999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

MONOTONICITY IN ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM?

2017-01-21 05:30:08WanzhongGONG鞏萬中DaoxiangZHANG張道祥

Wanzhong GONG(鞏萬中) Daoxiang ZHANG(張道祥)

Department of Mathematics,Anhui Normal University,Wuhu 241000,China

MONOTONICITY IN ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM?

Wanzhong GONG(鞏萬中)?Daoxiang ZHANG(張道祥)

Department of Mathematics,Anhui Normal University,Wuhu 241000,China

E-mail:gongwanzhong@shu.edu.cn;zdxiang1012@163.com

In Orlicz-Lorentz sequence space λ??,ωwith the Orlicz norm,uniform monotonicity,points of upper local uniform monotonicity and lower local uniform monotonicity are characterized.Moreover,the monotonicity coefcient in λ??,ωare discussed.

Orlicz-Lorentz sequence space;Orlicz norm;point of upper(lower)local uniform monotonicity;uniform monotonicity;monotone coefcient

2010 MR Subject Classifcation46B20

1 Introduction

A Banach lattice X with a lattice norm k·k is said to be strictly monotone(STM for short) [1]if for any x∈X+(positive cone in X)and any y∈X+{0},we have kx+yk>kxk.A point x∈S(X+):=S(X)∩X+is said to be upper monotone[2]if,for any y∈X+{0},kx+yk>1. A point x∈S(X+)is said to be lower monotone[2]if,for any y∈X+{0}and y≤ x, kx?yk<1.An equivalent condition for X being strictly monotone[1]is that any point x∈S(X+)is lower monotone.But lower monotone points and upper monotone points are diferent,see[2].X is called upper locally uniformly monotone(ULUM)[3]if for any ε>0 and x∈S(X+),there exists δ(x,ε)>0 such that y∈X+and kyk≥ε imply kx+yk≥1+δ(x,ε). If for any ε>0 and x∈S(X+),there is δ(x,ε)>0 such that kx?yk≤1?δ(x,ε)whenever y∈X+,kyk≥ε and y≤x,then X is said to be lower locally uniformly monotone(LLUM) [3].We can analogously defne points of lower local uniform monotonicity and points of upper local uniform monotonicity.We say that X is uniformly monotone(UM)[4]if for any ε∈(0,1) there exists δ(ε)∈(0,1)such that kx+yk>1+δ(ε)whenever x∈S(X+),y∈X+and kyk≥ε.For ε∈[0,1],defne ηX(ε)=inf{kx+yk?1:x,y∈X+,kxk=1,kyk≥ε}.We call m(X)=sup{ε∈[0,1]:ηX(ε)=0}the monotone coefcient[5]of X.

It is well known that some rotundity properties of Banach spaces were widely applied in ergodic theory,fxed point theory,probability theory and approximation theory,and in many cases these rotundity properties can be replaced by respective monotonicity properties when werestrict ourselves to a Banach space being a Banach lattice[3].Roughly speaking,monotonicity properties played in Banach lattices similar role as rotundity properties in Banach spaces, and so for monotonicity points and rotundity points.Therefore in recent years monotonicity properties and monotonicity points were widely investigated in Musielak-Orlicz,Orlicz-Lorentz, Orlicz-Sobolev,Calder′on-Lozanovskiˇi spaces[2,3,7,8,19].In addition,some geometric properties concerning with the dual spaces of Orlicz-Lorentz spaces were researched by many mathematicians,where the Orlicz norm play a important role.In this paper we mainly give the criteria for Orlicz-Lorentz sequence spaces λ??,ωwith the Orlicz norm being UM,a point in the space being upper locally uniformly monotone and lower locally uniformly monotone.At last we get the monotone coefcients of Orlicz-Lorentz sequence spaces with the Luxemburg norm and the Orlicz norm.

and the non-increasing rearrangement of x,

endowed with the Orlicz norm[9]

or the Banach space λ?,ωequipped with the Luxemburg norm[10]

Similarly as in the Orlicz space theory[11],denote

Recall that ? satisfes δ2-condition if there exist k>0 and u0>0 such that ?(2u)≤k?(u) for all 0

2 Lemmas

In recent years,Wang and Ning extended some properties in Orlicz space to Orlicz-Lorentz spaces[9].

Lemma 2.1(see[9]) Let x∈λ??,ω,we have

where k?=inf{h>0:ρψ,ω(p(h|x|))≥1},and k??=sup{h>0:ρψ,ω(p(h|x|))≤1}.

Lemma 2.2(see[9])

By Lemma 1.1 in[23],and similarly as the proof of Lemma 1.40 in[11],we can get

Lemma 2.3Suppose ?∈δ2,then for any L>0 and ε>0,there exists δ>0 such that

whenever ρ?,ω(u)≤L and ρ?,ω(v)≤δ.

Lemma 2.4Let x∈(λ??,ω)+with ρ?,ω(x)< ∞.Then ρ?,ω(x?[x]n)→ 0,where [x]n=(x(1),x(2),···,x(n),0···).

Lemma 2.5Suppose x∈(λ??,ω)+and δ>0 be such that the set A:={j∈N:δ≤x?(j)} is nonempty.Then for any i∈A,there exists a constant b=b(x,δ,i)>0 such that

ProofCase 1δ

Since

we only need to check that

Otherwise,x?(i)=x?(i+1)=x?(i+2)=···=x?(n)=x?(i)?δ since ω is non-increasing. This contradiction yields that the inequality above holds.It follows the inequalityρ?,ω(x)> ρ?,ω(x??δei).Set b:=12(ρ?,ω(x)?ρ?,ω(x??δei)).Then b=b(x,δ,i)>0 satisfes

Lemma 2.6Suppose x∈(λ??,ω)+and δ>0 satisfy that A:={j∈N:δ≤x?(j)}is nonempty.Then there exists a constant c=c(x,δ)>0 such that the inequality

holds for all h∈A.

ProofThere is a bijection σ:N→N(ifμSx<∞)or σ:Sx→N(ifμSx=∞)such that x=x??σ.Clearly h∈H:={σ?1(j):x?(j)≥δ}andμH<∞.By Lemma 2.5,one get

where b′(x,δ,h)>0.Set c=min{b′(x,δ,h):h∈H}.Then c=c(x,δ)>0 satisfes the demand. ?

2.1Monotonicity inλ??,ω

Theorem 2.7λ??,ωis STM.

ProofLet us choose arbitrary x∈S?(λ??,ω)+?:=S(λ??,ω)T(λ??,ω)+and y∈λ??,ω,y?0, and let k∈K(x)and h∈K(x+y).In the following we will consider two cases.

Case Ih 6∈K(x).By Lemma 2.1,we have

Case IIh∈K(x).For y?0,there exists i0∈N such that y(i0)>0.We know that there is a bijection σ:N→N(ifμSx<∞)or σ:Sx→N(ifμSx=∞)such that x=x??σ. If i0∈Sx,assuming that σ(i0)=j0,one can get

If i06∈Sx,then h0:=μ{i∈N:x(i)≥y(i0)}<∞.Without loss of generality,we may assume that h0≥1.So x?(h0+1)

Hence it follows that kx+yk??,ω=1h(1+ρ?,ω(h(x+y)))>1h(1+ρ?,ω(hx))=kxk??,ω=1,i.e., x is upper monotone,and λ??,ωis STM.

Theorem 2.8A point x∈S?(λ??,ω)+is upper locally uniformly monotone if and only if ?∈δ2.

ProofSufciencyIf ?∈δ2and x is not upper locally uniformly monotone,then there exist{xn}?λ??,ω,xn≥0 such that kxnk??,ω≥ε0∈R+for any n∈N and kx+xnk??,ω→1 as n→∞.Now denoting k=k?x,kn=k?x+xn,by the defnition we can get kn≤k.Without loss of generality,we can assume that kn→k0as n→∞.

If k0

a contradiction!Therefore we may assume that kn→k as n→∞.

By Corollary 5.1 in[24],we know that λ?,ωis ULUM.Hence for the above ε0>0,there exists δ=δ(ε0)>0 such that ρ?,ω(k(x+xn))> ρ?,ω

(kx)+δ.Set u=kn(x+xn),v= (k?kn)(x+xn).By kn→k and Lemma 2.3,there exist N∈N such that

when n>N.Therefore,by the defnition of the Orlicz norm,we have,for n>N,

a contradiction which shows that x is upper locally uniformly monotone.

If ? 6∈δ2,in view of the proof of Theorem 8 in[25],There exists a w0satisfying Sw0= N,ρ?,ω(w0)<∞and θ?,ω(w0)=1.For the above subset I0,there exists a w=w|I0such thatFrom Lemma 2.4 and the orthogonally sub-additive convexity of ρ?,ωwe get

where An={n+1,n+2,···}∩I0.Thus kx+ynk→1,a contradiction with x being upper locally uniformly monotone.

Theorem 2.9x∈S((λ??,ω)+)is lower locally uniformly monotone if and only if θ?,ω(x)= 0.

ProofNecessityIf θ?,ω(x)=ε>0,denote yn:=x?[x]n.Then θ?,ω(yn)=θ?,ω(x). So kynk??,ω≥θ?,ω(yn)=ε0>0.But kx?ynk??,ω=k[x]nk??,ω→kxk??,ω=1,a contradiction with x being lower locally uniformly monotone.

SufciencyIf x is not lower locally uniformly monotone,then there exist ε>0 and {xn:0?xn≤x}satisfying kxnk??,ω≥2ε and kx?xnk??,ω→1.

Thus kxnk??,ω≤2kxnk?,ω≤ε,a contradiction with kxnk??,ω≥2ε.

So there exist an ε0>0,a subsequence of{xn}still denoted by{xn},and{in:in=i(n)} such that xn(in)≥ε0for any n∈N.Since ρ?,ω(x)<∞,n0:=μ{i∈Sx:x(i)≥ε0}<∞.In virtue of Lemma 2.6,there is a δ=δ(x,ε0)>0 independent of n,such that ρ?,ω(kx?kxn)≤ρ?,ω(kx?kε0ein)≤ρ?,ω(kx)?kδ.

By θ?,ω(x)=0 implying ρ?,ω(2x)<∞,we have

where k∈[k?,k??],a contradiction with kx?xnk??,ω→1.

Corollary 2.10The following conditions are equivalent:

1.?∈δ2;

2.λ??,ωis ULUM;

3.λ??,ωis LLUM.

Theorem 2.11λ??,ωis UM if and only if ?∈δ2,and ω is regular.

Set fi=μ({1,2,···,ei}∩A)and gi=μ({1,2,···,ei}A),then fi+gi=ei.Choosing arbitrarily k0∈K(x),we have k0>1,

and

Defning

and so

When i∈N2,combiningfi2p≤gi≤fiwith fi+gi=eiwe get ei≥2gi.So using the regularity and monotonicity of ω,we have

For i∈N3,by fi

Therefore

Which follows that

Obviously δ:=ah(ε)satisfes the demand.

2.2Monotone Coefcients in Orlicz-Lorentz Sequence Space

In 1999,L¨u,Wang and Wang gave the monotone coefcients in Orlicz function space [5].Here we investigate similarly the monotone coefcients in Orlicz-Lorentz sequence space. Combining Theorem 4.4 in[26]with our Theorem 2.11 we immediately get

Theorem 2.12If ?∈δ2and ω be regular,then m(λ??,ω)=0 and m(λ?,ω)=0.

Theorem 2.13For the Orlicz-Lorentz sequence space λ?,ωwith the Luxemburg norm, if ? 6∈δ2,or ω is not regular,then m(λ?,ω)=1.

which shows kx+yk≤1,so kx+yk=1.Therefore ηλ?,ω(1?ε)=0,and so by the arbitrariness of ε>0 we have m(λ?,ω)=1.

that is ρ?,ω(xn+yn)→1,which means that kxn+ynk?,ω→1 since xn+yn≥xn.From the defnition of the monotonicity coefcient we know that m(λ?,ω)=1.

Theorem 2.14For Orlicz-Lorentz sequence space λ??,ωwith the Orlicz norm,if ? 6∈δ2, or ω is not regular,then m(λ??,ω)=1.

and

for any α=(α1,α2,···)∈l∞.

(b1,b2,···).Certainly a,b∈l∞and kak∞=1=kbk∞.So by(2.11)and(2.12),one can get

Denote

Therefore,by the arbitrariness of ε>0 and the defnition of the monotonicity coefcient we can easily get m(λ??,ω)=1.

Then similarly as the proof of Theorem 2.13 one can get

[1]Kurc W.Strictly and uniformly monotone Musielak-Orlicz spaces and applications to best approximation. J Approx Theory,1992,69:173–187

[2]Hudzik H,Liu X B,Wang T F.Points of monotonicity in Musielak-Orlicz function spaces endowed with the Luxemburg norm.Arch Math,2004,82:534–545

[3]Hudzik H,Kurc W.Monotonicity properties of Musielak-Orlicz spaces and domained best approximation in Banach lattices.J Approx Theory,1998,95:353–368

[4]BirkhofG.Lattice Theory.Providence,RI:Amer Math Soc,1988

[5]L¨u Y M,Wang J M,Wang T F.Monotone coefcients and monotonicity of Orlicz spaces.Rev Mat Complut, 1999,12:105–114

[19]Chen S T,He X,Hudzik H,Kami′nska A.Monotonicity and best approximation in Orlicz-Sobolev spaces with the Luxemburg norm.J Math Anal Appl,2008,344:687–698

[7]Hudzik H,Kami′nska A.Monotonicity properties of Lorentz spaces.Proc Amer Math Soc,1995,123: 2715–2721

[8]Kolwicz P.Rotundity properties in Calder′on-Lozanovskiˇi spaces.Houston J Math,2005,31:883–912

[9]Wang J C,Ning Z.Rotundtity and uniform rotundity of Orlicz-Lorentz sequence spaces with the Orlicz norm.Math Nachr,2011,284:2297–2311

[10]Kami′nska A.Some remarks on Orlicz-Lorentz spaces.Math Nachr,1990,147:29–38

[11]Chen S T.Geometry of Orlicz spaces.Dissertationes Math,356,1996

[12]Bennett C,Sharpley R.Interpolation of Operators.New York:University of Sorth Carolina,1988

[13]Zhang C Z,Pan Y,Zhang X Y.Interpolation of Lorentz-Orlicz martingale spaces.Acta Math Sci,2015, 35B:1467–1474

[14]Foralewski P,Hudzik H,Kaczmarek R,Krbec M.Moduli and characteristics of monotonicity in some Banach lattices.Fixed Point Theory Appl,2010:Art ID 852346

[15]Foralewski P,Hudzik H,Kaczmarek R,Krbec M,W′ojtowicz M.On the moduli and characteristic of monotonicity in Orlicz-Lorentz function spaces.J Convex Anal,2013,20:955–970

[16]Foralewski P,Hudzik H,Kaczmarek R,Krbec M.Characteristic of monotonicity of Orlicz function spaces equipped with the Orlicz norm.Comment Math,2013,53:421–432

[17]Cui Y A,Hudzik H,Wis la M.Monotonicity properties and dominated best approximation problems in Orlicz spaces equipped with the p-Amemiya norm.J Math Anal Appl,2015,432:1095–1105

[18]Hudzik H,Kaczmarek R.Monotonicity characteristic of K¨othe-Bochner spaces.J Math Anal Appl,2009, 349:459–468

[19]Chen S T,He X,Hudzik H.Monotonicity and best approximation in Banach lattices.Acta Math Sin(Engl Ser),2009,25:785–794

[20]Hudzik H,Narloch A,Local monotonicity structure of Calder′on-Lozanovskiˇi spaces.Indag Math,2004,15: 245–255

[21]Hudzik H,Kaczmarek R,Krbec M.In some symmetric spaces monotonicity properties can be reduced to the cone of rearrangements.Aequationes Math,2016,90:249–261

[22]Hudzik H,Kurc W.Monotonicity properties of Musielak-Orlicz spaces and dominated best approximation in Banach lattices.J Approx Theory,1998,95:353–368

[23]Choi C,Kami′nska A,Lee H.Complex convexity of Orlicz-Lorentz spaces and its applications.Bull Polish Acad Sci Math,2004,52:19–38

[24]Kolwicz P,P luciennik R.Points of upper local uniform monotonicity in Calder′on-Lozanowskiˇi spaces.J Convex Anal,2010,17:111–130

[25]Cerda J,Hudzik H,Kami′nska A,Masty lo M.Geometric properties of symmetric spaces with applications to Orlicz-Lorentz spaces.Positivity,1998,2:311–337

[26]Foralewski P.On Some geometric properties of generalized Orlicz-Lorentz sequence spaces.Indag Math, 2013,24:346–372

[27]Hudzik H,Kami′nska A,Masty lo M.Monotonicity and rotundity properties in Banach lattices.Rocky Mountain J Math,2000,30:933–950

?Received June 25,2015;revised May 5,2016.This work was supported by the National Science Foundation of China(11271248 and 11302002),the National Science Research Project of Anhui Educational Department (KJ2012Z127),and the PhD research startup foundation of Anhui Normal University.

?Corresponding author:Wanzhong GONG.

主站蜘蛛池模板: 国产午夜一级毛片| 日韩视频福利| 国产高颜值露脸在线观看| 亚洲精品天堂自在久久77| 国产v精品成人免费视频71pao | 国产乱论视频| 国产丝袜丝视频在线观看| 免费va国产在线观看| 久久精品女人天堂aaa| 亚洲最大情网站在线观看| 成年人久久黄色网站| 国产亚洲视频播放9000| a网站在线观看| 亚洲国产精品日韩欧美一区| 日韩欧美国产精品| 蜜桃视频一区二区| 在线观看免费人成视频色快速| 国产成人精品一区二区三在线观看| 欧美成人A视频| 亚洲精品少妇熟女| 中文字幕在线一区二区在线| 在线免费无码视频| 毛片免费观看视频| 免费一级毛片在线播放傲雪网| 国产美女叼嘿视频免费看| 538国产在线| 九九久久精品免费观看| 男人天堂亚洲天堂| 成人国产精品网站在线看| 91久久精品国产| 欧美a网站| 久久一日本道色综合久久| 欧美日韩国产系列在线观看| Jizz国产色系免费| 真人高潮娇喘嗯啊在线观看| 欧美啪啪视频免码| 狠狠色成人综合首页| 国产日韩欧美在线视频免费观看| 色婷婷在线影院| 亚洲乱伦视频| 久久一本日韩精品中文字幕屁孩| 亚洲欧美人成电影在线观看| 91在线视频福利| 日韩国产高清无码| 国产成人精品无码一区二| 亚洲第一极品精品无码| 91在线日韩在线播放| 欧美成人一级| 日韩毛片在线播放| 欧美精品啪啪| 国产高清国内精品福利| 久久77777| 久久伊人久久亚洲综合| 精品国产aⅴ一区二区三区| 欧美黑人欧美精品刺激| 欧美一级在线| 无码aaa视频| 91久久偷偷做嫩草影院免费看 | 九色综合伊人久久富二代| 日本高清免费不卡视频| 久久国产精品波多野结衣| 亚洲av无码专区久久蜜芽| 精品無碼一區在線觀看 | 国产天天色| 91精品网站| 亚洲综合婷婷激情| 狠狠亚洲婷婷综合色香| 国产又爽又黄无遮挡免费观看 | 亚洲中文字幕无码爆乳| 国产人免费人成免费视频| 久久男人视频| 毛片手机在线看| 久久夜夜视频| 国产精品自在自线免费观看| 五月天久久综合国产一区二区| 成人免费午夜视频| 欧美日韩一区二区三区在线视频| 97人妻精品专区久久久久| 亚洲男人天堂久久| 一本久道久久综合多人| 日本人妻一区二区三区不卡影院| 精品欧美一区二区三区久久久|