999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

AlphaGo: Using Machine Learning to Master the Ancient Game of Go阿爾法圍棋:機(jī)器學(xué)習(xí)掌握圍棋這項(xiàng)古老技藝

2017-02-08 23:37:56德米什哈薩比斯莊曉旭閆冉審訂
英語(yǔ)世界 2017年9期
關(guān)鍵詞:程序人工智能游戲

文/德米什·哈薩比斯 譯/莊曉旭 閆冉/審訂

By Demis Hassabis1

圍棋起源于中國(guó),至今已有2500多年的歷史。孔子曾為圍棋作文,它也是中國(guó)文人騷客必需掌握的四藝之一。全世界的圍棋手總數(shù)超過(guò)4000萬(wàn),圍棋的規(guī)則簡(jiǎn)單:棋手在棋盤上行白子或黑子,努力吃掉對(duì)方的棋子或在棋盤上圍地。下圍棋主要靠個(gè)人的直覺(jué)與感覺(jué),其美妙、精微與蘊(yùn)含的智慧,讓幾千年來(lái)的人們?yōu)橹裢?/p>

[2]雖然圍棋規(guī)則簡(jiǎn)單,下起來(lái)卻極其復(fù)雜。可能的棋位多達(dá)1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000種,這比宇宙中的原子數(shù)量都要多,比國(guó)際象棋大10的100次方倍。

The game of Go originated in China more than 2,500 years ago.Confucius wrote about the game, and it is considered one of the four essential arts required of any true Chinese scholar. Played by more than 40 million people worldwide, the rules of the game are simple: Players take turns to place black or white stones on a board, trying to capture the opponent’s stones or surround empty space to make points of territory. The game is played primarily through intuition and feel, and because of its beauty, subtlety and intellectual depth it has captured the human imagination for centuries.

[2] But as simple as the rules are,Go is a game of profound complexity.There are1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 possible positions—that’s more than the number of atoms in the universe,and more than a googol times larger than chess.

[3]圍棋的復(fù)雜性使其對(duì)計(jì)算機(jī)有很大難度,也正因此圍棋成為人工智能研究者渴望征服的挑戰(zhàn)。這些研究者們以各類游戲?yàn)閷?shí)驗(yàn),以發(fā)明出可以解決問(wèn)題的智能、靈活的計(jì)算程序,有時(shí)解決的方式與人類相似。電腦可以勝任的第一個(gè)游戲是“井字游戲”(又叫作“一字棋”),時(shí)間是1952年。1994年,掌握了跳棋。1997年,電腦“深藍(lán)”因戰(zhàn)勝棋王加里·卡斯帕羅夫而聞名。計(jì)算機(jī)的戰(zhàn)績(jī)并不局限于棋牌游戲——2011年IBM的沃森在《危險(xiǎn)邊緣》節(jié)目中,擊敗該節(jié)目的兩位冠軍;2014年,我們通過(guò)原始像素輸入開(kāi)發(fā)出掌握雅麗達(dá)游戲幾十種玩法的計(jì)算機(jī)程序。但到現(xiàn)在為止,人工智能工程師依舊不能開(kāi)發(fā)出百戰(zhàn)百勝的圍棋計(jì)算機(jī)程序。

[4]傳統(tǒng)的人工智能方法是構(gòu)建覆蓋所有可能位置的搜索樹(shù),而這并能不在圍棋中實(shí)現(xiàn)。因而當(dāng)我們著手征服圍棋的時(shí)候,采取了不同的方法。我們建立了名為“阿爾法圍棋”(A l p h a G o)的體系。該體系結(jié)合了高級(jí)樹(shù)形檢索與深度神經(jīng)網(wǎng)絡(luò),我們給這些神經(jīng)網(wǎng)絡(luò)中輸入棋局并用含有數(shù)百萬(wàn)類神經(jīng)元連接的1 2個(gè)不同的網(wǎng)絡(luò)層對(duì)其處理。一個(gè)神經(jīng)網(wǎng)絡(luò),即“策略網(wǎng)絡(luò)”,可以選擇下一步棋的走法;另一個(gè)神經(jīng)網(wǎng)絡(luò),即“價(jià)值網(wǎng)絡(luò)”,則可預(yù)測(cè)棋局的贏家。

[3] This complexity is what makes Go hard for computers to play, and therefore an irresistible challenge to artificial intelligence (AI) researchers,who use games as a testing ground to invent smart, flexible algorithms that can tackle problems, sometimes in ways similar to humans. The fi rst game mastered by a computer was noughts and crosses2noughts and crosses是一種在3×3格子上進(jìn)行的連珠游戲,由于棋盤一般不畫(huà)邊框,格線排成井字故得名。兩個(gè)玩家,一個(gè)打圈(○),一個(gè)打叉(×),輪流在3乘3的格上打自己的符號(hào),最先以橫、直、斜連成一線則為勝。因而又叫“一字棋”。(also known as tic-tac-toe)in 1952. Then fell checkers in 1994. In 1997 Deep Blue famously beat Garry Kasparov at chess. It’s not limited to board games either—IBM’s Watson bested two champions at Jeopardy3美國(guó)一檔智力競(jìng)賽電視節(jié)目。in 2011, and in 2014 our own algorithms learned to play dozens of Atari games just from the raw pixel inputs. But to date, Go has thwarted AI researchers.

[4] Traditional AI methods—which construct a search tree over all possible positions—don’t have a chance in Go.So when we set out to crack Go, we took a different approach. We built a system, AlphaGo, that combines an advanced tree search with deep neural networks. These neural networks take a description of the Go board as an input and process it through 12 different network layers containing millions of neuron-like connections. One neural network, the “policy network,” selects the next move to play. The other neural network, the “value network,” predicts the winner of the game.

[5]我們用人類專家圍棋比賽中的3000萬(wàn)個(gè)走法強(qiáng)化這套神經(jīng)網(wǎng)絡(luò)系統(tǒng),直到它可以預(yù)測(cè)57%的人類落子(在阿爾法圍棋之前,這個(gè)紀(jì)錄是44%)。但我們的目標(biāo)不是模仿人類選手,而是要戰(zhàn)勝他們。要實(shí)現(xiàn)這個(gè)目標(biāo),阿爾法圍棋掌握了如何為自身發(fā)現(xiàn)新戰(zhàn)略,即在神經(jīng)網(wǎng)絡(luò)中對(duì)棋局進(jìn)行成千上萬(wàn)次計(jì)算,并運(yùn)用試差法調(diào)整系統(tǒng)間的連接(這一過(guò)程又叫強(qiáng)化學(xué)習(xí))。當(dāng)然,上文種種都要求強(qiáng)大的運(yùn)算能力,所以我們也大量使用了谷歌云平臺(tái)。

[6]在種種強(qiáng)化之后,我們開(kāi)始讓阿爾法圍棋參與實(shí)戰(zhàn)。首先,我們舉辦了阿爾法圍棋與其他頂級(jí)計(jì)算機(jī)圍棋程序間的錦標(biāo)賽。阿爾法圍棋在5 0 0場(chǎng)競(jìng)賽中只輸了一場(chǎng)。接著我們邀請(qǐng)了蟬聯(lián)三屆歐洲圍棋冠軍的樊麾——他從1 2歲起就投身圍棋,是職業(yè)選手中的精英。我們邀請(qǐng)他到倫敦的工作室來(lái)參加挑戰(zhàn)賽。在2 0 1 5年1 0月的閉門比賽中,阿爾法圍棋5∶0贏得了比賽。這是電腦程序第一次戰(zhàn)勝職業(yè)圍棋手。

[5] We trained the neural networks on 30 million moves from games played by human experts, until it could predict the human move 57 percent of the time (the previous record before AlphaGo was 44 percent). But our goal is to beat the best human players, not just mimic them. To do this, AlphaGo learned to discover new strategies for itself, by playing thousands of games between its neural networks, and adjusting the connections using a trial-and-error process known as reinforcement learning. Of course,all of this requires a huge amount of computing power, so we made extensive use of Google Cloud Platform.

[6] After all that training it was time to put AlphaGo to the test. First, we held a tournament between AlphaGo and the other top programs at the forefront of computer Go. AlphaGo won all but one of its 500 games against these programs. So the next step was to invite the reigning three-time European Go champion Fan Hui—an elite professional player who has devoted his life to Go since the age of 12—to our London office for a challenge match.In a closed-doors match last October,AlphaGo won by 5 games to 0. It was the first time a computer program has ever beaten a professional Go player.

[7] We are thrilled to have mastered Go and thus achieved one of the grand challenges of AI. However, the most significant aspect of all this for us is that AlphaGoisn’t just an“expert”system built with hand-crafted rules;instead it uses general machine learning techniques to fi gure out for itself how to win at Go. While games are the perfect platform for developing and testing AI algorithms quickly and efficiently,ultimately we want to apply these techniques to important real-world problems. Because the methods we’ve used are general-purpose4general-purpose 通用的。, our hope is that one day they could be extended to help us address some of society’s toughest and most pressing problems,from climate modelling to complex disease analysis. We’re excited to see what we can use this technology to tackle next! ■

[7]我們很開(kāi)心能夠掌握圍棋訣竅,攻破人工智能眾多難點(diǎn)中的一個(gè)。但是,對(duì)我們來(lái)說(shuō)最大的亮點(diǎn)在于,阿爾法圍棋不是靠人工建立的“專家”系統(tǒng),而是運(yùn)用一般的機(jī)器學(xué)習(xí)技巧,自己贏得圍棋比賽。雖然各類游戲是迅速高效地開(kāi)發(fā)和檢測(cè)人工智能計(jì)算程序的完美平臺(tái),但我們最終的目標(biāo)是把這些技巧用于解決重要的現(xiàn)實(shí)問(wèn)題。我們使用的方法是通用的,因而我們希望有一天能拓展這些方法來(lái)解決社會(huì)中一些最艱難、最緊迫的問(wèn)題,比如氣候模型和復(fù)雜疾病分析等。我們很希望看到,接下來(lái)我們可以用這項(xiàng)技術(shù)解決哪些問(wèn)題。 □

猜你喜歡
程序人工智能游戲
試論我國(guó)未決羈押程序的立法完善
2019:人工智能
商界(2019年12期)2019-01-03 06:59:05
人工智能與就業(yè)
“程序猿”的生活什么樣
數(shù)讀人工智能
小康(2017年16期)2017-06-07 09:00:59
英國(guó)與歐盟正式啟動(dòng)“離婚”程序程序
數(shù)獨(dú)游戲
瘋狂的游戲
飛碟探索(2016年11期)2016-11-14 19:34:47
下一幕,人工智能!
爆笑游戲
主站蜘蛛池模板: 精品视频在线一区| 日韩第一页在线| 国产91透明丝袜美腿在线| 久久精品人人做人人综合试看| 亚洲品质国产精品无码| 色网站免费在线观看| 色偷偷一区二区三区| 久久99国产综合精品1| av在线5g无码天天| 黄色a一级视频| 尤物在线观看乱码| 亚洲AⅤ永久无码精品毛片| 亚洲五月激情网| 国产迷奸在线看| 久久国产拍爱| 亚洲av无码人妻| 亚洲精品麻豆| 日韩精品无码免费一区二区三区| 又粗又硬又大又爽免费视频播放| 亚洲av色吊丝无码| 毛片一区二区在线看| 五月天综合网亚洲综合天堂网| 在线a网站| 国产综合网站| 亚洲成人在线免费| 福利在线不卡| AV网站中文| 亚洲天堂福利视频| 日本精品一在线观看视频| 亚洲精品国产乱码不卡| 不卡午夜视频| 久久人搡人人玩人妻精品| 国产成人夜色91| 亚洲成a人在线播放www| 国产男女免费视频| 福利视频一区| 亚洲AV无码久久精品色欲| 色男人的天堂久久综合| 91久久国产综合精品| 在线色综合| 91伊人国产| 国产日本一区二区三区| 亚洲婷婷在线视频| 白丝美女办公室高潮喷水视频| 国产精品第5页| 久久人与动人物A级毛片| 国产精品男人的天堂| 久久99国产乱子伦精品免| 欧美视频在线不卡| 国产精品成人观看视频国产| 亚洲一区无码在线| 国产中文在线亚洲精品官网| 色婷婷国产精品视频| 午夜免费视频网站| 996免费视频国产在线播放| 91探花国产综合在线精品| 精品偷拍一区二区| 美女毛片在线| 精品少妇人妻一区二区| 国产黄色爱视频| 日韩 欧美 国产 精品 综合| 国内黄色精品| 四虎永久在线视频| 亚洲精品制服丝袜二区| 91精品亚洲| 456亚洲人成高清在线| 天天综合网色| 亚洲精品国偷自产在线91正片| 久久影院一区二区h| 全免费a级毛片免费看不卡| 一级片一区| 国产亚洲成AⅤ人片在线观看| 青青青国产在线播放| 波多野结衣亚洲一区| 亚洲国产欧美中日韩成人综合视频| 三上悠亚一区二区| 国产精品免费p区| 熟女成人国产精品视频| 91视频99| 亚洲婷婷在线视频| 在线网站18禁| 色成人亚洲|