999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

從AlphaGo的勝利看人工智能的發展歷程與應用前景

2017-03-04 22:10:01王超
中國新技術新產品 2017年4期
關鍵詞:人工智能

王超

摘 要:備受矚目的“人機大戰”以AlphaGo取得勝利落下帷幕,這對人工智能又是一個里程碑式的事件。本文從AlphaGo的勝利入手,探索人工智能從起源到繁榮的發展歷程,解析當下人工智能的研究熱點。同時,從不同的生活場景出發,分析人工智能的未來前景。總之,本文闡述了人工智能的發展歷程并分析其應用前景,這對更好地認識人工智能的現在和未來具有重要意義。

關鍵詞:人機大戰;人工智能;發展前景

中圖分類號:TP391 文獻標識碼:A

0.引言

2016年3月15日,備受矚目的“人機大戰”終于落下帷幕,最終Google公司開發的“AlphaGo”以4∶1戰勝了韓國九段棋手李世乭。毫無疑問,這是人工智能歷史上一個具有里程碑式的大事件。大家一致認為,人工智能已經上升到了一個新的高度。

這次勝利與1997年IBM公司的“深藍”戰勝國際象棋世界冠軍卡斯帕羅不同。主要表現在兩個方面:

(1)AlphaGo的勝利并非僅僅依賴強悍的計算能力和龐大的棋譜數據庫取勝,而是AlphaGo已經擁有了深度學習的能力,能夠學習已經對弈過的棋盤,并在練習和實戰中不斷學習和積累經驗。

(2)圍棋比國際象棋更加復雜,圍棋棋盤有361個點,其分支因子無窮無盡,19×19格圍棋的合法棋局數的所有可能性是冪為171的指數,這樣的計算量相當巨大。英國圍棋聯盟裁判托比表示:“圍棋是世界上最為復雜的智力游戲,它簡單的規則加深了棋局的復雜性”。因此,進入圍棋領域一直被認為是目前人工智能的最大挑戰。

簡而言之,AlphaGo取得勝利的一個很重要的方面就是它擁有強大的“學習”能力。深度學習是源于人工神經網絡的研究,得益于大數據和互聯網技術。本文就從人工智能的發展歷程與現狀入手,在此基礎上分析了人工智能的未來發展前景。

1.人工智能的發展歷程

AlphaGo的勝利表明,人工智能發展到今天,已經取得了很多卓越的成果。但是,其發展不是一帆風順的,人工智能是一個不斷進步,并且至今仍在取得不斷突破的學科?;仡櫲斯ぶ悄艿陌l展歷程,可大致分為孕育、形成、暗淡、知識應用和集成發展五大時期。

孕育期:1956年以前,數學、邏輯、計算機等理論和技術方面的研究為人工智能的出現奠定了基礎。德國數學家和哲學家萊布尼茨把形式邏輯符號化,奠定了數理邏輯的基礎。英國數學家圖靈在1936年創立了自動機理論(亦稱圖靈機),1950年在其著作《計算機與智能》中首次提出“機器也能思維”,被譽為“人工智能之父”。總之,這些人為人工智能的孕育和產生做出了巨大的貢獻。

形成期:1956年夏季,在美國達特茅斯大學舉辦了長達2個多月的研討會,熱烈地討論用機器模擬人類智能的問題。該次會議首次使用了“人工智能”這一術語。這是人類歷史上第一次人工智能研討會,標志著人工智能學科的誕生。其后的十幾年是人工智能的黃金時期。在接下來的幾年中,在眾多科學家的努力下,人工智能取得了矚目的突破,也在當時形成了廣泛的樂觀思潮。

暗淡期:20世紀70年代初,即使最杰出的AI程序也只能解決問題中最簡單的部分,發展遇到瓶頸也就是說所有的AI程序都只是“玩具”,無法解決更為復雜的問題。隨著AI遭遇批評,對AI提供資助的機構也逐漸停止了部分AI的資助。資金上的困難使得AI的研究方向縮窄,缺少了以往的自由探索。

知識應用期:在80年代,“專家系統”(Expect System)成為了人工智能中一個非常主流的分支?!皩<蚁到y”是一種程序,為計算機提供特定領域的專門知識和經驗,計算機就能夠依據一組從專門知識中推演出的邏輯規則在某一特定領域回答或解決問題。不同領域的專家系統基本都是由知識庫、數據庫、推理機、解釋機制、知識獲取等部分組成。

集成發展期:得益于互聯網的蓬勃發展、計算機性能的突飛猛進、分布式系統的廣泛應用以及人工智能多分支的協同發展,人工智能在這一階段飛速發展。尤其是隨著深度學習和人工神經網絡研究的不斷深入,人工智能在近幾十年中取得了長足的進步,取得了令人矚目的成就。

人工智能發展到今天,出現了很多令人矚目的研究成果。AlphaGo的勝利就是基于這些研究成果的一個里程碑。當前人工智能的研究熱點主要集中在自然語言處理、機器學習、人工神經網絡等領域。

2.人工智能發展現狀與前景

人工智能當前有很多重要的研究領域和分支。目前,越來越多的AI項目依賴于分布式系統,而當前研究的普遍熱點則集中于自然語言處理、機器學習和人工神經網絡等領域。

自然語言處理:自然語言處理(Natural Language Processing,簡稱NLP),是語言學與人工智能的交叉學科,其主要功能就是實現讓機器明白人類的語言,這需要將人類的自然語言轉化為計算機能夠處理的機器語言。

自然語言處理主要包括詞法分析、句法分析和語義分析三大部分。詞法分析的核心就是分詞處理,即單詞的邊界處理。句法分析就是對自然語言中句子的結構、語法進行分析如辨別疑問句和感嘆句等。而語義分析則注重情感分析和整個段落的上下文分析,辨別一些字詞在不同的上下文中特定的語義和情感態度。

當前自然語言的處理主要有兩大方向。一種是基于句法-語義規則的理性主義理論,該理論認為需要為計算機制定一系列的規則,計算機在規則下進行推理與判斷。因此其技術路線是一系列的人為的語料建設與規則制定。第二種是基于統計學習的經驗主義理論,這種理論在最近受到普遍推崇。該理論讓計算機自己通過學習并進行統計推斷的方式不停地從數據中“學習”語言,試圖刻畫真實世界的語言現象,從數據中統計語言的規律。

機器學習:機器學習(Machine Learning)是近20年來興起的人工智能一大重要領域。其主要是指通過讓計算機在數據中自動分析獲得規律,從而獲取“自我學習”的能力,并利用規律對未知數據進行判斷和預測的方法。

機器學習大致可以分為有監督的學習和無監督的學習。有監督的學習是從給定的訓練數據集中練出一個函數和目標,當有新的數據到來時,可以由訓練得到函數預測目標。有監督的學習要求訓練集同時有輸入和輸出,也就是所謂的特征和目標。而依據預測的結果是離散的還是連續的,將有監督的學習分為兩大問題,即統計分類問題和回歸分析問題。統計分類的預測結果是離散的,如腫瘤是良性還是惡性等;而回歸分析問題目標是連續的,如天氣、股價等的預測。

無監督學習的訓練集則沒有人為標注的結果,這就需要計算機去發現數據間的聯系并用來分類等。一種常見的無監督學習是聚類分析(Cluster Analysis),它是將相似的對象通過靜態分類的方法分成不同的組別或者是特定的子集,讓同一個子集中的數據對象都有一些相似的屬性,比較常用的聚類方法是簡潔并快速的“K-均值”聚類算法。它基于K個中心并對距離這些中心最近的數據對象進行分類。

機器學習還包括如半監督學習和增強學習等類別??偠灾瑱C器學習是研究如何使用機器來模擬人類學習活動的一門學科,而其應用隨著人工智能研究領域的深入也變得越來越廣泛,如模式識別、計算機視覺、語音識別、推薦算法等領域越來越廣泛地應用到了機器學習中。

人工神經網絡:在腦神經科學領域,人們認為人類的意識及智能行為,都是通過巨大的神經網絡傳遞的,每個神經細胞通過突出與其他神經細胞連接,當通過突觸的信號強度超過某個閾值時,神經細胞便會進入激活狀態,向所連接的神經細胞一層層傳遞信號。于1943年提出的基于生物神經元的M-P模型的主要思想就是將神經元抽象為一個多輸入單輸出的信息處理單元,并通過傳遞函數f對輸入x1,x2…,xn進行處理并模擬神經細胞的激活模式。主要的傳遞函數有階躍型、線性型和S型。

在此基礎上,對神經網絡算法的研究又有諸多進展。日本的福島教授于1983年基于視覺認知模型提出了卷積神經網絡計算模型。通過學習訓練獲取到卷積運算中所使用的卷積系數,并通過不同層次與自由度的變化,可以得到較為優化的計算結果。而AlphaGo也正是采用了這種深度卷積神經網絡(DCNN)模型,提高了AlphaGo的視覺分類能力,也就是所謂的“棋感”,增強了其對全盤決策和把握的能力。

3.人工智能的發展前景

總體來看,人工智能的應用經歷了博弈、感知、決策和反饋這幾個里程碑。在以上4個領域中,既是縱向發展的過程,也是橫向不斷改進的過程。

人工智能在博弈階段,主要是實現邏輯推理等功能,隨著計算機處理能力的進步以及深度學習等算法的改進,機器擁有了越來越強的邏輯與對弈能力。在感知領域,隨著自然語言處理的進步,機器已經基本能對人類的語音與語言進行感知,并且能夠已經對現實世界進行視覺上的感知。基于大數據的處理和機器學習的發展,機器已經能夠對周圍的環境進行認知,例如微軟的Kinect就能夠準確的對人的肢體動作進行判斷。該領域的主要實現還包括蘋果的Siri,谷歌大腦以及無人駕駛汽車中的各種傳感器等。在以上兩個階段的基礎上,機器擁有了一定的決策和反饋的能力。無人駕駛汽車的蓬勃發展就是這兩個里程碑很好的例證。Google的無人駕駛汽車通過各種傳感器對周圍的環境進行感知并處理人類的語言等指令,利用所收集的信息進行最后的決策,比如操作方向盤、剎車等。

人工智能已經滲透到生活中的各個領域。機器已經能識別語音、人臉以及視頻內容等,從而實現各種人際交互的場景。在醫學領域,人工智能可以實現自動讀片和輔助診斷以及個性化醫療和基因排序等功能。在教育領域,機器也承擔了越來越多的輔助教育,智能交互的功能。在交通領域,一方面無人車的發展表明無人駕駛是一個可以期待的未來,另一方面人工智能能夠帶來更加通暢和智能的交通。另外人工智能在安防、金融等領域也有非常廣闊的發展前景。總之,人工智能在一些具有重復性的和具備簡單決策的領域已經是一種非常重要的工具,用來幫助人們解決問題,創造價值。

參考文獻

[1]阮曉東.從AlphaGo的勝利看人工智能的未來[J].新經濟導刊,2016 (6):69-74.

[2] Daniel Crevier. AI: The tumultuous history of the search for artificial intelligence. NY: Basic Books, 1993. 432 pp. (Reviewed by Charles Fair)[J]. Journal of the History of the Behavioral Sciences, 1995, 31(3):273-278.

[3]鄒蕾,張先鋒.人工智能及其發展應用[J].信息網絡安全,2012(2):11-13.

猜你喜歡
人工智能
我校新增“人工智能”本科專業
用“小AI”解決人工智能的“大”煩惱
汽車零部件(2020年3期)2020-03-27 05:30:20
當人工智能遇見再制造
2019:人工智能
商界(2019年12期)2019-01-03 06:59:05
AI人工智能解疑答問
人工智能與就業
IT經理世界(2018年20期)2018-10-24 02:38:24
基于人工智能的電力系統自動化控制
人工智能,來了
數讀人工智能
小康(2017年16期)2017-06-07 09:00:59
人工智能來了
學與玩(2017年12期)2017-02-16 06:51:12
主站蜘蛛池模板: 久久久久久午夜精品| 一本久道热中字伊人| 亚洲IV视频免费在线光看| 亚洲第一天堂无码专区| 久久精品丝袜高跟鞋| 天堂va亚洲va欧美va国产| www.91在线播放| 一级黄色片网| 国产精欧美一区二区三区| 中文字幕日韩丝袜一区| 亚洲女同欧美在线| 国产精品漂亮美女在线观看| 激情无码视频在线看| 国产91丝袜| 六月婷婷激情综合| 成人精品视频一区二区在线| 欧美日韩成人在线观看| 国产乱子伦手机在线| 九九九久久国产精品| 国产福利小视频高清在线观看| 日韩欧美在线观看| 四虎影视国产精品| 国产午夜一级毛片| 亚洲av无码久久无遮挡| 激情亚洲天堂| 国产国产人免费视频成18| 97se亚洲综合不卡 | 国产亚洲欧美另类一区二区| 成人永久免费A∨一级在线播放| 国产真实二区一区在线亚洲| 久久久噜噜噜| 日韩a级毛片| 成人国产免费| 亚洲最新地址| 中文字幕在线观看日本| 国产亚洲精品自在久久不卡 | 久久国产V一级毛多内射| 国产网站免费观看| 在线精品视频成人网| 国产91高清视频| 日本午夜在线视频| 成人无码一区二区三区视频在线观看 | 多人乱p欧美在线观看| 精品国产黑色丝袜高跟鞋| 夜色爽爽影院18禁妓女影院| 无码在线激情片| 欧美日本激情| 美女亚洲一区| 高清国产va日韩亚洲免费午夜电影| 国产成人永久免费视频| 99精品在线看| 国产激情无码一区二区APP| 国产精品无码AⅤ在线观看播放| 国产福利2021最新在线观看| 久久国产精品国产自线拍| 亚洲一级毛片在线观| 欧美日韩国产精品va| 亚洲精品无码日韩国产不卡| 美女被躁出白浆视频播放| 亚洲天堂网在线播放| 亚洲精品成人片在线播放| 日韩欧美中文| 五月激激激综合网色播免费| 精品人妻无码区在线视频| 国产免费一级精品视频| 99久久精品视香蕉蕉| 中文字幕在线不卡视频| 色妺妺在线视频喷水| 99热这里只有精品在线播放| 日本在线欧美在线| 亚洲中文字幕精品| 手机成人午夜在线视频| 亚洲美女视频一区| 国产成人8x视频一区二区| 亚洲精品男人天堂| 日韩黄色精品| 好久久免费视频高清| 乱色熟女综合一区二区| 亚洲成人精品| 婷婷亚洲视频| 国产人人射| 日本午夜影院|