999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

玉米耐受鹽脅迫的調(diào)控機理研究進展

2016-12-17 22:23:55孫驗玲徐遠超李帥
山東農(nóng)業(yè)科學(xué) 2016年11期

孫驗玲+徐遠超+李帥

摘要:鹽脅迫是影響玉米生長和產(chǎn)量的一個重要環(huán)境限制因素。鹽脅迫易引發(fā)離子脅迫和滲透脅迫,最終導(dǎo)致植物葉面積擴展受阻、光合作用以及生物量積累降低等。植物在適應(yīng)鹽脅迫環(huán)境時能形成許多耐受調(diào)節(jié)機理,如Na+的外排、Na+區(qū)隔化進入液泡、可溶性物質(zhì)的積累和活性氧(reactive oxygen species,ROS)的清除等。本文對近年來玉米耐鹽機理的研究進展作一概述,內(nèi)容包括鹽脅迫對玉米生長和發(fā)育的影響,玉米對鹽脅迫的生理生化響應(yīng)及分子機制,基于離子平衡、滲透調(diào)節(jié)、清除活性氧和激素調(diào)節(jié) 4 個方面的玉米耐受鹽脅迫的調(diào)控機理,并對玉米耐鹽研究存在的問題和前景進行了分析和展望。深入研究玉米耐鹽生理和分子機制,不僅具有重要的科學(xué)意義,而且還能為將來玉米的耐鹽育種提供重要的理論指導(dǎo)。

關(guān)鍵詞:玉米;耐鹽性;耐鹽生理響應(yīng);耐鹽分子調(diào)控機制

中圖分類號:S513.01 文獻標識號:A 文章編號:1001-4942(2016)11-0157-07

Abstract Salinity stress is one of the most serious environmental constraints to maize growth and productivity. It causes ionic and osmotic stresses, and finally inhibits leaf expansion, restricts photosynthesis and limits the accumulation of biomass. In response to salinity stress, plants have employed many adaptive strategies, such as the active exclusion of sodium ions (Na+) and/or their sequestration into the vacuole, the accumulation of soluble substances and the scavenge of reactive oxygen species (ROS). The research advances of maize salt tolerance in recent years were discussed in this paper, including the effects of salt stress on maize growth and development, the physiological, biochemical and molecular mechanisms of maize salt tolerance. Among them, ion homeostasis, osmoregulation, scavenge of ROS and phytohormone regulation were especially summarized about their regulation roles on adaptation to salt stress in maize. In addition, some problems and suggestions for the research of maize salt tolerance were provided. Understanding the physiological and molecular mechanisms of maize salt tolerance not only had important scientific significance, but also could provide important theoretical guidance for maize salt resistant breeding in the future.

Keywords Maize; Salt tolerance; Physiological response of salt tolerance; Molecular mechanism of salt tolerance

土壤鹽漬化是造成農(nóng)作物減產(chǎn)的重要環(huán)境限制因素之一。據(jù)統(tǒng)計,全球約有20%的農(nóng)業(yè)耕地遭受鹽漬化的侵蝕,預(yù)計到2050年,有超過50%的耕地將被鹽漬化。我國有3 600×104 hm2的鹽漬地,其中有660×104 hm2是耕地,占全國耕地面積的6.62%,主要集中分布在東北、華北、西北地區(qū)和長江以北等糧食主產(chǎn)區(qū)[1]。近年來,我國耕地由于灌溉和施肥不當引起的次生鹽漬化問題日益嚴重,總鹽漬土面積不斷擴大,對農(nóng)業(yè)生產(chǎn)的影響逐年加重。因此,鹽漬地綜合利用與防治成為科研的熱點,其中選育抗鹽或耐鹽的農(nóng)作物品種是最經(jīng)濟有效的措施之一[2]。

玉米(Zea mays L.)既是重要的糧食和飼料作物,又是重要的工業(yè)原料。隨著現(xiàn)代化工業(yè)進程的加快,目前市場上玉米的需求量日益增大,提高玉米的綜合生產(chǎn)力亟待解決。玉米的耐鹽性相對較差[3,4],其中苗期是整個生長周期的關(guān)鍵時期,該時期對各種外界不利環(huán)境因素的脅迫比較敏感,鹽脅迫使玉米幼苗芽勢弱,胚根少且短,苗弱,成活率低,嚴重影響其后期生長發(fā)育及產(chǎn)量[5]。因此,對玉米苗期等關(guān)鍵生長期耐受鹽脅迫的調(diào)控機理研究不僅具有重要的科學(xué)意義,同時也為培育耐鹽品種、提高玉米耐鹽性和產(chǎn)量以及充分發(fā)揮鹽漬土的生產(chǎn)潛力提供理論依據(jù)。

1 鹽脅迫對玉米生長發(fā)育的影響

玉米對鹽脅迫較為敏感,其極限鹽度為 170 mmol/L(在一定鹽濃度下,50%的植物能正常生長,超過該濃度時,則50%以上的植物生長受阻,產(chǎn)量降低,這一鹽濃度稱為該植物的極限鹽度),每超過極限鹽度 10 mmol/L,玉米產(chǎn)量降低12%[6]。100 mmol/L NaCl的鹽脅迫可使根莖生長的受抑制程度分別達20%和50% 以上[7];250 mmol/L NaCl可導(dǎo)致玉米的生長嚴重受阻,枯萎死亡[8],由此可見,玉米的耐鹽能力較低。玉米遭受鹽脅迫時,其PSⅠ和PSⅡ遭到破壞,尤其是PSⅡ,其幼苗的凈光合速率下降,細胞間隙CO2濃度升高,氣孔導(dǎo)度降低[9]。另外,鹽脅迫抑制玉米對氮、鉀、鈣、錳和鐵等礦質(zhì)元素的吸收和轉(zhuǎn)運,嚴重阻礙其正常生長和發(fā)育[10-17]。研究表明,玉米受到鹽脅迫后,植株干物質(zhì)積累速度變慢,干物質(zhì)下降,葉面積停止增加,黃葉指數(shù)增大,根變短變粗,節(jié)根條數(shù)增多,側(cè)根及根毛減少,葉、莖和根的鮮重及干重降低[18,19]。

鹽脅迫誘發(fā)離子脅迫和滲透脅迫,直接傷害玉米植株,進而影響植株體內(nèi)各種生理活動。Na+的過度積累影響對K+的吸收,進而打亂氣孔運動的正常節(jié)律,導(dǎo)致水分嚴重缺失,以致玉米枯萎死亡[16, 20,21]。研究表明,NaCl脅迫使玉米幼苗的Na+濃度急劇升高,尤其是在根部[22]。隨著NaCl濃度的增大,地上部和根部的Na+、Cl-含量增加,而K+含量降低[23],抗鹽性高的玉米品種有明顯高的 K+/Na+比率[24]。另外,隨NaCl濃度升高,玉米體內(nèi)Ca2+含量急劇降低[25],生長受到抑制,這可能是因為過量的Na+競爭取代了細胞膜上結(jié)合的Ca2+,進而引發(fā)質(zhì)膜滲漏和細胞損傷[26]。而Ca2+的加入明顯減輕玉米的鹽脅迫傷害,這可能與Ca2+能降低鹽脅迫引發(fā)的氣孔關(guān)閉、光合作用得到改善有關(guān)[27]。另外,鹽脅迫還可誘導(dǎo)玉米體內(nèi)活性氧過度積累,引發(fā)氧化損傷[28]。

總之,玉米遭受鹽脅迫的傷害是多方面的,但最終都是質(zhì)膜受損,細胞內(nèi)離子穩(wěn)態(tài)被破壞,代謝紊亂失衡。

2 玉米耐鹽的生理生化基礎(chǔ)

植物在適應(yīng)鹽脅迫環(huán)境時可形成許多耐受調(diào)節(jié)機理,如離子穩(wěn)態(tài)的調(diào)節(jié)、有機滲透物質(zhì)的積累和活性氧(reactive oxygen species,ROS)的清除等[29-31]。

2.1 離子平衡的調(diào)控

在鹽脅迫下,高濃度的Na+嚴重阻礙作物對K+和Ca2+的吸收和運輸。高濃度Na+可競爭抑制細胞膜上的Ca2+結(jié)合,破壞質(zhì)膜透性,細胞內(nèi)Na+急劇增加,而K+大量流失,Na+/K+值增大,從而打破原有的離子平衡,植物即受鹽害[32, 33]。并且,由于K+是細胞內(nèi)50多種酶的激活劑,細胞內(nèi)過高濃度的Na+將競爭K+的結(jié)合位點,破壞胞質(zhì)內(nèi)多種酶促過程[34,35]。鹽脅迫下,避免Na+進入細胞和增加細胞中Na+排出,同時維持細胞中K+的吸收和減少K+流失,繼而提高K+/Na+比率,是植物應(yīng)對鹽脅迫共同的抵御策略[36]。研究發(fā)現(xiàn),耐鹽性玉米雜交種比敏感型雜交種有較高的K+/Na+比率[37]。鹽處理液體培養(yǎng)條件下,玉米雜交種Pioneer 32B33和Pioneer 30Y87有較高的K+和Ca2+含量,以及較高的K+/Na+和Ca2+/Na+比率,能產(chǎn)生更高的生物量[38]。

玉米可把吸收的鹽分區(qū)隔化在根、液泡和質(zhì)外體中,也可通過生理上的調(diào)節(jié)忍受一定濃度的鹽分[39]。鹽脅迫下,玉米地上部和根部 Na+含量增加,根部 Na+、Cl-含量明顯高于地上部,從而使地上部鹽濃度保持較低水平,減緩鹽害作用[23]。同時,根部和進入地上部的Na+均可被離子區(qū)隔化進入液泡中,以降低細胞的滲透勢[39]。研究發(fā)現(xiàn),100 mmol/L NaCl處理時,玉米液泡中 Na+含量較細胞質(zhì)中的 Na+含量明顯要高,且玉米質(zhì)外體中 Na+含量也較細胞質(zhì)明顯要高[23,40]。另外,玉米將過多的Na+和Cl-遷移至莖和葉鞘中,以降低葉片中的離子毒性,也是玉米適應(yīng)高鹽脅迫的策略之一[41]。

2.2 有機滲透物質(zhì)的調(diào)節(jié)

植物受到滲透脅迫造成的不平衡,通常在細胞內(nèi)積累滲透保護物質(zhì)(osmoprotectant)以降低細胞的滲透勢,有利于維持植物在脅迫狀態(tài)下的吸水,以保證植物正常的生理代謝需求。這些相容性溶質(zhì)主要包括脯氨酸(proline,Pro)、甜菜堿(betaine)、海藻糖(trehalose)和多胺(polyamine,PA)等[42-44]。鹽脅迫下,玉米的滲透調(diào)節(jié)物質(zhì)主要是可溶性糖、甜菜堿、游離氨基酸和有機酸等有機溶質(zhì),以有機滲透調(diào)節(jié)為主。脯氨酸(Pro)被認為是植物在滲透脅迫下容易積累的一種相容滲透劑(compatibility osmoprotectant),研究表明,不同鹽濃度處理下,玉米幼苗根系的脯氨酸含量均明顯升高[45]。在 400 mmol/L NaCl脅迫下,甜玉米葉片可至少積累600 μmol/g 脯氨酸[46]。Mansour等[47]研究報道,鹽脅迫可促使玉米體內(nèi)脯氨酸和甜菜堿的大量積累。可溶性糖是許多非鹽生植物遭受逆境脅迫下主要的滲透調(diào)節(jié)劑,鹽脅迫條件下,耐鹽強的玉米品種其可溶性糖含量高于鹽敏感的玉米品種[48]。多胺(PA)是一類低分子量脂肪族含氮堿,在植物體內(nèi)既可作為滲透調(diào)節(jié)物對細胞內(nèi)離子平衡和 pH 進行調(diào)節(jié),又可清除活性氧并增加保護酶的活性,且還可與含負電的蛋白、磷酸基團和DNA 等大分子結(jié)合影響其構(gòu)象,調(diào)節(jié)基因表達。研究表明,用不同濃度的鹽處理玉米離體葉片24 h后葉片中多胺含量明顯增加[49]。

另外,研究報道,上述滲透調(diào)節(jié)物質(zhì)如甜菜堿(betaine)和亞精胺 (spermidine) 等的外源施加,能使植物提高其耐鹽性[50]。例如,外施低濃度的脯氨酸和甜菜堿等能使鹽脅迫下的番茄(Solanum lycopersicum)葉中維持較高的K+濃度[51],也可使大麥根中鹽脅迫引起的K+外流減少,提高其耐鹽性[52,53]。玉米遭受鹽脅迫時,外施低濃度的甜菜堿可促進玉米的生長,提高葉片的水含量和凈光合產(chǎn)能[54]。

2.3 活性氧應(yīng)答

鹽脅迫下,活性氧的過度積累能誘發(fā)膜脂過氧化,破壞細胞膜系統(tǒng)的結(jié)構(gòu)和功能,新陳代謝紊亂,最終導(dǎo)致植物受害[55,56]。抗氧化酶是植物體內(nèi)的一套清除活性氧系統(tǒng),主要包括超氧化物歧化酶(superoxide dismutase, SOD)、過氧化物酶(peroxidase, POD)、過氧化氫酶(catalase, CAT)和抗壞血酸過氧化物酶(ascorbate peroxidase,APX)、谷胱甘肽過氧化物酶(glutathione peroxidase,GPX)和谷胱甘肽還原酶(glutathione reductase,GR)等[57,58]。玉米體內(nèi)抗氧化系統(tǒng)在逆境下表達量及活性的增加是提高其抗逆能力的重要因素。研究發(fā)現(xiàn),在鹽脅迫下,玉米體內(nèi)的SOD、POD活性升高[59]。另外,不同鹽濃度脅迫下,玉米SOD活性在大喇叭口期最高,灌漿期最低,而POD活性在大喇叭口期最高,三葉期最低,灌漿期略有升高;CAT活性隨著鹽濃度的增加而顯著升高。綜上,耐鹽品種SOD、POD和CAT活性都高于鹽敏感品種[13]。同時,鹽脅迫還可誘導(dǎo)玉米多胺氧化酶(polyamine oxidase,PAO)活性升高,主要作用于葉片伸長區(qū),促進生長[60,61]。另外,有研究表明,水培條件下的玉米用含有1 μmol/L H2O2的營養(yǎng)液預(yù)處理2天后,其耐鹽性得到明顯提高[62]。

2.4 植物激素調(diào)節(jié)

植物激素在植物適應(yīng)鹽脅迫中起到積極的調(diào)控作用。在鹽脅迫下,植物體內(nèi)的吲哚乙酸(indoleacetic acid,IAA)、脫落酸(abscisic acid,ABA)、細胞分裂素(cytokinin,CTK)、赤霉素(gibberellic acid,GA)等激素均發(fā)生不同程度的變化,其中ABA是受環(huán)境因素影響較大的一種激素[63]。研究發(fā)現(xiàn),逆境條件下很多植物中的ABA水平明顯上升[64,65],而且外源ABA處理使植物呈現(xiàn)的形態(tài)和生理反應(yīng)都類似于這些逆境條件的刺激。Younis等[66]研究認為,鹽脅迫下,玉米體內(nèi)ABA的積累可調(diào)節(jié)氣孔關(guān)閉,進而減少滲透脅迫造成的水分缺失。趙可夫等[67]研究表明,鹽脅迫下外源ABA降低玉米幼苗細胞的滲透勢,使幼苗在低水勢鹽漬條件下仍可獲得一定水分,還可使地上部和根部的可溶性糖含量比值增大,地上部和根部的滲透勢差增大,有利于水分從根向地上部運輸。Khodary[68]研究報道,外施0.1 mmol/L ABA能改善鹽脅迫下玉米的生長和發(fā)育。另外,葉面噴施2 mmol/L激動素(kinetin, KT)和吲哚乙酸(IAA)能促進必需元素的吸收,提高膜透性,進而有效對抗鹽脅迫對玉米生長和產(chǎn)量的不利影響[15,69]。外施一定濃度的油菜素內(nèi)酯(brassinosteroid, BR)也可使受鹽脅迫影響的玉米幼苗恢復(fù)生長[70]。

3 玉米耐鹽的分子調(diào)控機制

植物耐鹽性是由多基因控制、多種生理生化及分子機制調(diào)控下的綜合表現(xiàn)性狀[29,71,72]。鹽脅迫下,玉米中許多基因表達和蛋白積累的變化是非常重要的。研究發(fā)現(xiàn),鹽脅迫下,許多抗氧化防御基因的表達量增加。例如,玉米莖中過氧化物酶(CAT)的活性升高,其負責編碼的mRNA的表達量也增加[8],而玉米葉片質(zhì)膜上H+-ATPase活性的抑制,可能是由于鹽脅迫誘導(dǎo)編碼無效的H+-ATPase異構(gòu)體的mRNA過量表達導(dǎo)致的[73,74]。Rodríguez-Kessler 等[75]研究發(fā)現(xiàn),鹽脅迫下,玉米中負責多胺和亞精胺合成的Zmodc 和Zmspds2A基因的表達上調(diào),并且,多胺的代謝途徑可能是玉米葉和根共同耐鹽協(xié)調(diào)的重要關(guān)聯(lián)點[76]。此外,鹽脅迫下玉米中β-expansin蛋白的表達變化與莖生長受阻程度呈正相關(guān),而β-expansin蛋白的表達變化是與其編碼基因ZmExpB2、ZmExpB6和ZmExpB8的轉(zhuǎn)錄水平相一致[7]。另外,鹽脅迫促使玉米中一些蛋白積累的改變,這些蛋白主要參與碳、氮代謝和酶活性的調(diào)節(jié)[77]。

目前,普遍認為玉米耐鹽性是由位于不同染色體上多個基因控制的數(shù)量性狀[78,79]。因此,培育轉(zhuǎn)基因玉米可能需要同時轉(zhuǎn)移多個基因,但實際操作比較困難。一些生化代謝的關(guān)鍵酶類和鹽脅迫信號傳導(dǎo)的一些重要基因已被克隆并轉(zhuǎn)入玉米中[50],將大腸桿菌(Escherichia coli,E.coli)膽堿脫氫酶基因betA和6-磷酸山梨醇脫氫酶基因gutD轉(zhuǎn)入玉米,轉(zhuǎn)基因植株耐鹽性均得到明顯提高[80-82]。將甜菜堿醛脫氫酶基因(BADH cDNA)整合入玉米基因,轉(zhuǎn)基因玉米的鹽耐性也得到提高[83-85]。另外,將3個負責Na+外排的擬南芥基因AtSOS1、AtSOS2和AtSOS3一起轉(zhuǎn)入玉米中,轉(zhuǎn)基因玉米的抗性愈傷耐鹽性明顯增強,且后期轉(zhuǎn)基因植株根系較對照發(fā)達[86]。將AtNHX1基因轉(zhuǎn)入玉米中,AtNHX1的高表達使其耐鹽性得到顯著提高[87,88]。Chen等[89]將水稻OsNHX1基因轉(zhuǎn)入玉米中,其轉(zhuǎn)基因植株在200 mmol/L NaCl的耐鹽性明顯優(yōu)于野生型。鹽脅迫下,ZmNHX基因表達的升高可促使玉米葉片液泡膜上Na+/H+逆向轉(zhuǎn)運體將細胞質(zhì)中更多Na+區(qū)隔化進入液泡,保護細胞質(zhì)免受Na+毒害[90]。

隨著生物技術(shù)的不斷發(fā)展,一系列與抗逆相關(guān)的轉(zhuǎn)錄因子相繼被克隆出來,并應(yīng)用到抗逆基因工程的研究中,主要有AP2/EREPB類、MYB/MYC類、bZIP類、WRKY類、NAC類,通過這些轉(zhuǎn)錄因子的超表達可以激活多個下游的功能基因來獲得持久的抗逆性[91]。另外,研究發(fā)現(xiàn),一些轉(zhuǎn)錄調(diào)控因子能與受鹽堿、干旱等脅迫調(diào)控基因的啟動子相結(jié)合,這些調(diào)控因子將會是用于調(diào)控基因表達的研究熱點[92],已引起許多科學(xué)家的關(guān)注。如AP2/EREPB類轉(zhuǎn)錄調(diào)控因子DREB1A與DRE。DRE是調(diào)控許多對鹽脅迫、干旱和低溫等脅迫誘導(dǎo)基因啟動子的順式作用元件。轉(zhuǎn)DREB1A基因植株中DRE基因過量表達,同時,許多與抗脅迫有關(guān)的基因也得以誘導(dǎo)表達,因而,轉(zhuǎn)基因植株的抗逆能力也相應(yīng)增強[93]。

4 存在問題與展望

近年來,許多玉米育種、栽培和生理學(xué)家們對玉米耐鹽性進行了多方面的深入研究,并取得一定進展。盡管如此,國內(nèi)外存在著玉米種質(zhì)資源較匱乏、遺傳多樣性較低等問題,影響玉米耐鹽種質(zhì)的選育和研究。目前對玉米耐鹽性機制的研究并不十分清楚,如關(guān)于玉米不同品系間耐鹽差異的調(diào)控因素或關(guān)鍵因子是什么?其調(diào)控的分子機制如何?仍所知甚少。但隨著玉米耐鹽分子機制研究的不斷深入,很多鹽脅迫相關(guān)的調(diào)控因子的機理和作用將會被闡釋,進而應(yīng)用到玉米基因工程中,這必將為高效耐鹽玉米的培育和玉米產(chǎn)量的提高奠定堅實的理論基礎(chǔ)。

參 考 文 獻:

[1] 丁海榮,洪立洲,楊智青,等. 鹽堿地及其生物措施改良研究現(xiàn)狀[J]. 現(xiàn)代農(nóng)業(yè)科技, 2010(6):299-300,308.

[2] 陳復(fù),郝吉明,唐華俊. 中國人口資源環(huán)境與可持續(xù)發(fā)展戰(zhàn)略研究(第3卷)[M]. 北京:中國環(huán)境科學(xué)出版社,2000.

[3] 湯華,柳曉磊,羅秋蕓. 玉米耐鹽早期篩選體系的初步研究[J]. 海南大學(xué)學(xué)報(自然科學(xué)版),2007,25(2): 169-172,176.

[4] 翁躍進. 作物耐鹽品種及其栽培技術(shù)[M]. 北京:中國農(nóng)業(yè)出版社,2003.

[5] Katerji N,Hoorn J W V,Hamda A,et al. Salinity effect on crop development and yield,analysis of salt tolerance according to several classification methods[J]. Agr. Water Manage.,2003,62(1):37-66.

[6] 趙可夫. 植物抗鹽機理[M]. 北京:中國科學(xué)技術(shù)出版社,1993.

[7] Geilfus C M,Zrb C,Mühling K H. Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L.)[J]. Plant Physiol. Biochem.,2010,48(12):993-998.

[8] Menezes-Benavente L,Kernodle S P,Margis-Pinheiro M,et al. Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings[J]. Redox Rep.,2004,9(1):29-36.

[9] Munns R,Tester M. Mechanisms of salinity tolerance[J]. Ann. Rev. Plant Biol.,2008, 59:651-681.

[10]張永峰,殷波. 玉米耐鹽性研究進展[J]. 玉米科學(xué),2008,16(6):83-85.

[11]Qu C X,Liu C,Gong X L,et al. Impairment of maize seedling photosynthesis caused by a combination of potassium deficiency and salt stress[J]. Environ. Exp. Bot.,2012,75:134-141.

[12]Karimi G,Ghorbanli M,Heidari H,et al. The effects of NaCl on growth,water relations, osmolytes and ion content in Kochia prostrate [J]. Biol. Plant,2005,49(2):301-304.

[13]Gunes A,Inal A,Alpaslam M,et al. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress andmineral nutrition inmaize (Zea mays L.) grown under salinity[J]. J. Plant Physiol.,2007,164:728-736.

[14]Turan M A,Elkarim A H A,Taban N,et al. Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant[J]. Afr. J. Agric. Res.,2010,5(7):584-588.

[15]Kaya C,Tuna A L,Okant A M. Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions[J]. Turk. J. Agric. For.,2010,34(6): 529-538.

[16]Shahzad M,Witzel K,Zoerb C,et al. Growth-related changes in subcellular ion patterns in maize leaves (Zea mays L.) under salt stress[J]. J. Agron. Crop Sci.,2012,198(1):46-56.

[17]Yasmeen A,Basra S M A,F(xiàn)arooq M,et al. Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions[J]. Plant Growth Regul.,2013,69(3):225-233.

[18]王春英,張秀清,王志武. 玉米雜交種及自交系抗鹽性鑒定[J]. 玉米科學(xué),1996,4(2): 23-26.

[19]Khan A A,Rao S A,Neilly T M. Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.)[J]. Euphytica,2003,131(1): 81-89.

[20]Fortmeier R,Schubert S. Salt tolerance of maize(Zea mays L.):the role of sodium exclusion[J]. Plant Cell Environ.,1995,18(9):1041-1047.

[21]Sümer A,Zrb C,Yan F,et al. Evidence of sodium toxicity for the vegetative growth of maize (Zea mays L.) during the first phase of salt stress[J]. J. Appl. Bot.Food Quality,2004,78(2):135-139.

[22]王寶山. NaCl脅迫下玉米苗質(zhì)外體和共質(zhì)體Na+、Ca2+濃度的變化[J]. 作物學(xué)報,1997, 23(1):27-33.

[23]王麗燕,趙可夫. 玉米幼苗對鹽脅迫的生理響應(yīng)[J]. 作物學(xué)報,2005,31(2):264-266.

[24]Hamdia M A El-Samad,Shaddad M A K,Doaa M M. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions[J]. Plant Growth Regul.,2004,44(2):165-174.

[25]商學(xué)芳,董樹亭,鄭世英,等. 玉米萌發(fā)過程中Na+、K+和Ca2+含量變化與耐鹽性的關(guān)系[J]. 作物學(xué)報,2008,34(2):333-336.

[26]Cramer G R,Epstein E,Luchli A. Kinetics of root elongation of maize in response to short term exposure to NaCl and elevated calcium concentration[J]. J. Exp. Bot., 1988,39(11):1513-1522.

[27]張乃華,高輝遠,鄒琦. Ca2+緩解NaCl脅迫引起的玉米光合能力下降的作用[J]. 植物生態(tài)學(xué)報,2005,29(2):324-330.

[28]Neto A D D A,Prisco J T,Enéas-Filho J,et al. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt sensitive maize genotypes[J]. Environ. Exp. Bot.,2006,56(1):87-94.

[29]Zhu J K. Regulation of ion homeostasis under salt stress[J]. Curr. Opin. Plant Biol., 2003,6(5):441-445.

[30]Miller G ,Suzuki N,Ciftci-Yilmaz S,et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant Cell Environ.,2010,33(4):453-467.

[31]Gupta B,Huang B. Mechanism of salinity tolerance in plants:physiological, biochemical,and molecular characterization[J]. Int. J. Genomics,2014,2014(1): 727-740.

[32]Maathuis F J M,Amtmann A. K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ ratios[J].Ann. Bot.,1999,84(2):123-133.

[33]Mahajan S,Tuteja N. Cold,salinity and drought stresses:an overview[J]. Arch. Biochem. Biophys.,2005,444(2):139-158.

[34]Amtmann A,Sanders D. Mechanisms of Na+ uptake by plant cells[J]. Adv. Bot. Res., 1999,29(8):75-112.

[35]Blumwald E. Sodium transport and salt tolerance in plants[J]. Curr. Opin. Cell Biol., 2000,12(4):431-434.

[36]Wakeel A,F(xiàn)arooq M,Qadir M,et al. Potassium substitution by sodium in plants[J]. Crit. Rev. Plant Sci., 2011,30(4):401-413.

[37]Akram M,Malik M A,Saleem M F,et al. Competetive seedling growth and K+/Na+ ratio in different maize(Zea mays L.) hybrids under salinity stress[J]. Pak. J. Bot., 2007,39(7):2553-2563.

[38]Akram M,Ashraf M Y,Ahmad R,et al. Allometry and yield components of maize (Zea mays L.) hybrids to various potassium levels under saline conditions[J]. Arch. Biol. Sci. Belgrade,2010,62(4):1053-1061.

[39]Neubert A B,Zrb C,Schubert S. Expression of vacuolar Na+/H+ antiporters(ZmNHX) and Na+ exclusion in roots of maize(Zea mays L.) genotypes with improved salt resistance[M]//Li C J,et al. (eds) Plant nutrition for food security,human health and environmental protection. Tsinghua University Press,Bejing,China,2005:544-545.

[40]王寶山,趙可夫. NaCl脅迫下玉米黃化苗質(zhì)外體和共質(zhì)體Na+、Ca2+濃度的變化[J]. 作物學(xué)報,1997,23(1):27-33.

[41]Isla R,Aragüés R. Yield and plant ion concentrations in maize (Zea mays L.) subject to diurnal and nocturnal saline sprinkler irrigations[J]. Field Crops Res.,2010, 116(1/2):175-183.

[42]Hall J L,Harvey D M R,F(xiàn)lowers T J. Evidence for the cytoplasmic localization of betaine in leaf cells of Suaeda maritima[J]. Planta,1978,140(1):59-62.

[43]Serraj R,Sinclair T R. Osmolyte accumulation:can it really help increase crop yield under drought conditions?[J]. Plant Cell Environ.,2002,25(2):333-341.

[44]Farooq M,Hussain M,Wakeel A,et al. Salt stress in maize:effects,resistance mechanisms,and management. A review[J]. Agron. Sustain. Dev.,2015,35(2):461-481.

[45]湯華,柳曉磊. 鹽脅迫下玉米苗期農(nóng)藝性狀和脯氨酸含量變化的研究[J]. 中國農(nóng)學(xué)通報, 2001,23(3):244-249.

[46]de Azevedo Neto A D,Prisco J T,Enéas-Filho J,et al. Effects of salt stress on plant growth,stomatal response and solute accumulation of different maize genotypes [J]. Braz. J. Plant Physiol.,2004,16(1):31-38.

[47]Mansour M M F,Salama K H A,Ali F Z M,et al. Cell and plant responses to NaCl in Zea mays cultivars differing in salt tolerance[J]. Gen. Appl. Plant Physiol.,2005, 31(1/2):29-41.

[48]翟鳳林. 植物的耐鹽性及其改良[M]. 北京:農(nóng)業(yè)出版社,1989.

[49]劉俊. 植物體內(nèi)多胺代謝的調(diào)節(jié)與抗鹽性的關(guān)系及多胺在其信號轉(zhuǎn)導(dǎo)中的地位[D]. 南京:南京農(nóng)業(yè)大學(xué),2004.

[50]張新春,莊炳昌,李自超. 植物耐鹽性研究進展[J]. 玉米科學(xué),2002,10(1):50-56.

[51]Heuer B. Influence of exogenous application of proline and glycine betaine on growth of salt-stressed tomato plants[J]. Plant Sci.,2003,165(4):693-699.

[52]Cuin T A,Shabala S. Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots[J]. Plant Cell Physiol.,2005,46(12): 1924-1933.

[53]Cuin T A,Shabala S. Amino acids regulate salinity-induced potassium efflux in barley root epidermis[J]. Planta,2007,225(3):753-761.

[54]Yang X H,Lu C M. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants[J]. Physiol. Plant,2005,124(3):343-352.

[55]Gossett D R,Millhollon E P,Lucas M C. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton[J]. Crop Sci.,1994,34(3):706-714.

[56]Balestrasse K B,Gardey L,Gallego S M,et al. Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress[J]. Aust. J. Plant Physiol., 2001,28:497-504.

[57]Noctor G,F(xiàn)oyer C H. A scorbate and glutathione:keeping active oxygen under control[J]. Anuu. Rev. Plant Physio. Plant Mol. Biol.,1998,49:249-279.

[58]Polle A. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis[J]. Plant Physiol.,2001,126(1):445-462.

[59]馬純艷,李玥瑩. 不同玉米品種的抗鹽性及分子標記的比較研究[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報, 2006,28(2):123-126,132.

[60]Erdei L,Szegletes Z,Barabás K,et al. Responses in polyamine titer under osmotic and salt stress in sorghum and maize seedlings[J]. J. Plant Physiol.,1996,147(5): 599-603.

[61]Rodríguez A A,Maiale S J,Menéndez A B,et al. Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress[J]. J. Exp. Bot.,2009,60(15): 4249-4262.

[62]de Azevedo Neto A D,Prisco J T,Enéas-Filhob J,et al. Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants[J]. J. Plant Physiol.,2005,162(10): 1114-1122.

[63]Giraudat J,Parcy F,Bertauche N,et al. Current advances in abscisic acid action and signaling [J]. Plant Mol. Biol.,1994,26(5):1557-1577.

[64]周翔,吳曉嵐,李云,等. 鹽脅迫下玉米幼苗ABA和GABA的積累及其相互關(guān)系[J]. 應(yīng)用與環(huán)境生物學(xué)報,2005,11(4):412-415 .

[65]Roychoudhury A,Paul S,Basu S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress[J]. Plant Cell Rep.,2013, 32(7):985-1006.

[66]Younis M E,El-Shahaby O A,Nematalla M M,et al. Kinetin alleviates the influence of waterlogging and salinity on growth and affects the production of plant growth regulators in Vigna sinensis and Zea mays[J]. Agronomie.,2003,23(4):277-285.

[67]趙可夫,范海,Harris P J C. 鹽脅迫下外源ABA對玉米幼苗耐鹽性的影響[J]. 植物學(xué)報,1995,37(4): 295-300.

[68]Khodary S E A. Effect of salicylic acid on the growth,photosynthesis and carbohydrate metabolism in salt-stressed maize plants[J]. Int. J. Agric. Biol.,2004,6:5-8.

[69]Darra B L,Saxena S N. Role of IAA on the mineral composition of maize crop under various osmotic stressed conditions[J]. Plant Soil.,1973,38(3):657-661.

[70]He R Y,Wang G J,Wang X S. Effect of brassinolide on growth and chilling resistance of maize seedlings. In:Cutler H G,Yokota T,Adam G (eds) Brassinosteroids[M]. Am. Chem. Soc. Symposium Series.,1991,474:220-230.

[71]Munns R. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses[J]. Plant Cell Environ.,1993,16(1):15-24.

[72]Zhang J L,Shi H. Physiological and molecular mechanisms of plant salt tolerance [J]. Photosynthesis Res.,2013,115(1):1-22.

[73]Zrb C,Stracke B,Tramnitz B,et al. Does H+ pumping by plasmalemma ATPase limit leaf growth of maize(Zea mays) during the first phase of salt stress?[J]. J. Plant Nutr. Soil Sci.,2005,168(4):550-557.

[74]Pitann B,Zrb C,Mühling K H. Comparative proteome analysis of maize(Zea mays L.) expansins under salinity[J]. J. Plant Nutr. Soil Sci.,2009,172(1):75-77.

[75]Rodríguez-Kessler M,Alpuche-Solís A G,Ruiz O A,et al. Effect of salt stress on the regulation of maize(Zea mays L.) genes involved in polyamine biosynthesis[J]. Plant Growth Regul.,2006,48(2):175-185.

[76]Qing D J,Lu H F,Li N,et al. Comparative prfiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress[J]. Plant Cell Physiol.,2009,50(4):889-903.

[77]Zrb C,Schmitt S,Neeb A,et al. The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by amitigation of symptoms and not by a specific adaptation[J]. Plant Sci.,2004,167(1):91-100.

[78]Foolad M R,Jones R A. Mapping salt-tolerance genes in tomato(Lycopersicon esculentum) using trait-based marker analysis[J]. Theor. Appl. Genet.,1993,87:184-192.

[79]Rao S A,McNeilly T. Genetic basis of variation for salt tolerance in maize(Zea mays L.)[J]. Euphytica,1999,108(3):145-150.

[80]劉巖,王國英 劉俊君,等. 大腸桿菌gutD基因轉(zhuǎn)入玉米及耐鹽轉(zhuǎn)基因植株的獲得[J]. 中國科學(xué):C輯,1998,28(6):542-547.

[81]楊愛芳,張可煒,尹小燕,等. 轉(zhuǎn)基因耐鹽玉米自交系的農(nóng)藝性狀及雜種優(yōu)勢表現(xiàn)的分析[J]. 中國農(nóng)業(yè)科學(xué),2007,40(12):2895-2902.

[82]Liu Y,Wang G,Liu J,et al. Transfer of E. coli gutD gene into maize and regeneration of salt-tolerant transgenic plants[J]. Sci. China Ser. C.,1999,42(1):90-95.

[83]何鍶潔,董偉,李慧芬,等. 轉(zhuǎn)甜菜堿醛脫氫酶基因玉米及其耐鹽性研究[J]. 高技術(shù)通訊, 1999(2):50-52 .

[84]Wu W,Su Q,Xia X Y,et al. The Suaeda liaotungensis kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment[J]. Euphytica,2008,159(1/2):17-25.

[85]He S J,Dong W,Li H F,et al. Production and salt tolerance identification of transgenic maize with betaine aldehyde dehydrogenase gene[J]. High Technol. Lett.,1999,9(2): 50-52.

[86]程艷松,楊會,侯麗宏,等. 三個擬南芥抗鹽基因在玉米基因組中整合、表達及抗鹽性能的研究[J]. 中國農(nóng)學(xué)通報,2008,24(2):211-218.

[87]Yin X Y,Yang A F,Zhang K W,et al. Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene[J].Exp.cell Res., 2004,94(2):321-326.

[88]Li B,Li N,Duan X,et al. Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system[J]. J. Biotechnol,2010,145(2):206-213.

[89]Chen M,Chen Q J,Niu X G,et al. Expression of OsNHX1 gene in maize confers salt tolerance and promotes plant growth in the field[J]. Plant Soil Environ.,2007, 53(11):490-498.

[90]Pitann B,Mohamed A K,Neubert A B,et al. Tonoplast Na+/H+ antiporters of newly developed maize(Zea mays) hybrids contribute to salt resistance during the second phase of salt stress[J]. J. Plant Nutr. Soil Sci.,2013,176(2):148-156.

[91]Agarwal P K,Agarwal P,Reddy M K,et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants[J]. Plant Cell Rep.,2006,25(12): 1263-1274.

[92]Shinozaki K,Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response[J]. Plant Physiol.,1997,115(2):327-334.

[93]Kasuga M,Liu Q,Miura S,et al. Improving plant drought,salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nat. Biotechnol.,1999,17(3):287-291.

主站蜘蛛池模板: 嫩草在线视频| 天天做天天爱天天爽综合区| 国产一区二区人大臿蕉香蕉| 国产欧美日韩视频一区二区三区| 国产二级毛片| 免费av一区二区三区在线| 久久精品丝袜| 国产精品嫩草影院av| 99热这里只有免费国产精品| 亚洲av无码成人专区| 18黑白丝水手服自慰喷水网站| 成人精品在线观看| 黄色网站不卡无码| 黄色在线不卡| 国产成人精品2021欧美日韩| 九色91在线视频| 视频二区亚洲精品| 国产精品视频3p| 久久香蕉欧美精品| 国产成人精品高清不卡在线| yjizz视频最新网站在线| 人人爱天天做夜夜爽| 亚洲AⅤ无码日韩AV无码网站| 91免费观看视频| 怡春院欧美一区二区三区免费| 人妻熟妇日韩AV在线播放| 国产在线观看第二页| 日本午夜影院| 青青极品在线| 久久精品丝袜| 亚洲无码电影| 亚洲AV一二三区无码AV蜜桃| 亚洲第一成网站| 日韩一区二区三免费高清| 99精品视频九九精品| 99热最新在线| 99re这里只有国产中文精品国产精品| 久久中文字幕不卡一二区| 国产美女91视频| 亚洲成A人V欧美综合天堂| 日本欧美午夜| 久久99精品久久久久纯品| 东京热高清无码精品| 亚洲欧美国产高清va在线播放| 亚洲第一极品精品无码| 欧美精品一二三区| 91热爆在线| 亚洲v日韩v欧美在线观看| 国产视频自拍一区| 亚洲精品中文字幕无乱码| 这里只有精品在线| 欧洲欧美人成免费全部视频 | 另类欧美日韩| 精品国产自在现线看久久| 国产色网站| 日本少妇又色又爽又高潮| 日韩色图区| …亚洲 欧洲 另类 春色| 国产三级视频网站| 2021亚洲精品不卡a| 自偷自拍三级全三级视频| 综合五月天网| 欧美日韩免费观看| 色婷婷丁香| 亚洲天堂久久久| 无遮挡国产高潮视频免费观看| 亚洲精品国产综合99| 国产精品亚洲片在线va| 在线观看国产一区二区三区99| 成人一级免费视频| 亚洲AV成人一区二区三区AV| 激情综合图区| 青青国产视频| 国产91无毒不卡在线观看| 免费一级毛片在线播放傲雪网| 欧美怡红院视频一区二区三区| 亚洲综合第一页| 国产国模一区二区三区四区| 色综合久久无码网| 一级全免费视频播放| 污网站免费在线观看| 91免费在线看|