陳向煒張 曄梅鳳翔
?(商丘師范學院物理與電氣信息學院,河南商丘476000)
?(蘇州科技大學數理學院,江蘇蘇州215009)
??(北京理工大學宇航學院,北京100081)
用具有負定非對稱矩陣的梯度系統構造穩定的廣義Birkhof f系統1)
陳向煒?,2)張 曄?梅鳳翔??
?(商丘師范學院物理與電氣信息學院,河南商丘476000)
?(蘇州科技大學數理學院,江蘇蘇州215009)
??(北京理工大學宇航學院,北京100081)
Birkhof f系統是一類比Hamilton系統更廣泛的約束力學系統,可在原子與分子物理,強子物理中找到應用.非定常約束力學系統的穩定性研究是重要而又困難的課題,用構造Lyapunov函數的直接方法來研究穩定性問題有很大難度,其中如何構造Lyapunov函數是永遠的開放問題.本文給出一種間接方法,即梯度系統方法.提出一類梯度系統,其矩陣是負定非對稱的,這類梯度系統的解可以是穩定的或漸近穩定的.梯度系統特別適合用Lyapunov函數來研究,其中的函數V通常取為Lyapunov函數.列出廣義Birkhof f系統的運動方程,廣義Birkhof f系統是一類廣泛約束力學系統.當其中的附加項取為零時,它成為Birkhof f系統,完整約束系統和非完整約束系統都可納入該系統.給出廣義Birkhof f系統的解可以是穩定的或漸近穩定的條件,進一步利用矩陣為負定非對稱的梯度系統構造出一些解為穩定或漸近穩定的廣義Birkhof f系統.該方法也適合其他約束力學系統.最后用算例說明結果的應用.
廣義Birkhof f系統,梯度系統,負定矩陣,穩定性
1927年Birkhof f在其名著《動力系統》中提出了一類新型的積分變分原理和運動微分方程[1],被分別稱為Pfaf f-Birkhof f原理和Birkhof f方程.近年來對Birkhof f系統動力學的研究已取得一些重要進展,這些進展主要集中在該系統的積分理論[2]、動力學逆問題[3]、穩定性[4]、對稱性[5]等.1993年梅鳳翔研究了Birkhof f方程增加一個附加項的情形,稱為廣義Birkhof f方程[6].廣義Birkhof f系統動力學的研究也非常活躍,主要集中在該系統的動力學逆問題[7]、積分理論[8]、對稱性攝動[9]、平衡穩定性[10]等.
梯度系統特別適合用 Lyapunov 函數來研究[11-12].文獻 [11-12]主要涉及定常梯度系統.實際上,也可研究非定常梯度系統,其中矩陣或函數可包括時間.有關約束力學系統與梯度系統的關聯研究已取得重要進展,如文獻[13-32].專著[32]涉及通常梯度系統,斜梯度系統,具有對稱負定矩陣的和半負定矩陣的梯度系統等.本文提出一類梯度系統,其矩陣是負定非對稱的.適當選取負定矩陣使這類梯度系統能夠較好地研究解的穩定性.由這類梯度系統來構造解為穩定的或漸近穩定的廣義Birkhof f系統.
微分方程寫成形式

其中aμ為變量,V為某函數,cμν為系數矩陣.這里相同指標表示求和,矩陣cμν是負定非對稱的,按方程(1)求,得

為研究解的穩定性,如果V=V(t,a)在解的鄰域內正定,總希望負定或半負定,這首先希望二次型

是負定的或半負定的.因為矩陣cμν是負定的,不能保證二次型(3)負定或半負定.例如,對m=2的情形

其次,函數V應選為正定的.對m=2的情形,可選


其中式(5)正定,式(6)正定非漸減,式(7)正定漸減.
廣義Birkhof f系統的微分方程為[33]

其中B=B(t,a)為Birkhof f函數,Rρ=Rρ(t,a)(ρ=1,2,··,2n)為Birkhof f函數組,Λρ=Λρ(t,a)(ρ=1,2,··,2n)為附加項,而

廣義Birkhof f系統是相當廣泛一類約束力學系統.當取Λρ=0(ρ=1,2,··,2n)時,它成為Birkhof f系統,而完整約束系統和非完整約束系統都可納入Birkhof f系統.
對給定的矩陣(cμν)和函數V,如果存在函數B,Rρ,Λρ(ρ=1,2,··,2n)滿足條件

則求得的廣義Birkhof f系統的解可以是穩定的或漸近穩定的.方程(10)是對4n+1個變量的2n個方程,解不是唯一的.當n=1時,方程(10)成為

例1已知梯度系統為

試求與之相應的廣義Birkhof f系統.
解:方程(1)給出


它是常負的,因此解a1=a2=0是穩定的.于是所構造出的廣義Birkhof f系統的解也是穩定的.式(11)給出

廣義Birkhof f系統(13)和(14)的解a1=a2=0是穩定的.
例2已知梯度系統為

試求與之相應的廣義Birkhof f系統.
解:方程(1)給出


它在a1=a2=0的鄰域內負定,而V正定且漸減,因此,解a1=a2=0是一致漸近穩定的.于是所構造出的廣義Birkhof f系統的解也是一致漸近穩定的.式(11)給出

等等.廣義Birkhof f系統(16)和(17)的解a1=a2=0是一致漸近穩定的.
例3已知梯度系統為
試求與之相應的廣義Birkhof f系統.
解:方程(1)給出


它在a1=a2=0的鄰域內是負定的,而V正定且漸減,因此,解a1=a2=0是一致漸近穩定的.于是所構造出的廣義Birkhof f系統的解也是一致漸近穩定的.方程(11)給出

它有解

當然,還有其他解.
對非定常力學系統用構造Lyapunov函數的方法來研究穩定性問題有很大困難,其中如何構造Lyapunov函數是永遠的開放問題.梯度系統特別適合用Lyapunov函數來研究,其中的函數V通常取為Lyapunov函數.本文利用矩陣為負定非對稱的梯度系統構造出一些解為穩定或漸近穩定的廣義Birkhof f系統.所舉例子是簡單低階的.對復雜高階的,構造起來要困難得多,但方法是一樣的.本文的方法也適合其他約束力學系統.
1 Birkhof fGD.Dynamical Systems.Providence:AMS College Publisher,1927
2 Zhang HB,Chen LQ,Gu SL,et al.The discrete variational principle and the firs integrals of Birkhof fsystems.Chinese Physics B,2007, 16(3):582-587
3 張永發,梅鳳翔.Birkhof f系統動力學逆問題的兩種提法和解法.北京理工大學學報,1996,16(4):352-356(Zhang Yongfa,Mei Fengxiang.Two ways of formulation and solutions of the inverse problem of the dynamics of birkhoffian system.Transactions of Beijing Institute of Technology,1996,16(4):352-356(in Chinese))
4 傅景禮,陳立群,薛紜等.相對論Birkhof f系統的平衡穩定性.物理學報,2002,51(12):2683-2689(Fu Jingli,Chen Liqun,Xue Yun, et al.Stability of the equilibrium state in relativistic Birkhof fsystems.Acta Physica Sinica,2002,51(12):2683-2689(in Chinese))
5 張毅.相對論性力學系統的Birkhof f對稱性與守恒量.物理學報, 2012,61(21):214501(Zhang Yi.Symmetry of Birkhoffians and conserved quantity for a relativistic mechanical system.Acta Phys Sin,2012,61(21):214501(in Chinese))
6 梅鳳翔.Birkhof f系統的Noether理論.中國科學(A輯),1993, 23(7):709-717(Mei Fengxiang.Noether theory of Birkhof fsystem.Scientia Sinica(Series A),1993,23(7):709-717(in Chinese))
7 梅鳳翔,解加芳,冮鐵強.廣義Birkhof f系統動力學的一類逆問題.物理學報,2008,57(8):4649-4651(MeiFengxiang,XieJiafang, Gang Tieqiang.An inverse problem of dynamics of a generalized Birkhof fsystem.Acta Physica Sinica,2008,57(8):4649-4651(in Chinese))
8葛偉寬,梅鳳翔.廣義Birkhof f系統的時間積分定理.物理學報, 2009,58(2):699-702(Ge Weikuan,Mei Fengxiang.Time-integral theorems for generalized Birkhof fsystem.Acta Physica Sinica, 2009,58(2):699-702(in Chinese))
9 Li YM.Lie symmetries,perturbation to symmetries and adiabatic invariants of a generalized Birkhof fsystem.Chinese Physics Letters,2010,27(1):010202
10 張毅.自治廣義Birkhof f系統的平衡穩定性.物理學報,2010, 59(1):20-24(Zhang Yi.Stability of equilibrium for the autonomous generalized Birkhoffian system.Acta Physica Sinica,2010,59(1):20-24(in Chinese))
11 Hirsch MW,Smale S.Dif f erential Equations,Dynamical System, and Liner Algebra.New York:Academic Press,1974
12 McLachlan RI,Quispel GRW,Robidoux N.Geometric integration using discrete gradients.Philosophical Transactions of the Royal Society A,1999,357(1754):1021-1045
13 樓智美,梅鳳翔.力學系統的二階梯度表示.物理學報,2012, 61(2),024502(Lou Zhimei,Mei Fengxiang.A second order gradient representation of mechanics system.Acta Physica Sinica,2012, 61(2),024502(in Chinese))
14 Chen XW,Zhao GL,Mei FX.A fractional gradient representation of the Poincar′e equations.Nonlinear Dynamics,2013,73(1):579-582
15 梅鳳翔,吳惠彬.一階Lagrange系統的梯度表示.物理學報,2013, 62(21):214501(Mei Fengxiang,Wu Huibin.A gradient representation of first-orde Lagrange system.Acta Physica Sinica,2013, 62(21):214501(in Chinese))
16 Mei FX,Wu HB.Skew-gradient representation of generalized Birkhoffian system.Chinese Physics B,2015,24(10):104502
17 梅鳳翔,吳惠彬.廣義Birkhof f系統與一類組合梯度系統.物理學報,2015,64(18),184501(Mei Fengxiang,Wu Huibin.Generalized Birkhof fsystem and a kind of combined gradient system.Acta Physica Sinica,2015,64(18):184501(in Chinese))
18 吳惠彬,梅鳳翔.事件空間中完整力學系統的梯度表示.物理學報,2015,64(23):0234501(Wu Huibin,Mei Fengxiang.A gradient representation of holonomic system in the event space.Acta Physica Sinica,2015,64(23):0234501(in Chinese))
19 Mei FX,Wu HB.Two kinds of generalized gradient representations for holonomic mechanical systems.Chinese Physics B,2016,25(1):014502
20 Chen XW,Zhang Y,Mei FX.An application of a combined gradient system to stabilize a mechanical system.Chinese Physics B,2016, 25(10):100201
21 Hirsch MW,Smale S,Devaney RL.Dif f erential Equations,Dynamical Systems,and an Introduction to Chaos.Singapore:Elsevier, 2008
22 梅鳳翔.關于梯度系統.力學與實踐,2012,34:89-90(Mei Fengxiang.On gradient system.Mechanics in Engineering,2012,34:89-90(in Chinese))
23 梅鳳翔.分析力學下卷.北京:北京理工大學出版社,2013(Mei Fengxiang.Analytical Mechanics II.Beijing:Beijing Institute of Technology Press,2013(in Chinese))
24 Tom′a?sB,RalphC,EvaF.Everyordinarydif f erentialequationwitha strict Lyapunov function is a gradient system.Monatsh Math,2012, 166:57-72
25 Marin AM,Ortiz RD,Rodriguez JA.A generalization of a gradient System.International Mathematical Forum,2013,8:803-806
26 陳向煒,李彥敏,梅鳳翔.雙參數對廣義Hamilton系統穩定性的影響.應用數學和力學,2014,35(12):1392-1397(Chen Xiangwei, Li Yanmin,Mei Fengxiang.Dependance of stability of equilibrium of generalized Hamilton system on two parameters.Applied Mathematics and Mechanics,2014,35(12):1392-1397(in Chinese))
27 梅鳳翔,吳惠彬.廣義Birkhof f系統的梯度表示.動力學與控制學報,2012,10(4):289-292(Mei Fengxiang,Wu Huibin.A gradient representation for generalized Birkhof fsystem.J of Dynam and Control,2012,10(4):289-292(in Chinese))
28 梅鳳翔,吳惠彬.廣義Hamilton系統與梯度系統.中國科學:物理學力學天文學,2013,43(4):538-540(Mei Fengxiang,Wu Huibin. Generalized Hamilton system and gradient system.Scientia Sinica Physica,Mechanica&Astronomica,2013,43(4):538-540(in Chinese))
29 Lin L,Luo SK.Fractional generalized Hamiltonian mechanics.Acta Mechanica,2013,224(8):1757-1771
30 Luo SK,He JM,Xu YL.Fractional Birkhoffian method for equilibrium stability of dynamical systems.International Journal of Non-Linear Mechanics,2016,78(1):105-111
31 陳向煒,曹秋鵬,梅鳳翔.切塔耶夫型非完整系統的廣義梯度表示.力學學報,2016,48(3):684-691(Chen Xiangwei,Cao Qiupeng,Mei Fengxiang.Generalized gradient representation of nonholonomicsystemofChetaev’stype.ChineseJournalofTheoretical and Applied Mechanics,2016,48(3):684-691(in Chinese))
32 梅鳳翔,吳惠彬.約束力學系統的梯度表示(上下).北京:科學出版社,2016(Mei Fengxiang,Wu Huibin.Gradient Representations of Constrained Mechanical System Vol 1,2.Beijing:Science Press, 2016(in Chinese))
33 梅鳳翔.廣義Birkhof f系統動力學.北京:科學出版社,2013(Mei Fengxiang.Dynamics of Generalized Birkhof fSystem.Beijing:Science Press,2013(in Chinese))
STABLE GENERALIZED BIRKHOFF SYSTEMS CONSTRUCTED BY USING A GRADIENT SYSTEM WITH NON-SYMMETRICAL NEGATIVE-DEFINITE MATRIX1)
Chen Xiangwei?,2)Zhang Ye?Mei Fengxiang??
?(Department of Physics and Information Engineering,Shangqiu Normal University,Shangqiu476000,Henan,China)
?(School of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou215009,Jiangsu,China)
??(School of Aerospace,Beijing Institute of Technology,Beijing100081,China)
The Birkhof fsystem is a more extensive constrained mechanical system than Hamilton system,which can be applied to atomic and molecular physics,and hadron physics.It is an important and difficult project to study the stability of non-steady mechanical system,and it is very difficult to study the stability by using the direct method of constructing Lyapunov function,here how to construct the Lyapunov function is always an open question.This paper gives an indirect method which is called the gradient system method.A kind of gradient systems with non-symmetrical negative-definit matrix is proposed,and the solution of the gradient system can be stable or asymptotic stable.The study of the gradientsystem is particularly suitable by using the method of Lyapunov functions,in which the functionVis usually taken as the Lyapunov function.Firstly the equations of motion of the generalized Birkhof fsystem are listed.The generalized Birkhof fsystem is a kind of extensive constrained mechanical system,holonomic and nonholonomic constraint systems can be incorporated into the system.When the additional terms of the system are equal to zero,it becomes the Birkhof f system.Then the conditions under which the solutions of the generalized Birkhof fsystem can be stable or asymptotically stable are given.Further the generalized Birkhof fsystems whose solution is stable are constructed by using the gradient system with non-symmetrical negative-definit matrix.The method is also suitable for the study of other constrained mechanical systems.Lastly some examples are given to illustrate the application of the results.
generalized Birkhof fsystem,gradient system,negative-definit matrix,stability
O316
A doi:10.6052/0459-1879-16-280
2016-10-10收稿,2016-11-16錄用,2016-11-24網絡版發表.
1)國家自然科學基金資助項目(11372169,11572034,11272050).
2)陳向煒,教授,主要研究方向:分析力學.E-mail:hnchenxw@163.com
陳向煒,張曄,梅鳳翔.用具有負定非對稱矩陣的梯度系統構造穩定的廣義Birkho ff系統.力學學報,2017,49(1):149-153
Chen Xiangwei,Zhang Ye,Mei Fengxiang.Stable generalized Birkho ffsystems constructed by using a gradient system with nonsymmetrical negative-definit matrix.Chinese Journal of Theoretical and Applied Mechanics,2017,49(1):149-153