999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

長(zhǎng)三角區(qū)域燃煤排放污染物現(xiàn)狀及其環(huán)境影響

2016-12-08 01:56:04嚴(yán)茹莎侯勇陸建宇畢曉亮盧清

嚴(yán)茹莎,侯勇,陸建宇,畢曉亮,盧清

(1.上海市環(huán)境科學(xué)研究院,上海 200233;2.國(guó)家電網(wǎng)公司華東分部,上海 200120)

?

長(zhǎng)三角區(qū)域燃煤排放污染物現(xiàn)狀及其環(huán)境影響

嚴(yán)茹莎1,侯勇2,陸建宇2,畢曉亮2,盧清1

(1.上海市環(huán)境科學(xué)研究院,上海 200233;2.國(guó)家電網(wǎng)公司華東分部,上海 200120)

為了解長(zhǎng)三角地區(qū)燃煤污染源排放對(duì)大氣污染物的環(huán)境影響,分別統(tǒng)計(jì)分析了長(zhǎng)三角區(qū)域電力行業(yè)、中小燃煤鍋爐和居民生活的燃煤污染物排放量;在2014 年長(zhǎng)三角地區(qū)大氣污染物排放清單的基礎(chǔ)上,利用天氣研究和預(yù)報(bào)模式(WRF)和通用多尺度空氣質(zhì)量模型(CMAQ)系統(tǒng),模擬研究了長(zhǎng)三角不同燃煤源對(duì)SO2、NO2、PM10和PM2.5的濃度貢獻(xiàn)率。結(jié)果表明,中小燃煤鍋爐對(duì)長(zhǎng)三角環(huán)境空氣質(zhì)量影響最大,對(duì)SO2年均濃度有5.6%~42%的貢獻(xiàn),對(duì)NO2的共獻(xiàn)為1.8%~5.9%,對(duì)PM10的貢獻(xiàn)為0.6%~5.3%,對(duì)PM2.5的貢獻(xiàn)為1.4%~5.9%。其次是燃煤電廠,對(duì)SO2年均濃度貢獻(xiàn)為2.5%~19.0%,對(duì)NO2的貢獻(xiàn)為2.8%~20.4%,對(duì)PM10的貢獻(xiàn)為0.2%~3.8%,對(duì)PM2.5的貢獻(xiàn)為0.2%~2.9%。

燃煤排放;燃煤電廠;燃煤中小鍋爐;環(huán)境影響

當(dāng)前我國(guó)大氣區(qū)域性復(fù)合污染呈現(xiàn)愈演愈烈的趨勢(shì),尤其是以煤炭燃燒排除的煙塵、SO2等引起的煤煙型污染和以氮氧化物、碳?xì)浠衔锛俺粞醯葹橹鞯墓饣瘜W(xué)污染日益蔓延。在這些污染中,燃煤中小鍋爐和燃煤電廠是重要的工業(yè)排放源。

本文從長(zhǎng)三角區(qū)域三省一市2014年的排放清單數(shù)據(jù)著手,分析燃煤中小鍋爐、燃煤電廠和居民生活用煤的大氣污染物排放量,并利用CMAQ空氣質(zhì)量模型和BruteForce方法分析其環(huán)境影響,為改善長(zhǎng)三角環(huán)境空氣質(zhì)量提供決策依據(jù)和思路。

1 估算方法

1.1 排放清單估算方法

本研究以2014年為研究基準(zhǔn)年,開展長(zhǎng)三角(包括上海市、江蘇省、浙江省和安徽省)三省一市燃煤大氣污染物排放估算。其中,燃煤排放源主要包括燃煤電廠、工業(yè)燃煤鍋爐以及民用燃煤3類,估算的大氣污染物種類包括SO2、NOx、PM10和PM2.54類。各類污染物排放的測(cè)算方法主要采用排放系數(shù)法,即根據(jù)各類污染源的技術(shù)特點(diǎn)、活動(dòng)水平、燃料類型、排放方式、主要排放污染物、末端治理等相關(guān)參數(shù),通過(guò)文獻(xiàn)調(diào)研及參考國(guó)家大氣污染物排放清單編制指南[1-4]的方式獲取污染源排放系數(shù),結(jié)合各類源的活動(dòng)量,計(jì)算污染物排放。估算公式如下:

(1)

式中,A為排放源燃煤源煤炭消費(fèi)量;EF為各類污染源、不同污染物的排放因子;η為污染源尾氣治理設(shè)施的污染物去除效率;i、j、k分別代表污染物、污染源及排放設(shè)施技術(shù)。

針對(duì)電廠和工業(yè)燃煤鍋爐的排放,本研究主要采用“自下而上”的方法開展測(cè)算,即根據(jù)各企業(yè)燃煤設(shè)備燃煤消費(fèi)量、技術(shù)類型以及末端治理技術(shù)等相關(guān)信息逐一計(jì)算其污染物排放量,活動(dòng)水平數(shù)據(jù)主要取自上海市、江蘇省、浙江省和安徽省的環(huán)境統(tǒng)計(jì)資料。民用部門燃煤消費(fèi)量取自能源統(tǒng)計(jì)年鑒[5],且未考慮燃燒設(shè)施的技術(shù)類型,并假定其燃煤排放裝有除塵設(shè)備。

其中,SO2的排放系數(shù)根據(jù)物料平衡方法計(jì)算,計(jì)算方法如式(2)所示。NOx、PM10和PM2.5等排放系數(shù)參考相關(guān)文件及國(guó)家清單編制指南推薦的排放系數(shù)。

EFSO2=2×Cs×P×1000

(2)

式中,Cs為燃料的含硫率,%;P為硫的轉(zhuǎn)化率,%。

1.2 濃度貢獻(xiàn)估算方法

本文空氣質(zhì)量模型采用的氣象場(chǎng)由WRF(Weather Research and Forecasting)提供,WRF模式系統(tǒng)使用了3層嵌套的方案,中心經(jīng)緯度分別為118°E、32°N。最外層的水平格距分辨率為36 km×36 km,第二層水平格局分辨率為12 km×12 km,最內(nèi)層的水平格局分辨率為4 km×4 km。模式垂直方向設(shè)為27層,模式頂層為100 hPa。氣象初始場(chǎng)和側(cè)邊界資料選用NCEP/NCAR的1°×1°全球再分析場(chǎng)資料[6],邊界條件每6小時(shí)更新一次。長(zhǎng)三角地區(qū)空氣質(zhì)量模擬采用CMAQ區(qū)域多尺度空氣質(zhì)量模型。將復(fù)雜的空氣污染問(wèn)題如對(duì)流層臭氧、顆粒物、有毒有害物質(zhì)、酸沉降及能見(jiàn)度等問(wèn)題[7-10]進(jìn)行綜合處理。

結(jié)合氣象觀測(cè)資料及空氣質(zhì)量監(jiān)測(cè)數(shù)據(jù),驗(yàn)證空氣質(zhì)量模型系統(tǒng)的準(zhǔn)確性,對(duì)其進(jìn)行不確定性分析。模型模擬區(qū)域分為3層嵌套,第一層(D01)包括全國(guó)范圍,第二層(D02)包括東部地區(qū),第三層(D03)包括長(zhǎng)三角地區(qū)。

本文采用強(qiáng)力法(Bruteforce)[11]評(píng)估燃煤電廠、中小燃煤鍋爐和居民燃煤分別對(duì)長(zhǎng)三角主要城市的濃度貢獻(xiàn)率。其中基準(zhǔn)年定義為2014年,分別模擬1月、4月、7月、10月4個(gè)代表性月份來(lái)計(jì)算全年濃度。

2 結(jié)果分析

2.1 燃煤污染物排放總量

表1是長(zhǎng)三角地區(qū)燃煤電廠、中小燃煤鍋爐和居民燃煤的SO2、NOx、PM10、PM2.5的排放情況以及長(zhǎng)三角地區(qū)的總排放量。其中,燃煤電廠SO2、NOx、PM10、PM2.5的排放量分別為57.6萬(wàn)t、111.2萬(wàn)t、33.5萬(wàn)t和17.7萬(wàn)t;中小燃煤鍋爐SO2、NOx、PM10、PM2.5的排放量分別為99.7萬(wàn)t、31.5萬(wàn)t、6.1萬(wàn)t和3.3萬(wàn)t;居民用煤SO2、NOx、PM10、PM2.5的排放量分別為4.1萬(wàn)t、0.7萬(wàn)t、3.2萬(wàn)t和2.5萬(wàn)t。3類排放源SO2、NOx、PM10、PM2.5的排放總量分別為161.4萬(wàn)t、143.4萬(wàn)t、42.8萬(wàn)t和23.5萬(wàn)t。

表1 長(zhǎng)三角三省一市燃煤電廠、中小燃煤鍋爐和居民燃煤

圖1是長(zhǎng)三角地區(qū)燃煤電廠、中小燃煤鍋爐和居民燃煤的SO2、NOx、PM10、PM2.5的排放占該地區(qū)總排放量情況(長(zhǎng)三角其他排放源的排放量參考自本研究團(tuán)隊(duì)已有研究成果)[12-13]。對(duì)于SO2來(lái)說(shuō),燃煤的排放占區(qū)域總排放量的一半以上,其中,盡管中小燃煤鍋爐燃煤量遠(yuǎn)遠(yuǎn)小于電廠的燃煤量,但是由于中小燃煤鍋爐的煤炭硫含量較高且脫硫措施使用率低、去除效率低使得中小燃煤鍋爐的排放占比大于燃煤電廠,其排放量占區(qū)域總排放量的32.1%,而燃煤電廠的排放占比為18.5%。對(duì)于NOx的排放來(lái)說(shuō),燃煤的排放占比為35%,其中,燃煤電廠的排放是燃煤鍋爐的近4倍,其排放占比達(dá)27.1%,其次是中小燃煤鍋爐,其排放占比為7.7%;而相對(duì)地,居民燃煤的排放占比僅為0.4%。相對(duì)SO2和NOx而言,燃煤排放的PM占比較低,PM10的排放占比為17.4%,PM2.5的排放占比為23.5%,其中,燃煤電廠的排放大于中小燃煤鍋爐大于居民燃煤。

圖1 長(zhǎng)三角各燃煤排放源各污染物排放占比Fig.1 Contributions of coal-red sources to each pollutant emission in Yangtze River Delta

2.2 長(zhǎng)三角各省市燃煤電廠污染物排放量及濃度貢獻(xiàn)

表2為長(zhǎng)三角地區(qū)燃煤電廠各類污染物排放量,江蘇省是燃煤電廠污染物排放量最大的省份,其次是安徽省、浙江省和上海市。

表3為燃煤電廠對(duì)長(zhǎng)三角主要城市SO2、NO2、PM2.5及PM10的濃度貢獻(xiàn)情況。可以看出,由于燃煤電廠在各污染物排放中,NOx及SO2的排放量較大,因此對(duì)NO2及SO2的濃度貢獻(xiàn)要顯著高于顆粒物。從空間上分析,對(duì)蘇南、浙北幾個(gè)城市的貢獻(xiàn)較高,主要是由于長(zhǎng)江流域電廠分布較為集中的緣故。

表2 長(zhǎng)三角各省市燃煤電廠各類污染物排放量

表3 燃煤電廠對(duì)長(zhǎng)三角主要城市各污染物濃度貢獻(xiàn)率

2.3 長(zhǎng)三角各省市中小燃煤鍋爐污染物排放量及濃度貢獻(xiàn)

表4是長(zhǎng)三角地區(qū)中小燃煤鍋爐各類污染物排放量,江蘇省是燃煤電廠污染物排放量最大的省份,其次是安徽省、浙江省和上海市。

表4 長(zhǎng)三角各城市中小燃煤鍋爐各類污染物排放量

表5為中小燃煤鍋爐對(duì)長(zhǎng)三角主要城市SO2、NO2、PM2.5及PM10的濃度貢獻(xiàn)情況。與燃煤電廠相比,由于中小鍋爐的排放高度較低,因此對(duì)近地面污染濃度貢獻(xiàn)更為顯著。并且整體也對(duì)SO2及NO2的貢獻(xiàn)較高。從空間上分析,由于上海周邊地區(qū)的排放比較集中,因此對(duì)這些城市的貢獻(xiàn)也較大。

2.4 長(zhǎng)三角各省市居民燃煤污染物排放量及濃度貢獻(xiàn)

表6和圖2為長(zhǎng)三角地區(qū)各省市居民燃煤各類污染物排放情況。安徽省各類污染物排放量均遠(yuǎn)遠(yuǎn)高于其他省市,SO2、NOx、PM10和PM2.5的排放量分別為3.15萬(wàn)t、0.53萬(wàn)t、2.48萬(wàn)t和1.93萬(wàn)t,這與安徽省居民用煤量大有關(guān)。

圖2 長(zhǎng)三角各省市居民燃煤污染物排放情況Fig.2 Pollutant emissions from residential coal-fired in Yangtze River Delta

表7為居民燃煤對(duì)長(zhǎng)三角主要城市SO2、NO2、PM2.5及PM10的濃度貢獻(xiàn)情況。與燃煤電廠及中小鍋爐燃煤相比,居民燃煤的排放量相對(duì)較小,對(duì)各城市的濃度貢獻(xiàn)也較小。居民燃煤排放對(duì)SO2的濃度貢獻(xiàn)率要顯著高于其他污染物。從空間上分析,由于安徽省的排放量要顯著高于長(zhǎng)三角其他省市,因此對(duì)安徽各城市的貢獻(xiàn)率也要高于平均水平。

表5 中小燃煤鍋爐對(duì)長(zhǎng)三角主要城市各污染物濃度貢獻(xiàn)率

表6 長(zhǎng)三角各省市居民燃煤污染物排放量

表7 居民用煤對(duì)長(zhǎng)三角主要城市各污染物濃度貢獻(xiàn)率

2.5 長(zhǎng)三角地區(qū)各類源污染物排放空間分布情況

圖3 長(zhǎng)三角燃煤電廠污染物排放空間分布Fig.3 Spatial distribution of pollutant emissions from coal-fired power plants in Yangtze River Delta

圖4 長(zhǎng)三角中小燃煤鍋爐污染物排放空間分布Fig.4 Spatial distribution of pollutant emissions from small and medium coal-fired boilers in Yangtze River Delta

圖3是長(zhǎng)三角地區(qū)燃煤電廠的各類污染物的排放空間分布情況。由圖3可知,各類污染物的排放空間呈現(xiàn)類似的特征。該地區(qū)電廠呈現(xiàn)出沿長(zhǎng)江分布的特征,主要集中在長(zhǎng)三角地區(qū)中部。在浙江省,大電廠則主要分布在沿海,這與煤炭的運(yùn)輸便利性相關(guān);另外,電廠在上海以及周邊地區(qū)(蘇錫常和杭嘉湖地區(qū))呈現(xiàn)密集分布的特征。

圖4是長(zhǎng)三角地區(qū)中小燃煤鍋爐的各類污染物的排放空間分布情況。由圖4可知,各類污染物的排放空間呈現(xiàn)類似的特征。該地區(qū)中小燃煤鍋爐分布密集,其中尤以上海以及周邊城市(蘇錫常和杭嘉湖地區(qū))分布最為密集,此外,與電廠類似,呈現(xiàn)出沿長(zhǎng)江分布的特征。

3 結(jié)論

(1)長(zhǎng)三角地區(qū)燃煤電廠SO2、NOx、PM10、PM2.5的排放量分別為57.6萬(wàn)t、111.2萬(wàn)t、33.5萬(wàn)t和17.7萬(wàn)t;中小燃煤鍋爐SO2、NOx、PM10、PM2.5的排放量分別為99.7萬(wàn)t、31.5萬(wàn)t、6.1萬(wàn)t和3.3萬(wàn)t;居民用煤SO2、NOx、PM10、PM2.5的排放量分別為4.1萬(wàn)t、0.7萬(wàn)t、3.2萬(wàn)t和2.5萬(wàn)t。長(zhǎng)三角地區(qū)燃煤SO2的排放占區(qū)域總排放量的一半以上,NOx的排放占35%,PM10和PM2.5的排放占比分別為17.4%和23.5%。

(2)長(zhǎng)三角地區(qū)電廠的空間分布呈現(xiàn)沿長(zhǎng)江分布、在浙江沿海地區(qū)呈現(xiàn)沿海分布、在上海市周邊地區(qū)呈現(xiàn)密集分布的特征;長(zhǎng)三角地區(qū)中小鍋爐分布密集,在上海及周邊城市分布最為密集。

(3)長(zhǎng)三角地區(qū)燃煤源污染物排放對(duì)長(zhǎng)三角主要城市的濃度貢獻(xiàn)從大到小依次是中小燃煤鍋爐、燃煤電廠、居民燃煤。中小燃煤鍋爐對(duì)長(zhǎng)三角環(huán)境空氣質(zhì)量影響最大,對(duì)SO2年均濃度有5.6%~42%的貢獻(xiàn),NO2年均濃度有1.8%~5.9%的貢獻(xiàn),PM10年均濃度有0.6%~5.3%的貢獻(xiàn),PM2.5年均濃度有1.4%~5.9%的貢獻(xiàn)。其次是燃煤電廠,對(duì)SO2年均濃度有2.5%~19.0%的貢獻(xiàn),NO2年均濃度有2.8%~

20.4%的貢獻(xiàn),PM10年均濃度有0.2%~3.8%的貢獻(xiàn),PM2.5年均濃度有0.2%~2.9%的貢獻(xiàn)。

(4)中小燃煤鍋爐排放對(duì)長(zhǎng)三角區(qū)域的衢州、常州、金華、無(wú)錫、淮安等城市的環(huán)境空氣質(zhì)量濃度貢獻(xiàn)較大;燃煤電廠排放對(duì)長(zhǎng)三角區(qū)域的紹興、臺(tái)州、杭州、蘇州、湖州等城市的環(huán)境空氣質(zhì)量濃度貢獻(xiàn)較大;居民燃煤排放對(duì)安徽省合肥、馬鞍山、蕪湖的濃度貢獻(xiàn)較大。

[1] 環(huán)境保護(hù)部. 大氣細(xì)顆粒物(PM2.5)源排放清單編制技術(shù)指南(試行)[Z]. 2014.

[2] 環(huán)境保護(hù)部. PM2.5排放量核算技術(shù)規(guī)范(火電廠、水泥工業(yè)企業(yè))[Z]. 2014.

[3] 環(huán)境保護(hù)部. 生物質(zhì)燃燒源大氣污染物排放清單編制技術(shù)指南[Z]. 2014.

[4] 環(huán)境保護(hù)部. 民用煤大氣污染物排放清單編制技術(shù)指南(試行)[Z]. 2015.

[5] 國(guó)家統(tǒng)計(jì)局. 中國(guó)能源統(tǒng)計(jì)年鑒[M]. 北京: 中國(guó)統(tǒng)計(jì)出版社, 2015.

[6] UCAR/NCAR. Research Data Archive[EB/OL]. [2016-10-21]. http://rda.ucar.edu.

[7] Science algorithms of the EPA Models-3 community multiscale air quality (CMAQ) modeling system[M]. Washington, DC: US Environmental Protection Agency, Office of Research and Development, 1999.

[8] Byun D, Schere K L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system[J]. Applied Mechanics Reviews, 2006, 59(2): 51- 77.

[9] Binkowski F S, Roselle S J. Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1 Model description[J]. Journal of geophysical research: Atmospheres, 2003, 108(D6).

[10] Bullock O R, Brehme K A. Atmospheric mercury simulation using the CMAQ model: formulation description and analysis of wet deposition results[J]. Atmospheric Environment, 2002, 36(13): 2135- 2146.

[11] Burr M J, Zhang Y. Source apportionment of fine particulate matter over the Eastern US Part I: source sensitivity simulations using CMAQ with the Brute Force method[J]. Atmospheric Pollution Research, 2011, 2(3): 300- 317.

[12] Huang C, Chen C H, Li L,etal. Emission inventory of anthropogenic air pollutants and VOCs species in the Yangtze River Delta region, China[J]. Atmospheric Chemistry and Physics, 2011, 11(9): 4105- 4120.

[13] Li L, Chen C H, Fu J S,etal. Air quality and emissions in the Yangtze River Delta, China[J]. Atmospheric Chemistry and Physics, 2011, 11(4): 1621- 1639.

Current Situation of Coal-fired Emissions and Its Environmental Impacts within Yangtze River Delta

YAN Ru-sha1, HOU Yong2, LU Jian-yu2, BI Xiao-liang2, LU Qing1

(1.Shanghai Academy of Environmental Sciences, Shanghai 200233, China; 2.East China Branch of State Grid Corporation of China, Shanghai 200120, China)

In order to understand the environmental impact of coal-fired pollution sources in the Yangtze River Delta on the environmental impact of air pollutants, the statistical analysis of the Yangtze River Delta region electric power industry, small coal-fired boilers and residential life of coal-burning pollutants emissions in the Yangtze River Delta region in 2014. The NO2, PM10and PM2.5concentrations in different coal-fired sources in the Yangtze River Delta were simulated by WRF (Weather Research and Forecasting Model) and CMAQ (General Multiscale Air Quality Model) system. The results show that the medium and small coal-fired boilers have the greatest impact on the ambient air quality of the Yangtze River Delta, and the contribution of SO2annual concentration of 5.6%-42%, NO2contribution of 1.8%-5.9%, PM100.6%-5.3%, And the contribution of PM2.5was 1.4%-5.9%. Followed by coal-fired power plants, the annual SO2concentration of 2.5%-19.0%, NO2contribution of 2.8%-20.4%, PM10 contribution of 0.2%-3.8% contribution to PM2.50.2%-2.9%.

Coal-fired emissions; coal-fired power plant; small coal-fired boiler; environmental impact

2016-08-30

國(guó)家電網(wǎng)公司2016年管理咨詢項(xiàng)目(0711-16OTL04211038)

嚴(yán)茹莎(1988—),女,上海人,助理工程師,碩士,主要從事空氣質(zhì)量模擬及政策分析,E-mail:yanrs@saes.sh.cn

10.14068/j.ceia.2016.06.017

X51

A

2095-6444(2016)06-0066-07

主站蜘蛛池模板: 一级毛片中文字幕| 特级毛片8级毛片免费观看| 国产激情无码一区二区APP | 亚洲综合色婷婷| 国产玖玖视频| 中文字幕日韩视频欧美一区| 四虎在线观看视频高清无码| 福利国产在线| 999国内精品视频免费| 99中文字幕亚洲一区二区| 国产小视频a在线观看| 免费在线看黄网址| 毛片手机在线看| 欧美性猛交一区二区三区| 国产福利在线免费| 国产黄视频网站| 欧美日本一区二区三区免费| 亚洲最黄视频| 亚洲精品在线91| 最新国产高清在线| 无码aaa视频| 国产成人禁片在线观看| 亚洲中文精品人人永久免费| 久久精品人人做人人爽电影蜜月 | 在线观看精品国产入口| 国产成人高清精品免费软件 | 亚洲黄网在线| 综合久久五月天| 久久亚洲高清国产| 亚洲妓女综合网995久久| 无码一区二区三区视频在线播放| 欧美区国产区| 国产偷国产偷在线高清| 欧洲成人免费视频| 国产91av在线| 久久这里只有精品8| 中文字幕欧美成人免费| 国产av色站网站| 成人一级黄色毛片| 久久狠狠色噜噜狠狠狠狠97视色| 欧美影院久久| 91蝌蚪视频在线观看| 日韩欧美亚洲国产成人综合| 99热这里只有免费国产精品| 亚洲欧美自拍中文| 99精品免费在线| 国产美女丝袜高潮| 国产无码网站在线观看| 久久精品66| 免费亚洲成人| 亚洲IV视频免费在线光看| 日韩av在线直播| 91在线精品麻豆欧美在线| 啦啦啦网站在线观看a毛片| 国产99免费视频| 久久久久国色AV免费观看性色| www.99在线观看| 永久免费无码成人网站| 天堂av高清一区二区三区| 国产精品女人呻吟在线观看| 精品丝袜美腿国产一区| 欧美亚洲综合免费精品高清在线观看| 91精品啪在线观看国产91九色| 午夜电影在线观看国产1区| 视频二区中文无码| 视频一本大道香蕉久在线播放| 毛片基地美国正在播放亚洲 | 久精品色妇丰满人妻| 五月婷婷丁香综合| 免费久久一级欧美特大黄| 久久精品只有这里有| 99精品视频九九精品| 婷婷激情亚洲| 亚洲天堂久久久| 亚洲区一区| 99久久国产综合精品2023| 99精品高清在线播放| 99国产在线视频| 美女国内精品自产拍在线播放| 在线免费a视频| 99在线观看精品视频| 2020国产精品视频|