劉興旺, 袁道陽, 邵延秀, 張 波
(1.蘭州大學西部環境教育部重點實驗室,甘肅 蘭州 730000; 2.中國地震局蘭州地震研究所,甘肅 蘭州 730000;3.蘭州地球物理國家野外科學觀測研究站,甘肅 蘭州 730000)
祁連山北緣玉門—北大河斷裂晚第四紀活動特征
劉興旺1,2,3, 袁道陽2,3, 邵延秀2,3, 張 波2,3
(1.蘭州大學西部環境教育部重點實驗室,甘肅 蘭州 730000; 2.中國地震局蘭州地震研究所,甘肅 蘭州 730000;3.蘭州地球物理國家野外科學觀測研究站,甘肅 蘭州 730000)
通過衛星影像解譯、野外實地調查并結合前人研究成果,對位于祁連山北緣的玉門—北大河斷裂晚第四紀構造活動特征進行研究。結果表明,玉門—北大河斷裂為一條全新世活動的逆沖斷裂,該斷裂西起玉門青草灣,向東經老玉門市、大紅泉止于骨頭泉,全長約80 km,整體走向NWW。根據斷裂的幾何結構及活動習性可將其分為三段:東段構造形態簡單連續,為逆沖斷層陡坎為主的古地震地表破裂帶;中段結構復雜,由多條次級斷層組成,以逆沖擴展為主;西段未出露地表而成為盲斷裂-褶皺帶。通過對斷層陡坎差分GPS測量及相應地貌面年代測試,得到斷裂晚更新世以來逆沖速率約為(0.73±0.09) mm/a。
玉門—北大河斷裂; 斷錯地貌; 晚第四紀; 滑動速率
新生代以來,印度板塊與歐亞板塊擠壓碰撞,青藏高原開始形成并分階段隆升[1-5],同時受區域擠壓應力作用的影響,青藏塊體持續向北東方向推擠擴展,在其前緣形成了一系列擠壓逆沖斷裂帶,祁連山北緣斷裂即為其重要的逆沖斷裂帶之一[6-10]。位于河西走廊盆地南緣西段的玉門—北大河斷裂是祁連山北緣斷裂帶的重要組成部分。根據前人研究,酒西盆地南緣斷裂由多條逐漸向盆地內部擠壓逆沖的斷裂系組成,構成了一個大型的推覆構造[11],其前鋒斷裂即為玉門—北大河斷裂,其構造活動特征反映了酒西盆地南緣斷裂的最新活動特性。
對于玉門—北大河斷裂,前人曾開展過一些研究工作,但對其活動時代和活動性質都有不同的認識。國家地震局地質研究所等[7]認為其活動時代為中更新世末以前,晚第四紀以來不活動;陳杰等[12]認為斷裂自中更新世以來的活動從未停止過,以擠壓逆沖和褶皺變形為主;陳文彬等[8]認為其最新活動時代為晚更新世末,全新世期間不活動;閔偉等[9]、陳柏林等[13]認為其為一條全新世活動斷裂帶,并初步得到其逆沖速率和古地震事件。對其活動性質的研究也有兩種不同的認識:有研究者認為該斷裂為逆沖斷層,無走滑分量[7,14-15];也有研究者認為該斷裂有左旋走滑的分量[7-8,13]。這些認識上的差異反映了對該斷裂研究缺少有力的最新活動證據。筆者通過對前人資料的收集和實地野外調查,認為玉門—北大河斷裂為一條全新世活動的逆沖斷裂,斷裂沿線未發現左旋走滑的地質地貌證據,并通過斷層陡坎差分GPS測量及相應地貌面測年得到了斷裂晚更新世以來的逆沖滑動速率。
玉門—北大河斷裂分布在祁連山西端的北部邊緣,是酒西盆地與祁連山的分界線,也是祁連山北緣斷裂帶的重要組成部分。該斷裂西起青草灣,向東經老玉門市、青頭山、大紅泉、小紅泉、止于骨頭泉一帶,整體走向NWW,傾角20°~60°,總長約80 km(圖1)。斷裂穿過了石油河、白楊河及北大河等河流,為一條逆沖推覆斷裂。根據斷層幾何展布特征及活動特點可將該斷裂分為東、中、西3段。各段的幾何結構與活動特征敘述如下:
1.1 東段(F2-1)
斷裂東段西起西溝礦以西,向東經北大河到骨頭泉一帶,長約20 km(圖1)。該段斷裂幾何形態較為簡單,展布于祁連山山前洪積扇上,連續發育,距山邊約有2 km,以斷層陡坎形態保存。根據各洪積扇面的新老程度,陡坎高度從小于1 m至7 m不等(圖2),大部分陡坎高度在2 m左右,在最新的沖洪積扇上陡坎高度不足1 m(圖2S1、S8)。部分斷層陡坎段類似古地震地表破裂帶,保留有較為新鮮的陡坎自由面。在骨頭泉附近沖溝內發現天然斷層剖面,揭露的地層如圖3所示:U1 全新統松散黃土;U2 崩積楔,含礫石較多;U3 灰色土層;U4 土灰色松散砂礫石層,粒徑較大;U5 灰色沖積砂礫石層,粒徑小,近斷層側褶皺彎曲,斷層帶內礫石定向;U6 青灰色砂礫石層,粒徑大,輕微膠結。斷裂活動形成一個斷層帶,其間礫石定向排列,斷層逆沖于原先地表土層之上并形成崩積楔,被最新沉積的全新世松散黃土覆蓋,已接近地表,斷層上盤靠近斷層處礫石層產生褶皺變形,斷層傾角35°,斷距約1 m。根據斷錯地貌特征及剖面判斷,該段斷裂為全新世活動斷裂。
1.2 中段(F2-2)
斷裂中段西起青頭山,向東經大紅泉、小紅泉,東到西溝礦以西,長約20 km。該段斷層連續性不好,沿走向由6個不連續的雁列狀次級斷層組成(圖1)。地貌上表現為斷層三角面和不同高度的斷層陡坎,陡坎一般發育于各沖溝兩側階地之上,其保存高度明顯高于東段。在南山村南,發源于祁連山的一條未知名河流兩側共發育3級階地,T2、T3階地之上均保留斷層陡坎。T2階地主要分布于河流西岸,其上保留的斷層陡坎高度約8 m[圖4(a)],T3階地主要分布于河流東岸,其上陡坎高約20 m,這種斷層陡坎高度的變化表明斷裂在晚第四紀以來是持續活動的。河道內出露斷層剖面,第三系紅色砂巖逆沖于第四系砂礫層之上,斷層向上延伸已近地表,傾角約25°[圖4(b)]。
在大紅泉沖溝西壁出露斷層剖面,第三系紅色砂巖形成背斜褶皺并派生若干張性小斷層,未見主斷層(圖5),但主斷層的活動使得其上覆礫石層產生撓曲、位錯及定向排列,據此可以推斷主斷層古地震事件。根據前人的研究[8],從剖面上可分辨出兩次古地震事件:第一次事件發生在距今(26.8±2.1) ka,造成覆蓋于N面上礫石層的錯動及定向排列;第二次事件發生在距今(14.1±1.1) ka,造成礫石層與上覆砂礫石層的不整合面發生撓曲錯動。根據野外實地考察,發現灰色砂礫石層上部一套淡粉色粉砂層也發生了彎曲變形,根據其年代,推測斷裂最新活動發生在距今(4.9±0.7) ka以來。

圖1 玉門—北大河斷裂地質構造圖Fig.1 The geological tectonic map of Yumen—Badahe fault

圖2 玉門—北大河斷裂東段影像及陡坎測量(紅色箭頭為斷層通過位置)Fig.2 Satellite image and fault scarp measurement at the eastern segment of Yumen—Beidahe fault

圖3 骨頭泉斷層剖面照片(鏡像NW)及素描Fig.3 Fault section photo (view to NW) and sketch at Gutouquan

圖4 南山村斷層地貌Fig.4 Fault landform at Nanshan village

圖5 大紅泉斷層剖面(據文獻[8]修改)Fig.5 Fault section at Dahongquan village (After reference[8])
1.3 西段(F2-3)
斷裂西段西起青草灣,向東經老玉門市到白楊河以東一帶,長約40 km。該段斷裂未出露地表而成為盲斷裂-褶皺帶,但物探及鉆孔資料不僅證實了斷層的存在,而且其表現出逆沖的特征。斷裂在該段橫切了石油河和白楊河等河流,這些河流都發育有河流階地,而河流階地是記錄構造變形過程的良好地貌證據,利用階地變形資料研究活動斷裂也是活動構造研究的一種重要手段[16-18]。陳杰等[12]根據石油河階地變形資料,分析認為該段斷裂自中更新世以來有持續活動。Hetzel等[19]對石油河的階地開展了差分GPS測量及年代學研究,認為石油河低階地可能存在著微小變形,且根據變形階地的年代可以推斷斷裂在全新世有過活動。2002年12月14日玉門發生MS5.9地震,有研究者認為其發震斷裂為玉門—北大河斷裂南側的旱峽大黃溝斷裂[20];榮代潞等[21]通過對主震及余震序列的精定位,分析認為在北東向的壓應力作用下,玉門—北大河斷裂和旱峽—大黃溝斷裂在深部匯合的斷層面上發生逆推錯動,共同參與了此次地震。因此,玉門—北大河斷裂為此次地震的發震斷裂之一,國內類似的活動擠壓構造帶也有發生這種“褶皺地震”的例子[22-23]。
綜上所述,玉門—北大河斷裂為一條全新世活動斷裂,野外考察發現斷裂以逆沖推覆為主要活動特征,斷裂沿線未發現左旋走滑的證據。
沿祁連山前的河西走廊發育有一系列規模不等的洪積扇,活動斷裂常發育于洪積扇之上,斷層陡坎是識別斷裂位置的重要標志。在斷裂中段的大紅泉村,發源于祁連山的一條大沖溝西側發育有多級階地[圖6(a)],在斷層通過處形成了高度不等的斷層陡坎,階地越老,陡坎越高[圖6(b)]。根據航片解譯及野外實地考察,在該沖溝西側至少發育了5級階地,均為基座階地,基座為第三系紅色砂巖。T1及T4階地發育于斷層南側,未穿過斷層。T2階地可分為T2a和T2b兩級亞階地,拔河高度分別約為11.5 m和13 m,T3階地拔河高度約21 m,T5階地拔河高度約37.5 m。野外利用差分GPS對各級階地的斷層陡坎進行了實地測量[圖6(a) P1~P4],得到其高度分別為(9.8±0.4) m、(12.4±0.3) m、(18.5±1) m和(30±2) m[圖6(c)]。

圖6 大紅泉地貌解譯及陡坎測量Fig.6 Geomorphic interpretation and fault scarp measurement at Dahongquan village
為確定各階地年代,野外采集了系列樣品[圖6(a)]。各級階地面之上幾乎無黃土覆蓋,其上有大量裸露的小礫石,適合利用宇宙成因核素測量階地的暴露年齡。我們在各階地面上采集了大量(約50塊)富含石英的礫石,直徑約3~5 cm,同時在河道內也采集了一個樣品,用于計算10Be繼承濃度。樣品前期處理由中國地震局地質研究所地震動力學國家重點實驗室完成,之后10Be與9Be比值由法國地球科學與環境研究與教育歐洲中心宇宙成因核素實驗室測定。根據測試結果,計算各級階地暴露年齡T2a為(12.6±0.7) ka、T2b為(17.5±0.8) ka、T3為(24.2±0.8) ka、T5為(44.9±1.7) ka。結合斷層陡坎高度,得到斷裂的逆沖速率分別為(0.78±0.05)、(0.71±0.04)、(0.76±0.05)和(0.67±0.04) mm/a,這些滑動速率在誤差范圍內大致一致,晚更新世以來平均逆沖速率為(0.73±0.09) mm/a,表明該斷裂晚更新世期間逆沖速率較為均勻。需要指出的是,由于斷裂下盤各階地面被同一期洪積扇覆蓋,得到的斷層陡坎高度較真實值可能偏小,因此該滑動速率可作為斷裂的最小滑動速率。
根據前人資料、航衛片解譯及野外實地考察,綜合判斷玉門—北大河斷裂為一條全新世活動的斷裂,其活動特征有明顯的分段性。東段幾何形態簡單,發現有古地震地表破裂帶的遺跡,斷層陡坎上保留新鮮的自由面;中段形態復雜,由多條次級斷層組成,以逆沖擴展為主,斷層三角面和高陡坎為其顯著的地貌特征;西段未出露地表,形成盲斷層-褶皺帶,為2002年玉門5.9級地震的發震斷裂之一。
玉門—北大河斷裂表現為逆沖推覆特征,斷裂沿線未發現左旋走滑的證據,根據斷層陡坎測量及年代學測試,得到斷裂晚更新世以來逆沖速率約為(0.73±0.09) mm/a。祁連山北緣斷裂帶由一系列構造背景類似的斷裂組成,玉門—北大河斷裂東側的佛洞廟—紅崖子斷裂的逆沖速率為(0.61±0.28) mm/a[24],榆木山北緣斷裂為(0.55±0.15) mm/a[25],張掖斷裂為0.6~0.9 mm/a[10],這些斷裂的滑動速率大致相當,反映了祁連山北緣斷裂帶在區域構造活動上具有整體性和協調性。
致謝:文中樣品前期處理由中國地震局地震動力學國家重點實驗室完成,測試由法國地球科學與環境研究與教育歐洲中心宇宙成因核素實驗室完成,在此表示感謝。
References)
[1] 李吉均,文世宣,張青松,等.青藏高原隆起的時代、幅度和形式的探討[J].中國科學:D輯,1979,6:608-616. LI Ji-jun,WEN Shi-xuan,ZHANG Qing-song,et al.Discussion on Age,Extent,and Form about Uplifting of the Tibetan Plateau[J].Science in China:Ser D,1979,6 :608-616.(in Chinese)
[2] Molnar P,Tapponnier P.Cenozoic Tectonics of Asia:Effects of a Continental Collision[J].Science,1989,189(4201):419-426.
[3] Tapponnier P,Xu Z Q,Roger F,et al.Oblique Stepwise Rise and Growth of the Tibet Plateau[J].Science,2001,294:1671-1677.
[4] An Z S,Kutzbach J,Prell W,et al.Evolution of Asian Monsoons and Phased Uplift of the Himalaya—Tibetan Plateau Since Late Miocenetimes[J].Nature,2001,411(6833):62-66.
[5] 張培震,張會平,鄭文俊,等.東亞大陸新生代構造演化[J].地震地質,2014,36(3):574-585. ZHANG Pei-zhen,ZHANG Hui-ping,ZHEGN Wen-jun,et al.Cenozoic Tectonic Evolution of Continental Eastern Asia[J].Seismology and Geology,2014,36(3):574-585.(in Chinese)
[6] Tapponnier P,Meyer B,Avounc J P,et al.Active Thrusting and Folding in the Qilianshan,and Decoupling between Upper Crust and Mantle in the Northeastern Tibet[J].Earth and Planetary Science Letters,1990,97:382-403.
[7] 國家地震局地質研究所,國家地震局蘭州地震研究所.祁連山—河西走廊活動斷裂系[M].北京:地震出版社,1993. Institute of Geology,SSB,Lanzhou Institute of Seismology,SSB.The Qilian Mountain—Hexi Corridor Active Fault System[M].Beijing:Seismological Press,1993.( in Chinese)
[8] 陳文彬,劉百篪,徐錫偉,等.祁連山西段玉門斷裂晚第四紀活動特征及相關問題的討論[J].西北地震學報,1999,21(4):389-394. CHEN Wen-bin,LIU Bai-chi,XU Xi-wei,et al.Activity of the Yumen Fault,Western Qilian Mountains,during Late Quaternary and Its Implication to Regional Tectonic Movements[J].Northwestern Seismological Journal,1999,21(4):389-394.(in Chinese)
[9] 閔偉,張培震,何文貴,等.酒西盆地斷層活動特征及古地震研究[J].地震地質,2002,24(1):35-44. MIN Wei,ZHANG Pei-zhen,HE Wen-gui,et al.Research on the Active Faults and Paleoearthquakes in the Western Jiuquan Basin[J].Seismology and Geology,2002,24(1):35-44.(in Chinese)
[10] Hetzel R,Mingxin Tao,Stokes S,et al.Late Pleistocene//Holocene Slip Rate of the Zhangye Thrust (QilianShan,China) and Implications for the Active Growth of the Northeastern Tibetan Plateau[J].Tectonics,2004,23,TC6006,doi:10.1029/2004TC001653.
[11] 黃華芳,鄭國東,方國慶,等.酒西盆地南緣推覆構造及其含油氣領域[J].石油與天然氣地質,1993,14(3):187-190. HUANG Hua-fang,ZHENG Guo-dong,FANG Guo-qing,et al.Nappe Structures in South Margin of Jiuxi Basin and Its Oil-bearing Areas[J].Oil and GAS Geology,1993,14(3):187-190.(in Chinese)
[12] 陳杰,盧演儔,丁國瑜.祁連山西段酒西盆地區階地構造變形的研究[J].西北地震學報,1998,20(1):28-36. CHEN Jie,LU Yan-shou,DING Guo-yu.The Latest Quaternary Tectonic Deformation of Terraces of Jiuxi Basin in West Qilianshan Mountains[J].Northwestern Seismological Journal,1998,20(1):28-36.(in Chinese)
[13] 陳柏林,劉建生,張永雙,等.玉門斷裂全新世活動特征及其與玉門地震的關系[J].地質論評,2005,51(2):138-142. CHEN Bo-lin,LIU Jian-sheng,ZHANG Yong-shuang,et al.Activity of Yumen Fault During the Holocene and Its Relation to the Yumen Earthquake[J].Geological Review,2005,51(2):138-142.(in Chinese)
[14] 向宏發,虢順民.河西走廊玉門—嘉峪關地區活動斷裂的初步研究[C]//現代地殼運動研究(5).北京:地震出版社,1990:139-145. XIANG Hong-fa,GUO Shun-min.Preliminary Study on Active Faults in Yumen—Jiayuguan Area[C]//Research on Recent Crustal Movement (5).Beijing:Seismological Press,1990:139-145.(in Chinese)
[15] 虢順民.祁連山—河西走廊活動斷裂帶與地震[C]//中法合作活斷層對比研究.北京:地震出版社,1993:94-102. GUO Shun-min.Active Fault Zone and Earthquake in Qilian-shan—Hexi Corridor[C]//Cooperation Research on Active Faults between China and France.Beijing:Seismological Press,1993:94-102.(in Chinese)
[16] 王峰,徐錫偉,鄭榮章.用階地測量方法探討阿爾金中段全新世滑動速率[J].地震地質,2004,26(1):61-70. WANG Feng,XU Xi-wei,ZHENG Rong-zhang.Study on Holocene Strike-slip Rates of the Middle Altyn Tagh Fault by Terraces Offset Measurement[J].Seismology and Geology,2004,26(1):61-70.(in Chinese)
[17] 劉興旺,袁道陽.蘭州莊浪河階地差分GPS測量與構造變形分析[J].西北地震學報,2012,29(4):341-346. LIU Xing-wang,YUAN Dao-yang.Analysis of Tectonic Deformation on Zhuanglang River Terraces in Lanzhou Based on the Differential GPS Surveying[J].Northwestern Seismological Journal,2012,29(4):341-346.(in Chinese)
[18] 李濤,陳杰,肖偉鵬,等.利用變形河流階地限定帕米爾北緣木什背斜的縮短、隆升和側向擴展[J].地震地質,2011,33(2):308-322. LI Tao,CHEN Jie,XIAO Wei-peng,et al.Using Deformation Terraces to Confine the Shortening,Uplift and Lateral Propagation of the Mushi Anticline,Northern Margin of the Pamir[J].Seismology and Geology,2011,33(5):308-322.(in Chinese)[19] Hetzel R,Samuel Niedermann,Tao M X,et al.Strecker,Climatic Versus Tectonic Control on River Incision at the Margin of NE Tibet:10Be Exposure Dating of River Terraces at the Mountain Front of the QilianShan[J].Journal of Geophysical Research,2006,111,F03012,doi:10.1029/2005JF000352.
[20] 何文貴,鄭文俊,趙廣堃,等.2002年12月14日甘肅玉門5.9級地震的發震構造研究[J].地震地質,2004,26(4):688-697. HE Wen-gui,ZHENG Wen-jun,ZHAO Guang-kun,et al.Study on the Seismogenic Structure of the Yumen,Gansu ProvinceMs5.9 Earthquake of December 14,2002[J].Seismology and Geology,2004,26(4):688-697.(in Chinese)
[21] 榮代潞,李亞榮.2002年玉門5.9級地震序列精確定位和發震構造研究[J].地震研究,2005,28(3):138-142. RONG Dai-lu,LI Ya-rong.Accurate Location of the 2002 Yumen,Gansu,M5.9 Earthquake Sequence and the Study on Its Generating Structure[J].Journal of Seismological Reasearch,2005,28(3):138-142.( in Chinese)
[22] 張培震,鄧起東,徐錫偉,等.盲斷裂、褶皺地震與新疆1906年瑪納斯地震[J].地震地質,1994,16(3):193-204. ZHANG Pei-zhen,DENG Qi-dong,XU Xi-wei,et al.Blind Thrust,Folding Earthquake,and the 1906 Manas Earthquake,Xinjiang[J].Seismology and Geology,1994,16(3):193-204.(in Chinese)
[23] 徐錫偉,聞學澤,韓竹軍,等.四川廬山7.0級強震:一次典型的盲逆斷層型地震[J].科學通報,2013,58(20):1887-1893. XU Xi-wei,WEN Xue-ze,HAN Zhu-jun,et al.LushanMS7.0 Earthquake:A Blind Reserve-fault Earthquake[J].Chin Sci Bull,2013,58(20):1887-1893.( in Chinese)
[24] 劉興旺,袁道陽,鄭文俊,等.祁連山北緣佛洞廟—紅崖子斷裂晚第四紀滑動速率研究[J].地質科學,2012,47(1):51-61. LIU Xing-wang,YUAN Dao-yang,ZHENG Wen-jun,et al.Research on Late Quaternary Slip Rate of the Fodongmiao—Hongyazi Fault at the North Margin of Qilianshan Mountain[J].Chinese Journal of Geology,2012,47(1):51-61.(in Chinese)
[25] 鄭文俊.河西走廊及其鄰區活動構造圖像及構造變形模式[D].北京:中國地震局地質研究所,2009:124-131. ZHENG Wen-jun.Geometric Pattern and Active Tectonics of the Hexi Corridor and Its Adjacent Regions[D].Beijing:Institute of Geology,CEA,2009:124-131.(in Chinese)
Characteristics of Late Quaternary Activity of Yumen—Beidahe Fault in North Margin of Qilian Mountain
LIU Xing-wang1,2,3, YUAN Dao-yang2,3, SHAO Yan-xiu2,3, ZHANG Bo2,3
(1.KeyLaboratoryofWesternChina'sEnvironmentalSystemwiththeMinistryofEducation,LanzhouUniversity,Lanzhou73000,Gansu,China; 2.LanzhouInstituteofSeismology,ChinaEarthquakeAdministration,Lanzhou730000,Gansu,China; 3.LanzhouNationalObservatoryofGeophysics,Lanzhou730000,Gansu,China)
As the boundary of the Qilian Mountain and Jiuxi Basin, the Yumen—Beidahe fault is located along the western part of the southern margin of the Hexi Corridor, and is an important part of the north Qilian Mountain fault system. The Yumen—Beidahe fault extends from Qingcaowan in the west in an ESE trending for 80 km to near Gutouquan. Considering its geometric structure and active behavior, the fault can be divided into three segments. The eastern segment, whose length is about 20 km, is located on the two sides of Beidahe and about 2 km from the Qilian Mountain. This fault segment is preserved in the form of continuous fault scarp, whose height ranges from less than 1 m to 7 m. At the most recent alluvial fan, some fault scarps still retain a fresh free surface, which suggests that the segment is an earthquake rupture zone. The structure of the middle segment is complex and mainly exhibits thrust characteristics. Its length is about 20 km and it comprises six discrete faults. The topography is expressed as a fault triangle and a fault scarp of different heights. The fault section suggests that the latest earthquake event occurred about 5 000 years ago. The western segment, whose length is about 40 km, does not appear on the ground and becomes a blind thrust-fold belt. Some rivers, such as the Shiyou and Baiyang Rivers, cross over this blind thrust-fold belt. The terraces of these rivers have been described as fold deformation in previous work. This fault segment is also the seismogenic structure of the 2002 YumenMS5.9 earthquake. Based on previous data and field surveys, we believe the Yumen—Beidahe fault to be an active thrust fault in the Holocene, and there is no geological or geomorphic evidence of any left-lateral slip along the fault. According to a differential GPS survey of the fault scarps and geomorphic surface dating, we infer the average thrust rate of the Yumen-Beidahe fault since the late Pleistocene to be about (0.73±0.09) mm/a.
Yumen—Beidahe fault; faulted landform; late Quaternary; slip rate
2016-04-20 基金項目:中國地震局行業專項(201408023);國家自然科學基金青年基金(41402186) 作者簡介:劉興旺(1980-),男,副研究員,主要研究方向為活動構造及地貌。E-mail:lxw_27@163.com。
P534.63;P542+.3
A
1000-0844(2016)06-0948-07
10.3969/j.issn.1000-0844.2016.06.0948