., Div. Fuel Chem.(United States), 1987, 32: 2. [38] GHAMPSON I, SEPúLVEDA C, GARCIA R,Guaiacol transformation over unsupported molybdenum-based nitride catalysts[J]. Applied Catalysis A: General, 2012, 413: 78-84. [39] TOLEDANO A, SERRANO L, PINEDA A,Microwave-assisted depolymerisation of organosolv ligninmild hydrogen-free hydrogenolysis: catalyst screening[J]. Applied Catalysis B: Environmental, 2014, 145: 43-55. [40] TORR K M, VAN DE PAS D J, CAZEILS E,Mild hydrogenolysis of-and isolatedlignins[J]. Bioresource Technology, 2011, 102: 7608-7611. [41] YE Y, ZHANG Y, FAN J,Selective production of 4-ethylphenolics from ligninmild hydrogenolysis[J]. Bioresource Technology, 2012, 118: 648-651. [42] BOUXIN F P, MCVEIGH A, TRAN F,Catalytic depolymerisation of isolated lignins to fine chemicals using a Pt/alumina catalyst (Ⅰ): Impact of the lignin structure[J]. Green Chemistry, 2015, 17: 1235-1242. [43] PARSELL T H, OWEN B C, KLEIN I,Cleavage and hydrodeoxygenation (HDO) of C—O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis[J]. Chemical Science, 2013, 4: 806-813. [44] YAN N, ZHAO C, DYSON P J,Selective degradation of wood lignin over noble-metal catalysts in a two-step process[J]. ChemSusChem, 2008, 1: 626-629. [45] LIGUORI L, BARTH T. Palladium-Nafion SAC-13 catalysed depolymerisation of lignin to phenols in formic acid and water[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92: 477-484. [46] NAGY M, DAVID K, BRITOVSEK G J,Catalytic hydrogenolysis of ethanol organosolv lignin[J]. Holzforschung, 2009, 63: 513-520. [47] ATESIN A C, RAY N A, STAIR P C,Etheric C—O bond hydrogenolysis using a tandem lanthanide triflate/supported palladium nanoparticle catalyst system[J]. Journal of the American Chemical Society, 2012, 134: 14682-14685. [48] NICHOLS J M, BISHOP L M, BERGMAN R G,Catalytic C—O bond cleavage of 2-aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers[J]. Journal of the American Chemical Society, 2010, 132: 12554-12555. [49] WU A, PATRICK B O, CHUNG E,Hydrogenolysis of β-O-4 lignin model dimers by a ruthenium-xantphos catalyst[J]. Dalton Transactions, 2012, 41: 11093-11106. [50] ZHAO H, LI D, BUI P,Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts[J]. Applied Catalysis A: General, 2011, 391: 305-310. [51] JI N, WANG X, WEIDENTHALER C,Iron (Ⅱ) disulfides as precursors of highly selective catalysts for hydrodeoxygenation of dibenzyl ether into toluene[J]. ChemCatChem, 2015, 7: 960-966. [52] DING L N, WANG A Q, ZHENG M Y,Selective transformation of cellulose into sorbitol by using a bifunctional nickel phosphide catalyst[J]. ChemSusChem, 2010, 3: 818-821. [53] GUANHONG Z, ZHENG M, AIQIN W,Catalytic conversion of cellulose to ethylene glycol over tungsten phosphide catalysts[J]. Chinese Journal of Catalysis, 2010, 31: 928-932. [54] MA X, TIAN Y, HAO W,Production of phenols from catalytic conversion of lignin over a tungsten phosphide catalyst[J]. Applied Catalysis A: General, 2014, 481: 64-70. [55] BUI P, CECILIA J A, OYAMA S T,Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound[J]. Journal of Catalysis, 2012, 294: 184-198. [56] GONZáLEZ-BORJA M á, RESASCO D E. Anisole and guaiacol hydrodeoxygenation over monolithic Pt-Sn catalysts[J]. Energy & Fuels, 2011, 25: 4155-4162. [57] LIN Y C, LI C L, WAN H P,Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfided CoMo and NiMo catalysts[J]. Energy & Fuels, 2011, 25: 890-896. [58] FENG B, KOBAYASHI H, OHTA H,Aqueous-phase hydrodeoxygenation of 4-propylphenol as a lignin model to-propylbenzene over Re-Ni/ZrO2catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2014, 388: 41-46. [59] OHTA H, FENG B, KOBAYASHI H,Selective hydrodeoxygenation of lignin-related 4-propylphenol into-propylbenzene in water by Pt-Re/ZrO2catalysts[J]. Catalysis Today, 2014, 234: 139-144. [60] JONGERIUS A L, JASTRZEBSKI R, BRUIJNINCX P C,CoMo sulfide-catalyzed hydrodeoxygenation of lignin model compounds: an extended reaction network for the conversion of monomeric and dimeric substrates[J]. Journal of Catalysis, 2012, 285: 315-323. [61] BUI V N, LAURENTI D, DELICHèRE P,Hydrodeoxygenation of guaiacol (Ⅱ): Support effect for CoMoS catalysts on HDO activity and selectivity[J]. Applied Catalysis B: Environmental, 2011, 101: 246-255. [62] ROMERO Y, RICHARD F, BRUNET S. Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: promoting effect and reaction mechanism[J]. Applied Catalysis B: Environmental, 2010, 98: 213-223. [63] BUI V N, LAURENTI D, AFANASIEV P,Hydrodeoxygenation of guaiacol with CoMo catalysts (Ⅰ): Promoting effect of cobalt on HDO selectivity and activity[J]. Applied Catalysis B: Environmental, 2011, 101: 239-245. [64] ROMERO Y, RICHARD F, RENèME Y,Hydrodeoxygenation of benzofuran and its oxygenated derivatives (2, 3-dihydrobenzofuran and 2-ethylphenol) over NiMoP/Al2O3catalyst[J]. Applied Catalysis A: General, 2009, 353: 46-53. [65] POPOV A, KONDRATIEVA E, GILSON J P,IR study of the interaction of phenol with oxides and sulfided CoMo catalysts for bio-fuel hydrodeoxygenation[J]. Catalysis Today, 2011, 172: 132-135. [66] DESNOYER A N, FARTEL B, MACLEOD K C,Ambient-temperature carbon-oxygen bond cleavage of an α-aryloxy ketone with Cp2Ti (BTMSA) and selective protonolysis of the resulting Ti—OR bonds[J]. Organometallics, 2012, 31: 7625-7628. [67] ALONSO D M, WETTSTEIN S G, DUMESIC J A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals[J]. Chemical Society Reviews, 2012, 41: 8075-8098. [68] FURIMSKY E, MASSOTH F E. Deactivation of hydroprocessing catalysts[J]. Catalysis Today, 1999, 52: 381-495. [69] MORTENSEN P M, GRUNWALDT J D, JENSEN P A,A review of catalytic upgrading of bio-oil to engine fuels[J]. Applied Catalysis A: General, 2011, 407: 1-19. [70] WANG W, YANG Y, LUO H,Preparation of Ni (Co)-W-B amorphous catalysts for cyclopentanone hydrodeoxygenation[J]. Catalysis Communications, 2011, 12: 1275-1279. [71] POPOV A, KONDRATIEVA E, MARIEY L,Bio-oil hydrodeoxygenation: adsorption of phenolic compounds on sulfided (Co) Mo catalysts[J]. Journal of Catalysis, 2013, 297: 176-186. [72] WANG W Y, YANG Y Q, LUO H A,Effect of additive (Co, La) for Ni–Mo–B amorphous catalyst and its hydrodeoxygenation properties[J]. Catalysis Communications, 2010, 11: 803-807. [73] BYKOVA M, ERMAKOV D Y, KAICHEV V,Ni-based sol-gel catalysts as promising systems for crude bio-oil upgrading: guaiacol hydrodeoxygenation study[J]. Applied Catalysis B: Environmental, 2012, 113: 296-307. [74] ZHAO C, KOU Y, LEMONIDOU A A,Highly selective catalytic conversion of phenolic bio-oil to alkanes[J]. Angewandte Chemie, 2009, 121: 4047-4050. [75] FURIMSKY E. Catalytic hydrodeoxygenation[J]. Applied Catalysis A: General, 2000, 199: 147-190. [76] GIRGIS M J, GATES B C. Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing[J]. Industrial & Engineering Chemistry Research, 1991, 30: 2021-2058. [77] ZHAO C, HE J, LEMONIDOU A A,Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes[J]. Journal of Catalysis, 2011, 280: 8-16. [78] YAN N, YUAN Y, DYKEMAN R,Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with br?nsted acidic ionic liquids[J]. Angewandte Chemie International Edition, 2010, 49: 5549-5553. [79] ZHAO C, LERCHER J A. Selective hydrodeoxygenation of lignin-derived phenolic monomers and dimers to cycloalkanes on Pd/C and HZSM-5 catalysts[J]. ChemCatChem, 2012, 4: 64-68. [80] ZHAO C, KOU Y, LEMONIDOU A A,Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY? Ni and Nafion/SiO2catalysts[J]. Chemical Communications, 2010, 46: 412-414. [81] LI N, HUBER G W. Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-Al2O3: identification of reaction intermediates[J]. Journal of Catalysis, 2010, 270: 48-59. [82] ZHAO C, KASAKOV S, HE J,Comparison of kinetics, activity and stability of Ni/HZSM-5 and Ni/Al2O3-HZSM-5 for phenol hydrodeoxygenation[J]. Journal of Catalysis, 2012, 296: 12-23. [83] ZHU X, LOBBAN L L, MALLINSON R G,Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst[J]. Journal of Catalysis, 2011, 281: 21-29. [84] SINGH S K, EKHE J D. Towards effective lignin conversion: HZSM-5 catalyzed one-pot solvolytic depolymerization/ hydrodeoxygenation of lignin into value added compounds[J]. RSC Advances, 2014, 4: 27971-27978. [85] SONG W, LIU Y, BARáTH E,Synergistic effects of Ni and acid sites for hydrogenation and C—O bond cleavage of substituted phenols[J]. Green Chemistry, 2015, 17: 1204-1218. [86] KASAKOV S, SHI H, CAMAIONI D M,Reductive deconstruction of organosolv lignin catalyzed by zeolite supported nickel nanoparticles[J]. Green Chemistry, 2015, 17: 5079-5090. [87] RENDERS T, SCHUTYSER W, VAN DEN BOSCH S,Influence of acidic (H3PO4) and alkaline (NaOH) additives on the catalytic reductive fractionation of lignocellulose[J]. ACS Catalysis, 2016, 6: 2055-2066. [88] ZHANG W, CHEN J, LIU R,Hydrodeoxygenation of lignin-derived phenolic monomers and dimers to alkane fuels over bifunctional zeolite-supported metal catalysts[J]. ACS Sustainable Chemistry & Engineering, 2014, 2: 683-691. [89] ZHANG X, ZHANG Q, CHEN L,Effect of calcination temperature of Ni/SiO2-ZrO2catalyst on its hydrodeoxygenation of guaiacol[J]. Chinese Journal of Catalysis, 2014, 35: 302-309. [90] LASKAR D D, TUCKER M P, CHEN X,Noble-metal catalyzed hydrodeoxygenation of biomass-derived lignin to aromatic hydrocarbons[J]. Green Chemistry, 2014, 16: 897-910. [91] XIA Q, CHEN Z, SHAO Y,Direct hydrodeoxygenation of raw woody biomass into liquid alkanes[J]. Nature Communications, 2016, 7: 11162. [92] 龍金星, 徐瑩, 王鐵軍, 等. 木質素催化解聚與氫解[J]. 新能源進展, 2014, (2): 83-88LONG J X, XU Y, WANG T J,Catalytic depolymerization and hydrogenolysis of lignin[J]. Advances in New and Renewable Energy, 2014, (2): 83-88. Catalytic hydroprocessing of lignin ZHANG Ying, ZHAI Yongxiang (Collaborative Innovation Center of Chemistry for Energy Material, Department of Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230006, Anhui, China) Lignin derived from lignocellulose is a renewable resource for the production of chemicals and fuels. However, due to its highly irregular polymeric structure and the carbon based inactive property, lignin valorization is very difficult. Lignin is usually viewed as a waste by-product in the current biorefinery processes and most of the lignin is burned to produce heat and power for the biorefinery processes. There were a series of studies on the lignin conversion such as depolymerization over acid or base, pyrolysis, hydroprocessing and oxygenation. The degradation of lignin over hydroprocessing was the most efficient method to produce alkane fuels and high value-added chemicals such as phenols. However, there were some problems remained to be solved such as catalyst deactivation and low yield. This review focuses on the catalytic systems for lignin hydroprocessing and current challenges in order to provide a reference for efficient and large-scale application of lignin. biomass; lignin; catalyst; hydrogenation; degradation 10.11949/j.issn.0438-1157.20161250 O 643.3 A 0438—1157(2017)03—0821—10 國家自然科學基金項目(21572213);國家重點基礎研究發展計劃項目(2012CB215306)。 2016-09-06收到初稿,2016-11-03收到修改稿。 聯系人及第一作者:張穎(1977—),女,副教授。 2016-09-06. ZHANG Ying, zhzhying@ustc.edu.cn supported by the National Natural Science Foundation of China (21572213) and the National Basic Research Program of China (2012CB215306).4 鉑族金屬催化木質素加氫處理
5 金屬磷化物催化的木質素加氫處理

6 雙金屬催化劑催化木質素加氫處理

7 雙功能催化體系催化木質素加氫處理

8 總結展望
References