黃升謀+余海忠+湯尚文+于博+李云捷+吳進菊+郭壯
摘要:論述了生物科學幾門核心課程的定義、研究內容及發展歷史動態,闡明了它們之間的邏輯關系,提出了各門課程教學內容的選擇及在高等學校的開課順序。
關鍵詞:生物科學;核心課程;邏輯關系
中圖分類號:G633.91
文獻標識碼:A 文章編號:1674-9944(2016)21-0130-03
1 引言
生物化學、遺傳學、細胞生物學、分子生物學、基因工程學是生物科學專業的核心課程,由于它們相互聯系,交叉滲透,因此存在邏輯關系不清,課程內容重疊較多等問題,例如原核生物和真核生物基因表達調控在生物化學、細胞生物學、分子生物學都有介紹,基因工程原理在分子生物學、基因工程學中都有介紹,導致教師教學內容難以起舍,課程順序難以安排。要理順生物化學、遺傳學、細胞生物學、分子生物學、基因工程學的邏輯關系,確定各課程教學內容和教學順序,必須把其定義,研究內容,發展歷史動態結合起來。
2 生物科學專業核心課程概述
2.1 生物化學
生物化學是運用化學的理論和方法研究生物分子結構與功能、物質代謝及遺傳信息傳遞與調控規律的科學。
生物化學是生命科學中最古老的學科之一。 隨著生命科學的發展,各學科相互滲透。18世紀,一些從事化學研究的科學家轉向生物領域,為生物化學的誕生播下了種子。19世紀末,生物化學從生理化學中獨立。20世紀中后期又從生物化學分離出部分內容與遺傳學部分內容結合為分子生物學,然后,分子生物學基因操作部分獨立出來,形成基因工程學。
1920年以前,生物化學研究內容以分析生物體的化學組成、性質和含量為主,稱為靜態生物化學時期。
1920年-1950年,隨著同位素示蹤技術、色譜技術等物理學手段的廣泛應用,生物化學從單純的組成分析深入到物質代謝、能量轉化,如:光合作用、生物氧化、糖、脂肪、蛋白質代謝等領域。這是生物化學飛速發展的時期,稱為動態生物化學時期。
1950年以后,蛋白質化學和和核酸化學進展迅速,生物化學進入了分子生物學時期。分子生物學的發展揭示了生命本質的高度有序性和一致性,是人類在認識的巨大飛躍。根據生物化學的定義和歷史,生物化學研究的內容包括以下幾個方面。
2.1.1 生物的物質組成
生物是由一定的物質按特定的方式組成的,直到今天,新物質仍不斷被發現。如陸續發現的干擾素、環核苷一磷酸、鈣調蛋白、粘連蛋白、外源凝集素等都具有重要的生物學功能。另一方面,早已熟知的化合物也發現了新的功能,如20世紀50年代才知道肉堿是一種生長因子,而到60年代又發現其是生物氧化的載體。
2.1.2 物質代謝
生物體內絕大部分物質代謝是在酶催化下進行的,具有高度自動調節能力。一個小小的細胞內,有近2000種酶,在同一時間內,催化各種不同的化學反應。這些化學反應互不干擾,有條不紊地進行。表明生物體內的物質代謝有精確的調節控制系統。
2.1.3 結構與功能
生物大分子的功能與其特定的結構有密切關系。如酶的活性中心的結構決定其催化活性及其特異性;變構酶的活性還與其催化的代謝終末產物的結構有關。
核酸中核苷酸排列順序的不同,其結構就不同,所含遺傳信息不同。這些不同的構象對基因的表達具有調控作用。
生物體的糖包括多糖、寡糖和單糖。由于多糖鏈結構復雜,具有很大的信息容量,對于細胞專一地識別、相互作用具有重要作用。糖類將與蛋白質、核酸并列成為生物化學的主要研究對象。
在生物化學中,有關結構與功能關系的研究才僅僅開始,尚待大力研究的問題很多,其中重大的有:亞細胞結構中生物大分子間的結合,細胞的相互識別、細胞的接觸抑制、細胞間的粘合、抗原與抗體的作用、激素、神經介質與其受體的相互作用等。
2.1.4 繁殖與遺傳
生物典型特點是具有繁殖與遺傳特性?;蚴荄NA分子中的一段核苷酸序列,現在DNA分子的核苷酸序列已不難測得,不但能在分子水平上研究遺傳,而且還可能改變遺傳,從而派生出基因工程學。
2.2 細胞生物學
細胞生物學是從顯微水平、亞顯微水平和分子水平研究細胞的結構及其生命活動規律的科學。
過去,細胞生物學主要是在光學顯微鏡下對細胞的形態結構和生活史進行研究,稱為細胞學。20 世紀 50 年代以來,由于電子顯微鏡、放射性同位素、細胞結構組分分離技術、細胞培養等技術的廣泛應用,特別是分子生物學的興起,使細胞生物學研究的廣度和深度都有迅猛發展,從宏觀到微觀、從平面到立體、從定性到定量、從分析到綜合;從細胞、亞細胞、分子三個水平研究細胞的結構與功能、分裂與分化、衰老與死亡等生命活動規律及其調控機制,細胞與細胞、細胞與環境之間的相互關系。使原來以形態結構研究為主的細胞學轉變成以生理功能研究為主、將結構與功能緊密結合起來的細胞生物學。由于細胞生物學在分子水平上的研究工作取得了深入的進展,因此細胞生物學又稱為細胞分子生物學。細胞生物學研究內容如下。
2.2.1 細胞社會學
細胞社會學是細胞生物學中的一個新的領域。它是以系統論的觀點研究細胞群體中細胞間的相互關系、細胞群體的社會行為;細胞識別、通訊、相互作用;整體和細胞群對細胞的生長、分化、形態發生和器官形成等活動的調控;細胞外環境對細胞的影響。
2.2.2 細胞的增殖、生長、分化與調控
研究細胞增殖、生長、分化及其調控機制,不僅是控制生物生長和發育的基礎,而且是研究細胞癌變和逆轉的重要途徑。
2.2.3 細胞遺傳學
細胞遺傳學從細胞學角度來研究染色體的結構和行為以及染色體與細胞器的關系,從而探討遺傳與變異的機制等。
2.2.4 細胞化學
細胞化學:用切片或分離細胞成分,對單個細胞或細胞各個部分進行定性和定量的化學分析,研究細胞結構、化學成分的定位、分布及其生理功能。
2.2.5 分子細胞學
分子細胞學:從分子水平研究細胞與細胞器中蛋白質、核酸等大分子的組成、結構與功能及其遺傳性狀的表現和調控等,探討細胞生命活動的分子機理。
2.3 遺傳學
遺傳學是研究生物遺傳和變異規律的科學。孟德爾認為生物性狀的遺傳是受遺傳因子控制的,并提出了遺傳因子分離和自由組合的基本遺傳規律。1900年,孟德爾的成果得到廣泛重視,成為遺傳學的基石。
20世紀初,利用光學顯微鏡發現了細胞有絲分裂和減數分裂過程中染色體及其行為,奠定了遺傳的染色體理論基礎。1910年左右,美國遺傳學家摩爾根及其同事根據對普通果蠅的研究,提出了基因的連鎖交換規律,并結合當時的細胞學成就,創立了以染色體遺傳為核心的細胞遺傳學。
遺傳信息在分子水平上研究始于20世紀40年代。隨著電子顯微鏡的發明,人們已能夠直接觀察遺傳物質的結構及其在基因表達過程中的特征,使細胞遺傳學的研究進入分子水平。
1953年,沃森和克里克提出了DNA的雙螺旋結構模型,為進一步闡明DNA的結構、復制和遺傳物質如何保持世代連續的問題奠定了基礎,開創了分子遺傳學這一新的學科領域。
遺傳學研究的領域非常廣泛,可劃分成經典遺傳學、細胞遺傳學、分子遺傳學和生統遺傳學4個分支,各個分支領域相互聯系、相互重疊、相互印證,組成了一個不可分割的整體。
經典遺傳學研究從親代到子代的遺傳特性,包括遺傳的分離規律;獨立分配規律;連鎖和交換遺傳規律及機理;基因互作及其與環境的相互關系;性別決定與伴性遺傳;基因及染色體變異;數量性狀的特征及其多基因假說,近親繁殖和雜種優勢;細胞質遺傳等。
細胞遺傳學是通過細胞學手段對遺傳物質進行研究。其內容包括細胞的結構和功能;染色體的形態結構;細胞的有絲分裂,減數分裂;配子的形成和受精。
分子遺傳學是從分子的水平上研究遺傳物質的結構及遺傳信息的傳遞。內容包括DNA復制、轉錄和翻譯,基因突變及修復,原核生物和真核基因表達與調控;基因、基因組及作圖,遺傳重組。
生統遺傳學是用數理統計學方法來研究生物遺傳變異規律的學科。根據研究的對象不同,又可分為數量遺傳學和群體遺傳學。前者研究生物體數量性狀即由多基因控制的性狀遺傳規律,后者是研究基因頻率在群體中的變化、群體的遺傳結構和物種進化。
2.4 分子生物學
分子生物學是從分子水平研究核酸與蛋白質的結構與功能、遺傳信息傳遞和調控,闡明生命本質的科學。
從19世紀后期到20世紀50年代初,確定了蛋白質是生命的主要物質基礎,DNA是生物遺傳的物質的載體,是現代分子生物學誕生的準備和醞釀階段。
從20世紀50年代初到70年代初,是現代分子生物學的建立和發展階段,1953年Watson和Crick提出的DNA雙螺旋結構模型為現代分子生物學誕生的里程碑,確立了核酸作為遺傳信息分子的結構基礎,提出了鹼基配對是核酸復制、遺傳信息傳遞的基本方式,為核酸與蛋白質的關系及其在生命中的作用打下了最重要的基礎。
70年代后,基因工程技術出現,人類進入認識生命本質并開始改造生命的發展階段。
分子生物學原來是生物化學的一部分,因其太重要了,20世紀中后期從生物化學中分離出來并與遺傳學結合,獨立出來成為單獨的學科,是生物化學的發展和延續。涉及的部分內容比生物化學更細致深入,并從整體上考慮。
分子生物學從蛋白質、核酸、基因及基因組結構開始,以中心法則為主線,闡述生物大分子在信息傳導、基因表達調控中的相互作用和機理。主要內容包括蛋白質、核酸、基因和基因組的結構、DNA的復制、轉錄、轉錄后加工、基因突變與修復、蛋白質生物合成和翻譯后加工、原核生物基因表達的調控、真核生物基因表達的調控。基因工程技術的原理和應用等。
2.5 基因工程學
20世紀70年代,隨著 DNA的內部結構和遺傳機制逐漸呈現在人們眼前,生物學家不再僅僅滿足于探索、揭示生物遺傳的秘密,而是開始設想在分子的水平上去干預生物的遺傳特性。這就像工程設計,按照人類的需要(設計)把這種生物的某個“基因”與那種生物的某個“基因”進行“施工”,“組裝”成新的基因組合,創造出新的生物的工程技術被稱為“基因工程”。
基因工程包括如下幾個主要的內容:①目的基因的合成或提起分離。②載體的構建。③將載體轉移到受體細胞并增殖。④重組DNA分子的受體細胞克隆篩選。⑤將目的基因克隆到表達載體上,導入寄主細胞,使之在新的遺傳背景下實現功能表達,產生出人類所需要的物質。
3 課程間的邏輯關系,教學內容選擇及課程順序安排
從生物化學、遺傳學、細胞生物學、分子生物學、基因工程學的定義,研究內容,發展歷史動態可知,各學科的邏輯關系是:理解細胞結構及功能需要一定的生物化學基礎,理解遺傳物質的結構和功能需要一定的細胞生物學基礎,而分子生物學是生物化學、遺傳學交叉融合的產物,研究核酸和蛋白質分子結構和功能以及相互關系,而各個分子不能孤立發揮作用,必須依賴于一定的細胞結構,因此,生物化學是細胞生物學的基礎;細胞生物學是遺傳學和分子生物學的基礎?;蚬こ淌抢梅肿由飳W的理論和實驗技術進行轉基因操作的部分獨立出來的,因此分子生物學是基因工程學的基礎。所以,高校應按生物化學、細胞生物學、遺傳學、分子生物學、基因工程的順序安排課程教學最為合適。
由以上可知,由于歷史的原因,生物化學、細胞生物學、遺傳學、分子生物學、基因工程學相互聯系,交叉滲透,研究內容重復較多。因此,本研究根據其定義、邏輯關系及發展歷史,同時為編寫教材和教學的方便,建議生物化學、遺傳學、細胞生物學、分子生物學、基因工程學教學內容如下。
(1)生物化學主要教學內容主要有:蛋白質化學、核酸化學;酶學基礎;糖代謝與生物氧化;脂類代謝;蛋白質的分解代謝等內容。而將DNA復制、轉錄、翻譯、突變、修復及原核生物和真核生物基因表達調控留在分子生物學講授。
(2)細胞生物學的教學內容主要有:細胞的基本結構;細胞生物學研究方法;細胞膜的結構與功能及物質跨膜運輸;細胞質基質與細胞內膜系統;細胞通訊與信號傳遞;線粒體和葉綠體;細胞核與染色體;細胞骨架;細胞增殖及其調控;細胞分化、衰老與凋亡。
(3)遺傳學的教學內容主要有:遺傳的分離規律;獨立分配規律;連鎖和交換遺傳規律;基因互作及其與環境的關系;基因定位與連鎖遺傳圖;性別決定與伴性遺傳;基因及染色體變異;染色體畸變;數量性狀的特征及其多基因假說;近親繁殖和雜種優勢;細胞質遺傳;遺傳重組。
(4)分子生物學的教學內容主要有:DNA的復制、轉錄、轉錄后加工、基因突變與修復、蛋白質生物合成和翻譯后加工、原核生物基因表達的調控、真核生物基因表達的調控。
(5)基因工程學的主要教學內容有:基因工程技術的原理和應用等。
以上各門課的教學內容相對前述和我國現行教材的教學內容作了較大調整,例如;核酸和蛋白質的組成及結構只在生物化學中講授,細胞信號傳遞只在細胞生物學中講授,基因工程原理只在基因工程學中講授,避免了課程內容的重復。
參考文獻:
[1]沈振國.細胞生物學(第2版)[M].北京:中國農業出版社,2011.
[2]歐陽五慶.細胞生物學[M].北京:高等教育出版社,2010.
[3]翟中和,王喜忠,丁明孝.細胞生物學[M].北京:高等教育出版社,2007(8).
[4]George M.Malacinski,David Freifelder.essentials of molecular biology(third edition)[M].北京:科學出版社,2003.
[5]Jeremy M.Berg,John L. Tymoczko,Lubert Stryer[J].Biochemistry,2002.
[6]徐晉麟.現代遺傳學原理[M].北京:科學出版社,2000.
[7]王亞馥,戴灼華.遺傳學[M].北京:高等教育出版社,1999.
[8]孫乃恩.分子遺傳學[M].南京:南京大學出版社,1990.
[9]Robert H.Tamarin:Principles of Genetics[J].5th ed.,1996.
[10]朱玉賢,李 毅.現代分子生物學[M].北京:高等教育出版社,2002.
[11]楊業華.普通遺傳學[M].北京:高等教育出版社,2000.
[12]Hartwell L,Hood L,Goldberg M L,et al.Genetics:From genes to Genomes(first edition)[J].McGraw-Hill Companies,Boston,2000.
[13]馬建崗.基因工程學原理[M].西安:西安交通大學出版社,2001.
[14]孫 明.基因工程[M].北京:高等教育出版社,2006.
[15]吳乃虎.基因工程原理(第二版)[M].北京:科學出版社,2002.