999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

冷誘導RNA結合蛋白通過激活NF-κB信號通路影響H1N1甲型流感病毒的復制

2016-11-08 01:13:39聶培婷
畜牧獸醫學報 2016年10期
關鍵詞:信號檢測

聶培婷,湯 承,岳 華

(西南民族大學生命科學與技術學院,成都 610041)

?

冷誘導RNA結合蛋白通過激活NF-κB信號通路影響H1N1甲型流感病毒的復制

聶培婷,湯承,岳華*

(西南民族大學生命科學與技術學院,成都 610041)

冷誘導RNA結合蛋白(CIRP)是NF-κB和ERK信號通路的上游調控因子,而這兩條信號通路是甲型流感病毒復制和機體起始免疫所必需的,為探討CIRP對H1N1甲型流感病毒復制的影響及可能的分子機制,構建了CIRP過表達BHK-21細胞系(Cirp+BHK-21),用Western blot檢測NF-кB和ERK1/2的磷酸化水平,研究CIRP對NF-кB和ERK1/2的調節作用;用Real-time RT-PCR檢測H1N1甲型流感病毒感染后Cirp+BHK-21和對照細胞中病毒拷貝數的動態變化,以及在特異性阻斷劑PDTC阻斷NF-кB通路的Cirp+BHK-21細胞中病毒拷貝數的動態變化。Western blot檢測結果顯示:過表達CIRP顯著促進了BHK-21細胞中NF-κB的磷酸化水平(P<0.05),而對ERK1/2的磷酸化水平無顯著影響;病毒定量檢測結果顯示:過表達CIRP能顯著促進H1N1甲型流感病毒的增殖,感染后3、9、15、21 h 病毒在Cirp+BHK-21細胞中的拷貝數分別為對照組的111%、103%、167%和235% (P<0.05);阻斷NF-κB信號通路后病毒的拷貝數顯著下降,在感染后3、9、15、21 h分別為未阻斷組的98%、42%、19%(P<0.05)和7%(P<0.05)。從本研究結果可見,CIRP可通過活化NF-κB信號通路促進H1N1甲型流感病毒的復制。

冷誘導RNA結合蛋白;H1N1甲型流感病毒;病毒復制;NF-κB;BHK-21細胞

甲型流感病毒(influenza A virus)為正黏病毒科(orthomyxoviridae)成員,基因組為分節段的單股負鏈RNA[1]。甲型流感病毒感染后觸發了宿主細胞一系列的分子事件,一方面幫助病毒完成復制周期,同時也激活了機體的免疫應答以抵抗病毒感染[2-7]。最近,有三個研究團隊利用全基因組RNA干涉技術鑒定出一大批與流感病毒復制有關的宿主因子[4-5]。涉及病毒復制和轉錄、機體的免疫應答、機體與病毒vRNP相互作用和病毒RNA合成等相關的多種宿主因子[8-16],其中包括一些RNA結合蛋白(RNA-binding proteins,RanBP)家族成員,如RNA結合蛋白GFSF-1與流感病毒蛋白的合成有關[17-18],RNA結合蛋白PKR的胞內抑制劑P58IPK能促進流感病毒蛋白的合成[19]。RNA結合蛋白3(RanBP3)與甲型流感病毒的出核轉運有關[20],在流感病毒感染過程中還存在干擾素IFN-β合成的RNA結合蛋白調控網絡,激酶PKR、多重剪接RNA結合蛋白(RNA-binding protein with multiple splicing,RBPMS)、白介素增強子結合因子3(interleukin enhancer-binding factor 3,ILF3)、FMR1、DHX9、ZNF346和HNRPC參與其中[11]。

冷誘導RNA結合蛋白(CIRP)是一種在脊椎動物間高度保守的多功能蛋白,參與對溫和低溫[21]、H2O2[22]、缺氧[23]、滲透壓[24]等多種應激的轉錄應答,發揮細胞保護作用[25-26],同時參與胚胎發育、神經調節[27]和生物鐘調節等生理過程,此外,CIRP還參與機體對新城疫病毒(NDV)[28]、細菌內毒素(LPS)[29]的轉錄應答,但未見CIRP對流感病毒感染應答的研究。業已證明,ERK通路和核因子κB通路(NF-κB)是流感病毒復制所必需的[30-34],而CIRP作為這兩條信號通路的上游調控因子,可能通過這兩條信號通路影響病毒復制。本研究旨在探討CIRP對流感病毒復制的影響及其分子機制,為深入解析流感病毒與宿主之間相互作用的分子機制提供參考。

1 材料與方法

1.1細胞株和毒株

過表達CIRP的BHK-21細胞系(Cirp+BHK-21)和對照細胞系(BHK-21 GFP)由作者實驗室構建[35];H1N1甲型流感病毒PR/8毒株(HA效價為28)由四川省疾病預防控制中心惠贈。

1.2主要試劑和儀器

高糖DMEM培養基(HyClone公司);胎牛血清(GIBCO公司);RNA提取試劑盒(Invitrogen公司);反轉錄試劑盒(TaKaRa公司);NF-κB特異性抑制劑PDTC、TPCK胰酶(Sigma 公司);BCA試劑盒、RIPA蛋白裂解液(碧云天公司);CIRP兔抗人多克隆抗體(Proteintech公司);一抗為鼠抗NF-κB P65、ERK1/2磷酸化抗體(p-ERK1/2)、ERK1/2抗體(碧云天公司);二抗為HRP標記的羊抗鼠IgG抗體(北京中杉金橋公司);ECL發光試劑盒(TransGen公司);電泳儀、轉膜儀(Bio-Rad公司);ABI 7300熒光定量PCR儀(美國ABI公司);Casy TT細胞計數儀(Roche公司)。

1.3NF-κB和ERK1/2的磷酸化水平的測定

NF-кB和ERK1/2的磷酸化水平(p-ERK1/2)是判斷這兩條信號通路是否被激活的重要指標,檢測ERK磷酸化水平時需要同時檢測ERK1/2的表達水平以確保試驗結果的準確性。根據RIPA裂解液說明書提取Cirp+BHK-21和BHK-21 GFP細胞總蛋白質,BCA法蛋白質定量,并制備蛋白質含量10 μg·μL-1的電泳樣品,取8 μL(80 μg總蛋白質)蛋白質經SDS-PAGE后轉印到PVDF膜上,5%的脫脂奶粉4 ℃封閉過夜。分別加入3 mL 1∶300稀釋一抗(NF-κB P65、p-ERK1/2和ERK1/2),4 ℃封閉過夜,隨后加入3 mL 1∶5 000稀釋的二抗,37 ℃孵育1 h,按照ECL試劑盒說明書顯色,最后用X-膠片曝光。以β-actin作為內參,quantity one分析軟件檢測蛋白質灰度值,應用SPSS軟件進行數據處理,分析過表達CIRP對BHK-21細胞中NF-κB和ERK1/2磷酸化水平的影響。

1.4CIRP對H1N1甲型流感病毒復制的影響

1.4.1PR-8感染Cirp+BHK-21和BHK-21 GFP細胞將Cirp+BHK-21和BHK-21 GFP分別培養于6孔細胞培養板,待細胞形成致密單層時,接種1MOI (1拷貝·cell-1)PR/8,置于37 ℃、5% CO2培養箱中孵育1 h后棄去接種物,加入2.5 mL·孔-1維持液(4%胎牛血清、5 μg·mL-1TPCK胰酶)置于37 ℃、5% CO2的培養箱中培養。

1.4.2病毒拷貝數的測定在感染后3、9、15和21 h分別收集Cirp+BHK-21和BHK-21 GFP上清各3孔,用RNA試劑盒提取總RNA,并用反轉錄試劑盒合成cDNA,用Real-time RT-PCR方法[36]檢測病毒在Cirp+BHK-21和BHK-21 GFP中的拷貝數,用Ppia作為內參基因[37],用甲型H1N1流感病毒M基因Real-time RT-PCR方法的標準曲線公式(y=30.62-3.53x)計算病毒拷貝數。

1.5阻斷NF-κB信號通路對流感病毒復制的影響1.5.1PDTC對NF-κB信號通路阻斷效果測定將Cirp+BHK-21細胞培養在75 cm2培養瓶中,待形成致密單層后,加入DMSO溶解的25 μmol·L-1PDTC按照文獻[38]進行處理,另取3瓶加入等體積的DMSO作為對照組,37 ℃、5% CO2培養3 h,按“1.3”方法提取總蛋白質并檢測NF-κB的磷酸化水平,以β-actin作為內參基因,評價PDTC的阻斷效果。1.5.2阻斷NF-κB信號通路對流感病毒復制的影響待Cirp+BHK-21細胞在6孔培養板中長成致密單層后,按“1.5.1”方法加入PDTC,15 min后棄去上清,以阻斷劑稀釋液代替PDTC處理Cirp+BHK-21作為對照組;兩組細胞按“1.4.1”方法感染PR/8,分別于感染后3、9、15和21 h收集兩組病毒各3孔,按“1.4.2”的方法檢測病毒拷貝數。

1.6數據分析

所有待檢樣本均進行3次平行重復試驗,并用SPSS18.0軟件進行分析。

2 結 果

2.1過表達CIRP 顯著提高了NF-κB的磷酸化水平

對Cirp+BHK-21中和BHK-21 GFP細胞中NF-κB P65、ERK1/2和p-ERK1/2的表達磷酸化水平的檢測結果顯示,Cirp+BHK-21中ERK1/2(圖1A、1B)和p-ERK1/2(圖1C)的磷酸化水平略升高,但與對照組無顯著差異(P>0.05);而NF-κB P65(圖1D)的表達水平顯著提高(P<0.05),說明過表達CIRP能顯著提高BHK-21細胞中NF-κB的磷酸化水平,激活NF-κB信號通路,但其對ERK信號通路無明顯影響。

A.Western blot 檢測結果;B.ERK1/2半定量測定結果;C.p-ERK1/2半定量測定結果;D.NF-κB p65半定量測定結果;*.差異顯著(P<0.05) A.The result of Western blot;B.The semi-quantitative result of ERK1/2;C.The semi-quantitative result of p-ERK1/2;D.The semi-quantitative result of NF-κB p65;*.Significant difference (P<0.05)圖1 Crip+BHK-21和BHK-21 GFP細胞中ERK1/2、P-ERK1/2和 NF-κB P65的表達水平Fig.1 Expression of NF-κB P65,P-ERK1/2,ERK1/2 in Crip+BHK-21 whole-cells and control whole-cells

2.2過表達CIRP促進流感病毒的增殖

病毒定量檢測結果顯示,在感染后3、9、15和21 h,Crip+BHK-21中病毒的拷貝數分別為對照組的111%、103%、167%和235%(P<0.05)(表1),說明過表達CIRP促進了H1N1甲型流感病毒在BHK-21細胞中的增殖。

細胞系Cellline時間/hTimespostinfection(h)391521Cirp+BHK-211.29±0.103.46±1.589.76±2.2421.8±3.30*BHK-21GFP1.16±0.433.35±2.145.97±2.949.64±1.76

*.P<0.05

2.3PDTC對NF-κB信號通路的阻斷效果

阻斷試驗結果表明,PDTC顯著抑制了NF-κB的磷酸化作用,阻斷了NF-κB信號通路(圖2)。

2.4阻斷NF-κB信號通路抑制了流感病毒的復制

阻斷NF-κB信號通路,導致H1N1甲型流感病毒在Cirp+BHK-21細胞中的拷貝數明顯降低,在感染后3、9、15和21 h分別為對照組的98%、42%、19%(P<0.05)和7%(P<0.05)(圖3)。可見,CIRP通過激活NF-κB信號通路促進H1N1甲型流感病毒在BHK-21細胞中的復制。

圖2 PDTC對NF-κB信號通路的阻斷效果Fig.2 The blocking effect of PDTC

圖3 阻斷NF-κB抑制了CIRP過表達引起的H1N1甲型流感病毒滴度增加Fig.3 Inhibition of NF-κB p65 expression blocked the increase of virus titers caused by CIRP overexpression

3 討 論

3.1過表達的CIRP能顯著促進流感病毒在BHK-21細胞中的增殖

本研究中,在感染后21 h病毒拷貝數在過表達的BHK-21細胞中極顯著升高,病毒滴度提高1倍以上,說明CIRP可能是通過激活細胞中一系列分子事件最終促進流感病毒增殖。BHK-21對多種動物病毒敏感,是包括流感病毒在內的多種動物病毒疫苗生產常用的培養系統,篩選和培育病毒高產細胞系一直是疫苗生產最迫切追求的目標,本研究證實穩定過表達CIRP能大大提高流感病毒在BHK-21中的滴度,為培育病毒高產細胞系提供了新思路。

3.2CIRP通過激活NF-κB信號通路促進流感病毒復制

研究證明,過表達的CIRP能引起NF-κB磷酸化水平的上調[30],CIRP是NF-κB信號通路的上游調控因子,而這條信號通路是流感病毒復制所必需的[31,34]。NF-κB是一個具有抗凋亡活性的轉錄因子,參與免疫應答和轉錄調控,廣泛地影響參與細胞存活、分化和增殖的基因的表達[5],并在流感病毒復制中發揮重要作用,阻斷人肺上皮細胞A549和U1752中NF-κB信號通路的激活可以抑制流感病毒的感染和增殖[30,39]。在本研究中,阻斷NF-κB信號通路也同時阻斷了由CIRP過表達引起的病毒滴度的增加,說明CIRP通過激活NF-κB信號通路促進流感病毒復制。業已證明NF-κB信號通路促進流感病毒復制的分子機制主要有以下三種:第一,NF-κB通過調控凋亡因子如腫瘤壞死因子相關凋亡誘導配體(TRAIL)或FasL[40],隨后激活caspases途徑,從而促進病毒核糖核蛋白復合體(RNPs)的輸出[41-42];第二,涉及NF-κB的依賴性反作用類型的干擾素誘導基因(ISG)的表達,可能會通過上調細胞因子信號轉導抑制因子3(SOCS-3)和/或通過直接抑制ISG啟動子區域[43-44];第三,在流感病毒感染的細胞中,NF-κB抑制劑能特異性地降低病毒RNA(vRNA)水平及RNA的轉錄水平,P65亞基似乎與vRNA合成調節有關,提示NF-κB可能調節流感病毒RNA的合成[45]。但CIRP激活NF-κB通路的分子機制還不十分清楚,有待進一步研究。

[1]殷震,劉景華.動物病毒學[M].2版.北京:科學出版社,1997:704-712.

YIN Z,LIU J H.Animal virology[M].Beijing:Science Press,1997:704-712.(in Chinese)

[2]EMARA M M,BRINTON M A.Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly[J].ProcNatlAcadSciUSA,2007,104(21):9041-9046.

[3]COOMBS K M,BERARD A,XU W,et al.Quantitative proteomic analyses of influenza virus-infected cultured human lung cells[J].JVirol,2010,84(20):10888-10906.

[4]K?NIG R,STERTZ S,ZHOU Y,et al.Human host factors required for influenza virus replication[J].Nature,2010,463(7282):813-817.

[5]YANG X X,DU N,ZHOU J F,et al.Gene expression profiles comparison between 2009 pandemic and seasonal H1N1 influenza viruses in A549 cells[J].BiomedEnvironSci,2010,23(4):259-266.

[6]CHAKRABARTI A K,VIPAT V C,MUKHERJEE S,et al.Host gene expression profiling in influenza A virus-infected lung epithelial (A594)cells:a comparative analysis between highly pathogenic and modified H5N1 viruses[J].VirolJ,2010,7:219.

[7]LEE S M,GARDY J L,CHEUNG C Y,et al.Systems-level comparison of host-responses elicited by avian H5N1 and seasonal H1N1 influenza viruses in primary human macrophages[J].PLoSOne,2009,4(12):e8072.

[8]BRASS A L,DYKXHOORN D M,BENITA Y,et al.Identification of host proteins required for HIV infection through a functional genomic screen[J].Science,2008,319(5865):921-926.

[9]KARLAS A,MACHUY N,SHIN Y,et al.Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication[J].Nature,2010,463(7282):818-822.

[10]SHAPIRA S D,GAT-VIKS I,SHUM BO,et al.A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection[J].Cell,2009,139(7):1255-1267.

[11]DENG T,ENGELHARDT O G,THOMAS B,et al.Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex[J].JVirol, 2006,80(24):11911-11919.

[12]ENGELHARDT O G,SMITH M,FODOR E.Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II[J].JVirol,2005,79(9):5812-5818.

[13]HUARTE M,SANZ-EZQUERRO J J,RONCAL F,et al.PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators[J].JVirol,2001,75(18):8597-8604.

[14]JORBA N,JUAREZ S,TORREIRA E,et al.Analysis of the interaction of influenza virus polymerase complex with human cell factors[J].Proteomics,2008,8(10):2077-2088.

[15]KAWAGUCHI A,NAGATA K.De novo replication of the influenza virus RNA genome is regulated by DNA replicative helicase,MCM[J].EMBOJ,2007,26(21):4566-4575.

[16]WATANABE T,WATANABE S,KAWAOKA Y.Cellular networks involved in the influenza virus life cycle[J].CellHostMicrobe,2010,7(6):427-439.

[17]PARK YW,WILUSZ J,KATZE MG.Regulation of eukaryotic protein synthesis:selective influenza viral mRNA translation is mediated by the cellular RNA-binding protein GRSF-1[J].ProcNatlAcadSciUSA,1999,96(12):6694-6699.

[18]KASH J C,CUNNINGHAM D M,SMIT M W,et al.Selective translation of eukaryotic mRNAs:functional molecular analysis of GRSF-1,a positive regulator of influenza virus protein synthesis[J].JVirol,2002,76(20):10417-10426.

[19]GOODMAN A G,SMITH J A,BALACHANDRAN S,et al.The cellular protein P58IPK regulates influenza virus mRNA translation and replication through a PKR-mediated mechanism[J].JVirol,2007,81(5):2221-2230.

[20]PREDICALA R,ZHOU Y.The role of ran-binding protein 3 during influenza A virus replication[J].JGenVirol,2013,94(Pt 5):977-984.

[21]NISHIYAMA H,ITOH K,KANEKO Y,et al.A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth[J].JCellBiol,1997,137(4):899-908.

[22]XUE J H,NONOGUCHI K,FUKUMOTO M,et al.Effects of ischemia and H2O2on the cold stress protein CIRP expression in rat neuronal cells[J].FreeRadieBiolMed,1999,27(11-12):1238-1244.

[23]WELLMANN S,BüHRER C,MODEREGGER E,et al.Oxygen-regulated expression of the RNA-binding proteins RBM3 and CIRP by a HIF-1-independent mechanism[J].JCellSci,2004,117(Pt 9):1785-1794.

[24]PAN F,ZARATE J,CHOUDHURY A,et al.Osmotic stress of salmon stimulates upregulation of a cold inducible RNA binding protein (CIRP) similar to that mammals and amphibians[J].Biochimine,2004,86(7):451-461.

[25]YANG C,CARRIER F.The UV-inducible RNA-binding protein A18(A18 hnRNP)plays a protective role in the genotoxic stress response[J].JBiolChem,2001,276(50):47277-47284.

[26]DE LEEUW F,ZHANG T,WAUQUIER C,et al.The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor[J].ExpCellRes,2007,313(20):4130-4144.

[27]SAITO K,FUKUDA N,MATSUMOTO T,et a1.Moderate low temperature preserves the stemness of neural stem cells and suppresses apoptosis of the cells via activation of the cold-inducible RNA binding protein[J].BrainRes,2010,1358:20-29.

[28]LAN D,TANG C,LI M,et al.Screening and identification of differentially expressed genes from chickens infected with Newcastle disease virus by suppression subtractive hybridization[J].AvianPathol,2010,39(3):151-159.

[29]周鴻淼,湯承,岳華,等.冷誘導RNA結合蛋白參與小鼠對LPS的應答[J].畜牧獸醫學報,2014,45(8):1348-1354.

ZHOU H M,TANG C,YUE H,et al.Cold-inducible RNA binding protein involves in response to LPS in mice[J].ActaVeterinariaetZootechnicaSinica,2014,45(8):1348-1354.(in Chinese)

[30]ARTERO-CASTRO A,CALLEJAS F B,CASTELLVI J,et al.Cold-inducible RNA-binding protein bypasses replicative senescence in primary cells through extracellular signal-regulated kinase 1 and 2 activation[J].MolCellBiol,2009,29(7):1855-1868.

[31]PLESCHKA S,WOLFF T,EHRHARDT C,et al.Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade[J].NatCellBiol,2001,3(3):301-305

[32]LUDWIG S,PLANZ O.Influenza viruses and the NF-κB signaling pathway-towards a novel concept of antiviral therapy[J].BiolChem,2008,389(10):1307-1312.

[33]SCHMOLKE M,VIEMANN D,ROTH J,et al.Essential impact of NF-kappaB signaling on the H5N1 influenza A virus-induced transcriptome[J].JImmunol,2009,183(8):5180-5189.

[34]NIMMERJAHN F,DUDZIAK D,DIRMEIER U, et al.Active NF-кB signalling is a prerequisite for influenza virus infection[J].JGenVirol,2004,85(Pt 8):2347-2356.

[35]TANG C,WANG Y,LAN D,et al.Analysis of gene expression profiles reveals the regulatory network of cold-inducible RNA-binding protein mediating the growth of BHK-21 cells[J].CellBiolInt,2015,39(6):678-689.

[36]聶培婷,湯承,岳華.H1N1甲型流感病毒在BHK21中的增殖規律[J].西南民族大學學報,2012,38(5):764-769.

NIE P T,TANG C,YUE H.Study on the proliferation profile of influenza A virus in BHK21 cells[J].JournalofSouthwestUniversityforNationalities,2012,38(5):764-769.(in Chinese)

[37]吳巧,張斌,湯承,等.H5N1禽流感病毒感染小鼠后內參基因的篩選[J].中國畜牧獸醫,2013,40(9):55-60.

WU Q,ZHANG B,TANG C,et al.Selection of reference gene in mice infected with H5N1 avian influenza virus[J].ChinaAnimalHusbandry&VeterinaryMedicine,2013,40(9):55-60.(in Chinese)

[38]MOGENSEN T H,MELCHJORSEN J,H?LLSBERG P,et al.Activation of NF-κB in virus-infected macrophages is dependent on mitochondrial oxidative stress and intracellular calcium:downstream involvement of the kinases TGF-beta-activated kinase 1,mitogen-activated kinase/extracellular signal-regulated kinase kinase 1,and l kappa B kinase[J].JImmunol,2003,170(12):6224-6233.

[39]WURZER W J,EHRHARDT C,PLESCHKA S,et al.NF-кB-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas/FasL is crucial for efficient influenza virus propagation[J].JBiolChem,2004,279(30):30931- 30937.

[40]WURZER W J,PLANZ O,EHRHARDT C,et al.Caspase 3 activation is essential for efficient influenza virus propagation[J].EMBOJ,2003,22(11):2717-2728

[41]FALEIRO L,LAZEBNIK Y.Caspases disrupt the nuclear-cytoplasmic barrier[J].JCellBiol,2000,151(5):951-959.

[42]KRAMER A,LIASHKOVICH I,OBERLEITHNER H,et al.Apoptosis leads to a degradation of vital components of active nuclear transport and a dissociation of the nuclear lamina[J].ProcNatlAcadSciUSA,2008,105(32):11236-11241.

[43]PAULI E K,SCHMOLKE M,WOLFF T,et al.Influenza A virus inhibits type I IFN signaling via NF-κB-dependent induction of SOCS-3 expression[J].PLoSPathog,2008,4(11):e1000196.

[44]WEI L,SANDBULTE M R,THOMAS P G,et al.NF-кB negatively regulates interferon-induced gene expression and anti-influenza activity[J].JBiolChem,2006,281(17):11678- 11684.

[45]KUMAR N,XIN Z T,LIANG Y,et al.NF-κB signaling differentially regulates influenza virus RNA synthesis[J].JVirol,2008,82(20):9880- 9889.

(編輯白永平)

Activation of Cold-inducible RNA-binding Protein by H1N1 Influenza Virus Contributes to Viral Replication Via Activating NF-κB Pathway

NIE Pei-ting,TANG Cheng,YUE Hua*

(CollegeofLifeScienceandTechnology,SouthwestUniversityforNationalities,Chengdu610041,China)

The cold-inducible RNA-binding protein (CIRP) is an upstream regulator of the NF-κB and ERK pathways,which are essential for the replication of the influenza virus and the initial immune response.In order to investigate the effect of CIRP on the replication of H1N1 influenza A virus and its possible molecular mechanism,in this study,CIRP overexpression BHK-21 (Cirp+BHK-21) cells were constructed,and the phosphorylation levels of NF-κB and ERK in Cirp+BHK-21 cells were detected by Western blot to confirm the effect of CIRP on regulation of NF-κB and ERK1/2;Real-time RT-PCR was used to detect the dynamic changes of virus load in Cirp+BHK-21 and control cells after infected with influenza A virus,the method was also used to detect the dynamic changes of virus load in Cirp+BHK-21 cells which were blocked by the NF-κB inhibitor PDTC.The results of Western blot exhibited that overexpressed CIRP could significantly increase the expression of phosphorylation level of NF-κB (P<0.05),but had no significant effect on the phosphorylation level of ERK.The results of quantitative detection of virus showed that overexpressed CIRP could significantly enhance the proliferation of influenza A virus,the virus load in the Cirp+BHK-21 cells were 111%,103%,167% and 235% (P<0.05) at 3,9,15 and 21 h PI,respectively,compared to the control group;Blocking the NF-κB was significantly decreased the virus load in the Cirp+BHK-21,and the virus load in treatment group were 98%,42%,19% (P<0.05),7% (P<0.05) at 3,9,15 and 21 h PI,respectively,compared to the unblock group.Therefore,this study confirmed that overexpressed CIRP could enhance the proliferation of influenza A virus via activation of NF-κB pathway.

cold-inducible RNA binding protein;influenza A virus;replication;NF-κB;BHK-21 cells

10.11843/j.issn.0366-6964.2016.10.020

2016-05-06

國家自然科學基金項目(31172307);四川省教育廳創新團隊項目(13TD0057)

聶培婷(1989-),女,新疆霍城人,碩士,主要從事感染與免疫相關研究,E-mail:540016852@qq.com

岳華,Tel:028-85528276,E-mail:yhua900@163.com

S852.23

A

0366-6964(2016)10-2108-07

猜你喜歡
信號檢測
“不等式”檢測題
“一元一次不等式”檢測題
“一元一次不等式組”檢測題
信號
鴨綠江(2021年35期)2021-04-19 12:24:18
“幾何圖形”檢測題
“角”檢測題
完形填空二則
孩子停止長個的信號
小波變換在PCB缺陷檢測中的應用
基于LabVIEW的力加載信號采集與PID控制
主站蜘蛛池模板: 亚洲一区国色天香| 黄色免费在线网址| 免费视频在线2021入口| 四虎永久在线| 久久天天躁狠狠躁夜夜2020一| 国产情精品嫩草影院88av| 久久福利网| 亚洲欧美在线看片AI| 日韩精品专区免费无码aⅴ| 国产精品白浆在线播放| 日韩精品无码免费一区二区三区 | 亚洲一区二区黄色| 在线一级毛片| 国产精品福利尤物youwu| 在线看片中文字幕| 亚洲a级在线观看| 国产欧美专区在线观看| 九九热在线视频| 色综合久久88| 亚洲天堂网在线观看视频| 欧美日韩一区二区三| 精品视频在线观看你懂的一区| 亚洲国产第一区二区香蕉| 婷婷中文在线| www.国产福利| 国产不卡网| 一级毛片在线播放| 国产特一级毛片| 国产成人高清精品免费| 亚洲男人的天堂久久香蕉| 久久99国产综合精品1| 99九九成人免费视频精品| 国产va在线| 在线观看无码a∨| av在线5g无码天天| 国产女人喷水视频| 三上悠亚精品二区在线观看| 国产精品男人的天堂| 午夜精品国产自在| 欧美激情伊人| 国产美女一级毛片| 在线观看无码av五月花| 啪啪免费视频一区二区| 国产美女无遮挡免费视频网站| 亚洲av成人无码网站在线观看| 久久久成年黄色视频| 亚洲香蕉在线| 91在线无码精品秘九色APP| 乱人伦视频中文字幕在线| 欧美人与牲动交a欧美精品 | 91网红精品在线观看| 久久久久88色偷偷| 精品免费在线视频| 亚洲欧洲日韩国产综合在线二区| 国产99免费视频| 中国一级特黄视频| 精品国产乱码久久久久久一区二区| 丁香六月激情婷婷| 日本午夜三级| 成人看片欧美一区二区| 欧美成人二区| 思思99热精品在线| 毛片免费高清免费| 久久久久无码国产精品不卡| 日本免费a视频| 91青青视频| 国产精品久久久久久影院| 精品福利国产| 色135综合网| 欧美α片免费观看| 精品亚洲国产成人AV| 国产成人在线小视频| 91九色国产在线| 亚洲,国产,日韩,综合一区 | 国产91特黄特色A级毛片| AV熟女乱| 久久中文无码精品| 久久不卡国产精品无码| 亚洲人成影院在线观看| 免费观看亚洲人成网站| 99热国产这里只有精品无卡顿"| 欧美综合激情|