趙潤茂,王紅軍,唐之富,張炳超,鄒湘軍,葉 敏
(華南農(nóng)業(yè)大學(xué)南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,廣州 510642)
荔枝收獲切割器果梗鋸切功耗影響因素試驗(yàn)
趙潤茂,王紅軍※,唐之富,張炳超,鄒湘軍,葉 敏
(華南農(nóng)業(yè)大學(xué)南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,廣州 510642)
為合理設(shè)計(jì)荔枝收獲裝備切割部件,獲得理想荔枝果、樹分離效果,在確定以回轉(zhuǎn)鋸切為切割方式的基礎(chǔ)上,搭建果梗鋸切功耗測定平臺(tái)并進(jìn)行荔枝果梗鋸切試驗(yàn)。研究了鋸齒前面斜磨角、鋸片齒數(shù)、進(jìn)鋸速度、鋸切轉(zhuǎn)速對(duì)果梗鋸切實(shí)時(shí)功耗的影響;以單因素試驗(yàn)結(jié)果為依據(jù),選定三因素三水平進(jìn)行正交試驗(yàn),得到各因素對(duì)鋸切實(shí)時(shí)功耗峰值影響的主次順序?yàn)殇徢修D(zhuǎn)速、進(jìn)鋸速度、齒前面斜磨角、鋸片齒數(shù);同時(shí)得到在給定因素水平下的最佳組合是采用25°齒前面斜磨鋸片、進(jìn)鋸速度為60 mm/min、鋸切轉(zhuǎn)速為550 r/min,此時(shí)電機(jī)瞬時(shí)功耗峰值最小為0.488 J。該研究為荔枝機(jī)械化收獲裝備切割部件的設(shè)計(jì)提供了參考。
機(jī)械化;切割;試驗(yàn);荔枝收獲;切割器;果梗鋸切;影響因素
對(duì)荔枝產(chǎn)后采收環(huán)節(jié)實(shí)施機(jī)械化作業(yè)是推動(dòng)荔枝產(chǎn)業(yè)發(fā)展的有效途徑。依據(jù)人工采摘方式,荔枝采摘裝備執(zhí)行機(jī)構(gòu)應(yīng)具備穩(wěn)固夾持與切割分離的基本功能,其中,切割機(jī)構(gòu)是該裝備的關(guān)鍵行為部件,更為直接影響果實(shí)采摘周期、采摘成功率、果枝分離斷面平整度等,因此本文對(duì)荔枝果梗切割的影響因素進(jìn)行試驗(yàn)研究。
目前針對(duì)農(nóng)林作物莖稈切割特性的研究有:Igathinathane C等[1-3]利用扭力扳手、樹剪、萬能材料試驗(yàn)機(jī)搭建了玉米莖稈切割能測定臺(tái),研究切入角對(duì)玉米稈粉碎能耗的影響,并得到其切割力—位移特性;Senthilkumar T等[4]設(shè)計(jì)多因素試驗(yàn)研究刀片數(shù)量、圓周速度、刃厚、刀前角對(duì)棉花秸稈粉碎長度的影響;劉慶庭等在自制單刀切割試驗(yàn)臺(tái)上對(duì)影響根茬破壞的因素進(jìn)行研究[5],并通過甘蔗莖稈切割力試驗(yàn),得到滑切角、刀盤傾角、切割速度對(duì)單位切割力及最大切割力的影響效應(yīng)[6];其他還有針對(duì)油菜[7]、甘藍(lán)[8]、龍須草[9]、龍眼[10]、灌木[11-12]等。然而農(nóng)林作物生長環(huán)境各異、不同物種間物料參數(shù)不盡相同,其加工特性無法直接遷移使用,因此需對(duì)荔枝果梗進(jìn)行獨(dú)立試驗(yàn)研究。
對(duì)于荔枝果梗切割,陳燕等[13]建立了切割速度、切割角度、刃口形式與峰值切割力、切割強(qiáng)度之間的關(guān)系;吳良軍等[14]通過試驗(yàn)測定其剪切強(qiáng)度、剪切功,并說明峰值剪切力、剪切功與果梗橫截面積呈正相關(guān)。但其二者研究時(shí)采用的往復(fù)式割刀不適于荔枝果體單點(diǎn)懸掛、成串采摘的特點(diǎn),且需要較復(fù)雜傳動(dòng)機(jī)構(gòu),因此更宜選用圓鋸片作為果梗切割刀具,但直接選用標(biāo)準(zhǔn)化工業(yè)鋸片無法最佳貼合荔枝收獲的農(nóng)藝要求,且目前未見有針對(duì)荔枝采摘鋸片選用設(shè)計(jì)與功耗分析相關(guān)的研究。
本文在搭建低成本果梗鋸切功耗測定試驗(yàn)平臺(tái)的基礎(chǔ)上,依據(jù)木材切削原理,對(duì)荔枝切割器鋸片結(jié)構(gòu)、運(yùn)動(dòng)參數(shù)進(jìn)行單因素及多因素試驗(yàn),獲得各因素對(duì)試驗(yàn)指標(biāo)的影響效應(yīng)及既定因素水平下的最佳組合,以期為荔枝機(jī)械化采摘切割方案的制定提供參考。
1.1 試驗(yàn)材料
試樣采自華南農(nóng)業(yè)大學(xué)熱帶亞熱帶果樹種質(zhì)資源圃,樹種桂味,采樣時(shí)間2015年7月8日。所采果梗盡可能通直、無病蟲害和少分枝,試樣直徑為5~6 mm,長度剪裁為100 mm左右,采后將果梗編號(hào)用小枝葉分層覆蓋保存,并保證所有試驗(yàn)在試樣采后12 h內(nèi)完成。依照標(biāo)準(zhǔn)規(guī)定(GB/1931-2009)實(shí)測含水率范圍為53.48%~65.32%。
1.2 試驗(yàn)用鋸片
在進(jìn)行荔枝的機(jī)械化采收時(shí),農(nóng)藝學(xué)要求果梗應(yīng)沿垂直于纖維方向的截面被切斷且不留茬;結(jié)合木材切削原理,該切斷方式為橫向鋸切,應(yīng)選擇橫截圓鋸片作為切割刀具。由于荔枝掛果果梗橫截面積小、起支撐作用的木質(zhì)部含量較少、抗彎能力差,所以必須選用厚度較小的超薄圓鋸片,同時(shí)采用一定的撥料量以減少切削過程中鋸片與鋸路壁的摩擦,防止夾鋸。據(jù)此確定選用圖1所示鋸片,其結(jié)構(gòu)尺寸參數(shù)見表1。

圖1 試驗(yàn)用硬質(zhì)合金圓鋸片F(xiàn)ig.1 Carbide saw blade for experimentation

表1 橫截鋸結(jié)構(gòu)參數(shù)Table 1 Parameters of cross-cut saw
1.3 試驗(yàn)設(shè)備及工作原理
自行搭建的鋸切力試驗(yàn)臺(tái)總體結(jié)構(gòu)如圖2所示,主要包括:廣州廣材試驗(yàn)儀器有限公司生產(chǎn)的WD-20KE型精密微控電子式萬能試驗(yàn)機(jī),精度±0.5%,分辨率±1/120 000;勝利DM6234P+電機(jī)轉(zhuǎn)速儀,精度±(0.05%+1),分辨力0.1;勝利VC86B數(shù)字萬用表,精度±(1.0%+10),采樣頻率3次/S;正科ZGA60FM-G(24 V,600 r/min)型永磁直流減速電機(jī),固緯直流電源供應(yīng)器(變動(dòng)率≤0.01%+3 mV),呼和浩特環(huán)眾(集團(tuán))有限責(zé)任公司生產(chǎn)的K01-50三爪卡盤,廣州美默通電子科技有限公司生產(chǎn)的CCM5D數(shù)顯直流電機(jī)調(diào)速器等。

圖2 鋸切試驗(yàn)臺(tái)結(jié)構(gòu)示意圖Fig.2 Structure schematic of test bed for sawing
如圖2所示,試驗(yàn)在電子式萬能材料試驗(yàn)機(jī)上進(jìn)行,選用K01-50型三爪卡盤作為物料夾具,卡盤裝配于萬能試驗(yàn)機(jī)上壓頭處;鋸片通過可拆卸法蘭連接桿與電機(jī)主軸配合;直流電機(jī)與電機(jī)調(diào)速器、萬用表連接,由直流電源供應(yīng)器提供穩(wěn)定電壓,固定于萬能試驗(yàn)機(jī)機(jī)架下側(cè)平臺(tái),數(shù)字萬用表通過RS232串口與計(jì)算機(jī)實(shí)時(shí)通訊。試驗(yàn)時(shí),首先利用電機(jī)轉(zhuǎn)速儀與電機(jī)調(diào)速器配合調(diào)節(jié)電機(jī)至設(shè)計(jì)轉(zhuǎn)速,再控制萬能試驗(yàn)機(jī)上壓頭帶動(dòng)所夾持物料以設(shè)定速度豎直向下進(jìn)給靠近鋸片直至完成一次切割。該試驗(yàn)臺(tái)實(shí)現(xiàn)鋸片可更換、進(jìn)鋸速度與切割轉(zhuǎn)速可調(diào)并可測;另利用通訊萬用表實(shí)時(shí)獲得電機(jī)電流,以研究鋸切過程中的切割功耗。
2.1 試驗(yàn)指標(biāo)的確定
果梗切割過程中鋸片受到的切割阻力及產(chǎn)生的能量消耗是進(jìn)行采摘器動(dòng)力匹配及鋸片結(jié)構(gòu)優(yōu)化設(shè)計(jì)所依據(jù)的主要參數(shù),且對(duì)延長刀具壽命、提高采摘機(jī)械戶外工作時(shí)長有重要意義。在實(shí)際鋸切過程中,圓鋸片受到的徑向力、切向力大小方向?qū)崟r(shí)變化,傳統(tǒng)的測力方法難以滿足需要,為便于測量分析,以主電機(jī)功耗來衡量果梗被切斷的難易程度。果梗鋸切時(shí)主電機(jī)能量消耗可分解為[15]

式中W為鋸切過程切割電機(jī)所做總功,J;W0為電機(jī)空載狀態(tài)下維持自身運(yùn)行所需的基本能量,J;W'為鋸斷果梗的能量消耗,J。
直流電機(jī)在負(fù)載條件下,輸入電壓值恒定,電流值依據(jù)動(dòng)載大小而增減,故鋸切電機(jī)所做總功為

式中U為電機(jī)輸入電壓,恒值24.0,V;I為電機(jī)電流值,可利用萬用表實(shí)時(shí)測定,A;t為做功時(shí)長,s。
2.2 試驗(yàn)因素的確定
本研究涉及的荔枝果樹是典型的木本植物,其果梗宏觀力學(xué)表現(xiàn)為正交各向異性[16],根據(jù)切削刃和主運(yùn)動(dòng)相對(duì)木材纖維方向的不同,木材直角自由切削分為縱向、橫向和端向3個(gè)主要切削方向[17],顯然,荔枝采摘時(shí)的切削為橫向鋸切,如圖3所示。

圖3 果梗鋸切截面Fig.3 Sawing direction of litchi stem
在農(nóng)業(yè)機(jī)械研究中,按支撐條件不同將切割分為有支撐切割與無支撐切割,對(duì)于荔枝收獲,需在切割工序前利用夾持機(jī)構(gòu)將果梗夾持,以防果實(shí)跌落,即切割刀片是以單端支撐切割原理工作的,因此,齒刃最小線速度的大小及其與進(jìn)鋸速度的匹配程度將直接決定果梗割茬是否產(chǎn)生撕裂。而鋸齒線速度的選擇與莖稈纖維組織的剛?cè)岫扔嘘P(guān)[18],為控制生物特性的差異,試驗(yàn)樣本同批次選自特定果樹同一高度、直徑在5~6 mm范圍內(nèi)的光滑果梗。
在進(jìn)鋸過程中,鋸齒側(cè)刃必須先于主刃切斷果梗纖維,因此側(cè)刃的鋒利程度,即鋸齒前面斜磨角在一定范圍內(nèi)增加,可減小切削功率[19];其次,每齒進(jìn)給量表征鋸片單個(gè)齒切削體積的大小,切削量過大導(dǎo)致果柄被鋸片壓倒歪斜、不能完全切斷、斷面傾斜及不平整等現(xiàn)象,切削量太小會(huì)降低采摘器的工作效率,每齒進(jìn)給量為

式中Vz為每齒進(jìn)給量,mm;v為進(jìn)鋸速度,m/min;n為鋸片轉(zhuǎn)速,r/min;z為圓鋸片齒數(shù)。
由式(3)可知,齒數(shù)、進(jìn)鋸速度、鋸片轉(zhuǎn)速對(duì)鋸片切削性能有一定影響,且鋸片齒數(shù)、鋸片轉(zhuǎn)速與每齒進(jìn)給量成反比[20],進(jìn)鋸速度與每齒進(jìn)給量成正比。
2.3 單因素試驗(yàn)設(shè)計(jì)
綜上所述,選取鋸片齒前面斜磨角、齒數(shù)、進(jìn)鋸速度、鋸切轉(zhuǎn)速進(jìn)行單因素試驗(yàn),每個(gè)因素取3水平,每個(gè)水平重復(fù)3次。為排除果梗直徑、含水率對(duì)試驗(yàn)結(jié)果的影響,每組因素試驗(yàn)在同一果梗上完成。果梗直徑使用廣陸數(shù)顯游標(biāo)卡尺(分辨率0.01 mm,誤差±0.03 mm)測量,在鋸切位置的不同方向上測量4次并求均值。
2.4 正交試驗(yàn)設(shè)計(jì)
在單因素試驗(yàn)結(jié)果分析的基礎(chǔ)上選取齒前面斜磨角、進(jìn)鋸速度、鋸切轉(zhuǎn)速進(jìn)行正交試驗(yàn),以尋求最優(yōu)化的參數(shù)組合。根據(jù)正交試驗(yàn)“盡可能選用小號(hào)正交表”的原則,選擇L9(34)正交表進(jìn)行試驗(yàn),并對(duì)試驗(yàn)結(jié)果進(jìn)行方差分析,因素水平如表2所示。

表2 正交試驗(yàn)因素水平表Table 2 Factors and levels graph for orthogonal test
圖4是一次試驗(yàn)中萬用表獲取的電機(jī)電流—時(shí)間曲線。電流峰值Imax可以反映鋸切過程中電機(jī)瞬時(shí)功耗極值,功耗極值通過在鋸切時(shí)段對(duì)峰值電流的積分獲得。

式中Wc為電機(jī)瞬時(shí)功耗計(jì)算值,J;t1為電流峰值出現(xiàn)時(shí)刻,s;t2為電流峰值終止時(shí)刻;T為萬用表采樣周期,恒值1/3,s;Imax為果梗鋸切階段電機(jī)電流峰值,A。
由圖4可知,隨著進(jìn)鋸時(shí)間(進(jìn)給量)的增加,電機(jī)瞬時(shí)功耗逐漸上升,在進(jìn)給行至果梗直徑一半處到達(dá)峰值;繼續(xù)進(jìn)給,電機(jī)瞬時(shí)功耗則逐步減小直至果梗被完全鋸斷。曲線的形成原因是:在鋸片對(duì)果梗的切入段,鋸片進(jìn)給引起果梗與鋸片的當(dāng)量接觸弧長增加,即單位時(shí)間內(nèi)鋸齒側(cè)刃需承擔(dān)更多的切削量,則電機(jī)瞬時(shí)功耗增大;在切出段,果梗與鋸片的接觸情況與切入段恰為相反,則電機(jī)瞬時(shí)功耗逐步下降。
3.1 單因素試驗(yàn)
3.1.1 齒前面斜磨角
依據(jù)文獻(xiàn)[17],一般情況下,硬質(zhì)合金圓鋸片齒前面斜磨范圍為10°~20°,試驗(yàn)時(shí)拉開水平區(qū)間[21],定制齒前面斜磨角為5°、15°、25°的橫截鋸片鋸切荔枝果梗,每個(gè)水平進(jìn)行3次重復(fù)試驗(yàn)。記錄電機(jī)電流峰值,以此計(jì)算電機(jī)功耗峰值并取均值,計(jì)算結(jié)果見表3,分析數(shù)據(jù)得出:電機(jī)功耗峰值隨齒前面斜磨角的增大而減小,齒前面25°斜磨的鋸片鋸切效果最好,此時(shí)功耗峰值為0.637 J。對(duì)數(shù)據(jù)結(jié)果進(jìn)行方差分析,F(xiàn)=9.949> F0.05(2,6)=5.14,表明鋸片齒前面斜磨角對(duì)電機(jī)功耗峰值有顯著影響。
3.1.2 鋸片齒數(shù)
為避免過大的齒距造成卡鋸現(xiàn)象,鋸片齒數(shù)不宜過少,且又考慮到鋸片周長尺寸限制及經(jīng)濟(jì)因素,鋸片齒數(shù)有上限。分別試制30、40、50齒橫截鋸片鋸切果梗,各水平試驗(yàn)重復(fù)3次。計(jì)算電機(jī)功耗峰值及其均值,結(jié)果見表3,分析得出:電機(jī)功耗峰值隨鋸片齒數(shù)增加而減小,50齒鋸片功耗峰值最小為0.795 J。對(duì)其進(jìn)行方差分析,F(xiàn)=1.803 3.1.3 進(jìn)鋸速度 控制萬能材料試驗(yàn)機(jī)以不同的進(jìn)給速度帶動(dòng)鋸片鋸切果梗,各水平試驗(yàn)重復(fù)3次。進(jìn)行電機(jī)功耗峰值及其均值計(jì)算,結(jié)果見表3,可見隨著進(jìn)鋸速度的增大,電機(jī)功耗峰值逐漸增大,速度為60 mm/min時(shí),鋸切功耗峰值最小為0.525 J。對(duì)數(shù)據(jù)結(jié)果進(jìn)行方差分析,F(xiàn)=69.959>F0.01(2,6)= 10.93,因此進(jìn)鋸速度對(duì)電機(jī)功耗峰值有極顯著影響。 表3 單因素試驗(yàn)方案及結(jié)果Table 3 Results of single factor experiment 3.1.4 鋸切轉(zhuǎn)速 對(duì)荔枝果梗的切斷,存在一個(gè)臨界鋸切轉(zhuǎn)速(鋸齒線速度),實(shí)際工作時(shí)若低于這個(gè)臨界速度,鋸齒則無法割斷所切削部分的木纖維,即會(huì)造成果梗歪斜切斷、歪斜不斷或劈裂現(xiàn)象[22]。據(jù)此,通過預(yù)試驗(yàn)測得9把鋸片均能順利切斷果梗的最低轉(zhuǎn)速約為230 r/min(此時(shí)進(jìn)鋸速度為120 mm/min),故取250 r/min為正式試驗(yàn)中鋸切轉(zhuǎn)速的水平下限。調(diào)節(jié)電機(jī)調(diào)速器使鋸片以設(shè)定轉(zhuǎn)速鋸切荔枝果梗,每組試驗(yàn)重復(fù)3次,表3為試驗(yàn)中電機(jī)功耗峰值與峰值均值,可知:鋸片轉(zhuǎn)速增加,電機(jī)功耗降低,當(dāng)鋸片轉(zhuǎn)速為550 r/min時(shí),電機(jī)功耗峰值最小為0.603 J。進(jìn)行單因素方差分析,F(xiàn)=271.879>F0.01(2,6)= 10.93,表明鋸切轉(zhuǎn)速對(duì)電機(jī)功耗峰值有極顯著影響。 3.2 正交試驗(yàn) 根據(jù)表2進(jìn)行9組多因素試驗(yàn),并對(duì)結(jié)果進(jìn)行直觀分析,數(shù)據(jù)如表4所示。 表4 正交試驗(yàn)方案及結(jié)果Table 4 Results of orthogonal test 由表4可以看出,1、6、8號(hào)試驗(yàn)鋸切功耗明顯高于其他組,6號(hào)試驗(yàn)最高為1.912 J,7號(hào)試驗(yàn)最低為0.488 J。根據(jù)極差R值比較,鋸切轉(zhuǎn)速>進(jìn)鋸速度>齒前面斜磨角,可見C因素是最重要因素,取3水平為好;其次為B因素,取1水平為好;而A因素對(duì)結(jié)果的影響較小,取3水平為好,即A3B1C3是給定水平下的最佳試驗(yàn)組合。對(duì)正交試驗(yàn)數(shù)據(jù)進(jìn)行方差分析,結(jié)果如表5所示。 表5 正交試驗(yàn)方差分析Table 5 Variance analysis of orthogonal test 方差分析表明:因素“齒前面斜磨角”、“進(jìn)鋸速度”對(duì)鋸切功耗均有顯著影響(P<0.05),但進(jìn)鋸速度較齒前面斜磨角影響更為顯著;因素“鋸切轉(zhuǎn)速”對(duì)鋸切功耗有極顯著影響(P<0.01),這與極差分析的主次因素結(jié)論一致。 A3B1C3恰是表4中7號(hào)試驗(yàn),其電機(jī)功耗峰值在9組試驗(yàn)中最小,為0.488 J,即直觀分析結(jié)論驗(yàn)證了單因素試驗(yàn)、正交試驗(yàn)數(shù)據(jù)結(jié)果。 搭建了果梗鋸切功耗測定平臺(tái),并對(duì)含水率為53.48%~65.32%、直徑為(5±0.2)mm的“桂味”種荔枝果梗進(jìn)行鋸切試驗(yàn)。 1)單因素試驗(yàn)結(jié)果表明:鋸片齒前面斜磨角對(duì)電機(jī)瞬時(shí)功耗峰值有顯著影響,且隨齒前面斜磨角的增大,電機(jī)功耗峰值降低;鋸片齒數(shù)對(duì)電機(jī)瞬時(shí)功耗峰值無顯著影響;進(jìn)鋸速度對(duì)電機(jī)瞬時(shí)功耗峰值有極顯著影響,功耗峰值隨進(jìn)鋸速度的增大而增加;鋸切轉(zhuǎn)速對(duì)電機(jī)瞬時(shí)功耗峰值有極顯著影響,功耗峰值隨鋸切轉(zhuǎn)速的增加而減小,在120 mm/min的進(jìn)鋸速度下,所選鋸片能實(shí)現(xiàn)順利鋸切的臨界轉(zhuǎn)速為230 r/min。 2)正交試驗(yàn)結(jié)果表明:影響鋸切電機(jī)瞬時(shí)功耗峰值的主次因素依次為:鋸切轉(zhuǎn)速、進(jìn)鋸速度、鋸片齒前面斜磨角、鋸片齒數(shù);既定水平下,采用25°齒前面斜磨的鋸片,在60 mm/min進(jìn)鋸速度、550 r/min鋸切轉(zhuǎn)速下電機(jī)功耗峰值最小為0.488 J。 3)單因素試驗(yàn)結(jié)果與多因素試驗(yàn)及其直觀分析、方差分析結(jié)果一致,可為荔枝收獲裝備切割器的設(shè)計(jì)提供理論依據(jù)。 [1] Igathinathane C, Womac A R, Sokhansanj S. Effect of angle of cut on com stalks mechanical cutting strength and energy[C]//Phoenix: American Society of Agricultural and Biological Engineers, 2010. [2] Igathinathane C, Pordesimo L O, Schilling M W, et al. Fast and simple measurement of energy requirements for plant stalk cutting[C] //Providence: American Society of Agricultural and Biological Engineers, 2008. [3] Igathinathane C, Pordesimo L O, Schilling M W, et al. Fast and simple measurement of cutting energy requirement of plant stalk and prediction model development[J]. Industrial Crops and Products, 2011, 33(2): 518-523. [4] Senthilkumar T, Manian R, Kathirvel K. Effect of blade and operational parameters on shredding efficiency of an experimental cotton stalk shredder[J]. Agricultural Mechanization in Asia, Africa and Latin America, 2011, 42(3): 9-13. [5] 劉慶庭,區(qū)穎剛,卿上樂,等. 甘蔗莖稈在光刃刀片切割下根茬破壞試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(3):103-107. Liu Qingting, Ou Yinggang, Qing Shangle, et al. Stubble damage of sugarcane stalks in cutting test by smooth-edge blade[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(3): 103-107. (in Chinese with English abstract) [6] 劉慶庭,區(qū)穎剛,卿上樂,等. 甘蔗莖稈切割力試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(7):90-94. Liu Qingting, Ou Yinggang, Qing Shangle, et al. Cutting force test of sugarcane stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(7): 90-94. (in Chinese with English abstract) [7] 吳明亮,管春運(yùn),湯楚宙,等. 油菜莖稈切割力影響因素試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(6):141-144. Wu Mingliang, Guan Chunyun, Tang Chuzhou, et al. Experiments on influencing factors of cutting force of rape stem[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(6): 141-144. (in Chinese with English abstract) [8] 李小強(qiáng),王芬娥,郭瑋俊,等. 甘藍(lán)根莖切割力影響因素分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(10):42-48. Li Xiaoqiang, Wang Fen’e, Guo Weijun, et al. Influencing factor analysis of cabbage root cutting force based on orthogonal test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(10): 42-48. (in Chinese with English abstract) [9] 羅海峰,湯楚宙,鄒冬生,等. 龍須草莖稈往復(fù)式切割試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(2):13-17. Luo Haifeng, Tang Chuzhou, Zou Dongsheng, et al. Experiment on reciprocating cutting of eulaliopsis binate stem[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(2): 13-17. (in Chinese with English abstract) [10] 吳良軍,楊洲,段潔麗,等. 龍眼樹枝修剪機(jī)具刀片切割力的影響因素試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(24):8-14. Wu Liangjun, Yang Zhou, Duan Jieli, et al. Experiment on influencing factors of cutting force of blades of trim tool for longan branch[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 8-14. (in Chinese with English abstract) [11] 陳昕. 四倍體刺槐飼料收獲機(jī)往復(fù)切割器切割性能研究[D].北京:北京林業(yè)大學(xué),2011. Chen Xin. The Research of Reciprocating Knife Cutting Performance Used for Tetraploid Robinia Pseudoacacia Harvester[D]. Beijing: Beijing Forestry University, 2011. (in Chinese with English abstract) [12] 劉志剛,王德成,翟改霞,等. 往復(fù)式雙動(dòng)刀灌木收割機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013(增刊2):102-106. Liu Zhigang, Wang Decheng, Zhai Gaixia, et al. Design and experiment on reciprocating double knife shrub harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013(Supp.2): 102-106. (in Chinese with English abstract) [13] 陳燕,蔡偉亮,向和平,等. 面向機(jī)器人采摘的荔枝果梗力學(xué)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(21):53-58. Chen Yan, Cai Weiliang, Xiang Heping, et al. Mechanical properties of litchi stem for harvesting robots[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(21): 53-58. (in Chinese with English abstract) [14] 吳良軍,楊洲,洪添勝,等. 荔枝樹枝力學(xué)特性的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(16):68-73. Wu Liangjun, Yang Zhou, Hong Tiansheng, et al. Experimental study on mechanical properties of litchi branches[J]. Transactions of the Chinese Society of Agricultural Engineering, (Transactions of the CSAE), 2012, 28(16): 68-73. (in Chinese with English abstract) [15] 唐進(jìn)元,林學(xué)杰,唐健杰,等. 基于DEFORM-3D的金屬鋸切過程力能仿真研究[J]. 制造技術(shù)與機(jī)床,2012(8):99-103. Tang Jinyuan, Lin Xuejie, Tang Jianjie, et al. Force theory simulation research of metal cutting process based on DEFORM-3D software[J]. Design and Research, 2012(8): 99-103. (in Chinese with English abstract) [16] 陳誠. 往復(fù)切割器式灌木平茬機(jī)切割力的研究[D]. 北京:北京林業(yè)大學(xué),2011. Chen Cheng. Research of Cutting Force for Reciprocating Knife Bush Harvester[D]. Beijing: Beijing Forestry University, 2011. (in Chinese with English abstract) [17] 曹平祥,郭曉磊. 木材切削原理與刀具[M]. 北京:中國林業(yè)出版社,2010. [18] 梁建平. 2GP—100灌木平茬機(jī)研究設(shè)計(jì)[J]. 內(nèi)蒙古林業(yè)科技,1994(4):25-28. Liang Jianping. Study on the design of 2GP-100 bush harvester[J]. Inner Mongolia Forestry Science & Technology, 1994(4): 25-28. (in Chinese with English abstract) [19] 金維洙. 木材切削與木工刀具[M]. 哈爾濱:東北林業(yè)大學(xué)出版社,2005. [20] 李黎. 木材切削原理與刀具[M]. 北京:中國林業(yè)出版社,1983. [21] 王頡. 試驗(yàn)設(shè)計(jì)與SPSS應(yīng)用[M]. 北京:化學(xué)工業(yè)出版社,2007. [22] 王飛. 沙生灌木圓鋸片平茬鋸切性能研究[D]. 北京:北京林業(yè)大學(xué),2009. Wang Fei. Cutting Research for Desert Shurb Regenerating Harvesting with Circular Saw[D]. Beijing: Beijing Forestry University, 2009. (in Chinese with English abstract) Experiment on influencing factors of power consumption for sawing stem in cutting device of litchi harvester Zhao Runmao, Wang Hongjun※, Tang Zhifu, Zhang Bingchao, Zou Xiangjun, Ye Min There are 3 main forms of cutter commonly assembled into agricultural harvesters, which are reciprocating cutter, cutter disks and saw blade. Given the fact that the litchi fruits grow in bunches and hang from the bearing shoots, as well as the bionic principle that the cutting-section of the litchi stem must be smooth and unsplit when litchi is picked, it is more suitable to choose the saw blade when the litchi harvester is designed. However, directly using standardized industrial saw blade could not be best in agronomy. Meanwhile, it is indispensable to focus on the studies on the relationship between structure parameters and power consumption of main motor as well as the relationship between motion parameters and power consumption of main motor. After all, the harvester works in outdoor environment. Applying the principles of wood processing and cutting tool technology, the structure and motion parameters were experimentally studied. The experiment was carried out using an universal testing machine, with a 3-jaw chuck mounted on the upper pressure head and the saw blade -motor system installed at the bottom platform. The motor speed, whose current value was real-time measured during the sawing process by a communication multimeter, was controlled by a speed governor. The samples were taken from the Germplasm Collections of Tropical and Subtropical Fruit Species, South China Agricultural University. It was assured that these samples had a length of about 10 mm and a diameter between 5-6 mm, and the branches were straight, with no divergence and free of diseases. Each group of test was conducted on the same stem so as to lower the impact of the diameter and moisture content between different samples. Experiments were designed by using the single-factor method in the study, and 9 kinds of circular saw blades were trial-manufactured, with the combination of 3 kinds of teeth numbers and 3 kinds of face bevel angles. Besides, 3 rotation speed levels were set respectively. There existed a critical rotation speed in the process of stem sawing. If operating speed was lower than the critical speed, stem fibers would not be cut off thoroughly and even cause stem splitting. Therefore, the critical speed of each saw blade was measured by preliminary tests. Finally, a 250 r/min rotation speed was set as the lowest level over the whole experimental process. After all, the results showed that: 1) The instantaneous power consumption of the sawing motor was significantly affected by the face bevel angle (P<0.05), and the rotation speed (P<0.01), but was not affected by the number of teeth; 2) The instantaneous power consumption of the sawing motor increased with the rise of the feeding speed, while decreased with the rise of the face bevel angle and rotation speed. Based on the single-factor experiment, the L9(34) orthogonal experiment was carried out. The results showed that: 1) The order from high to low for the effect of each factor on instantaneous power consumption peak was rotation speed, feeding speed, face bevel angle and number of teeth; 2) At given levels, the lowest instantaneous power consumption of the cutting motor was 0.488 J, which was detected under the optimal combination of parameters, i.e. the face bevel angle was 25°, the feeding speed was 60 mm/min, and the rotation speed was 550 r/min. The study may provide theoretical basis for the design of cutting device of litchi harvester. mechanization; cutting; experiments; litchi harvesting; cutting device; stem-sawing; influencing factors 10.11975/j.issn.1002-6819.2016.09.003 S225.93;S667.1 A 1002-6819(2016)-09-0016-06 趙潤茂,王紅軍,唐之富,張炳超,鄒湘軍,葉 敏. 荔枝收獲切割器果梗鋸切功耗影響因素試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):16-21. 10.11975/j.issn.1002-6819.2016.09.003 http://www.tcsae.org Zhao Runmao, Wang Hongjun, Tang Zhifu, Zhang Bingchao, Zou Xiangjun, Ye Min. Experiment on influencing factors of power consumption for sawing stem in cutting device of litchi harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 16-21. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.003 http://www.tcsae.org 2015-09-09 2016-01-13 國家自然科學(xué)基金資助項(xiàng)目(51175189) 趙潤茂,男,陜西乾縣人,博士生,主要從事農(nóng)業(yè)機(jī)械裝備的研究。廣州 華南農(nóng)業(yè)大學(xué)南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,510642。Email:Zhrm_2007@163.com ※通信作者:王紅軍,女,重慶人,教授,博士,主要從事智能設(shè)計(jì)、農(nóng)業(yè)機(jī)械裝備的教學(xué)和研究。廣州 華南農(nóng)業(yè)大學(xué)南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,510642。Email:xtwhj@scau.edu.cn


4 結(jié)論
(Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China)