何杰 肖琨
摘要:
針對獨立非同分布(i.n.i.d.)廣義K衰落信道中的正交空時分組編碼多輸入多輸出(OSTBCMIMO)系統性能問題,建立了采用MQAM調制的OSTBCMIMO系統在i.n.i.d廣義K衰落信道中的系統模型。利用接收端等效信噪比(SNR)可以近似為兩個由多個獨立伽馬隨機變量之和構成的隨機變量的乘積這一關系,推導出近似等效信噪比的概率密度函數表達式,繼而推導得到平均符號差錯概率、中斷概率和容量的閉式。仿真結果表明:除波形參數m外,k取任意不同正整數值也會對系統性能產生重要的影響,OSTBCMIMO系統在i.n.i.d.廣義K衰落信道中的性能與在獨立同分布(i.i.d.)廣義K衰落信道中的性能存在顯著差別。
關鍵詞:
中斷概率;容量;符號差錯概率;廣義K衰落信道;正交空時分組編碼
中圖分類號:
TN915.01
文獻標志碼:A
Abstract:
Concerning the performance of the Orthogonal Space Time Block Code based MultipleInput MultipleOutput (OSTBCMIMO) system over independent but not necessarily identically distributed (i.n.i.d.) generalizedK fading channels, the system model of the OSTBCMIMO system was established in i.n.i.d. generalizedK fading channel by adopting MQAM modulation scheme. We take full use of the relationship that the receiver equivalent SNR is approximated by the product of two random variables, which are composed of multiple independent Gamma distributed random variables, respectively. Then, the closedform PDF expression of the approximate equivalent SNR is derived and thereafter the expressions of the average symbol error probability, channel capacity and outage probability are derived successively.
The equivalent SignaltoNoise Ratio (SNR) of the receiver was approximated by the product of two variables that composed of multiple independent Gamma distributed random variables. On the basis of that, the probability density function expression of the equivalent SNR was derived as well as the expression of the average symbol error probability, channel capacity and outage probability.
The simulation results show that, in addition to the parameter m, the parameter k also has a significant impact on the overall system performance, which produces the nonnegligible differences on the system performance between the i.n.i.d. generalizedK fading channels and the i.i.d. generalizedK fading channels.
英文關鍵詞Key words:
outage probability; capacity; symbol error probability; generalizedK fading channel; Orthogonal Space Time Block Code (OSTBC)
0引言
多徑衰落和陰影效應是用來表征一般無線信道的兩個特征。在復合無線信道模型中,Nakagamim模型[1]和Suzuki模型[2]廣泛地應用于各種無線通信系統中。然而這兩種復合信道模型的概率密度函數(Probability Density Function, PDF)得不到閉式,給評估移動通信系統鏈路性能帶來了很大的困難。廣義K衰落信道模型不但能很好地模擬無線信道的快衰落和慢衰落效應,而且存在閉式,因而吸引了眾多國內外學者的關注。
文獻[3-4]分析了廣義K衰落信道中多輸入多輸出(MultipleInput MultipleOutput, MIMO)系統的容量。有關MIMO、單天線系統符號差錯概率的研究可以在文獻[5-7]中找到。由于正交空時分組編碼可以提高系統的可靠性,并且使得接收端的解碼相對簡單[8-11],因此文獻[12]和文獻[13]在獨立同分布(independent and necessarily identically distributed, i.i.d.)的廣義K衰落信道中研究了采用正交空時分組編碼的MIMO系統的性能。這些研究的不足在于:1)研究主要基于i.i.d.廣義K衰落信道,而不是獨立非同分布(independent but not necessarily identically distributed, i.n.i.d.)廣義K衰落信道,而現實MIMO系統中,i.n.i.d.廣義K衰落信道更具有一般性。本文接下來的研究結果將表明,i.n.i.d.廣義K衰落信道和i.i.d.廣義K衰落信道中的系統性能表達式截然不同,性能也存在顯著差異。2)文獻[14]研究了有限i.n.i.d.廣義K衰落信道中最大比合并接收機的性能,即只考慮了波形參數m取不同正整數的情況,沒有考慮波形參數k在MIMO子信道中的差異性,有較大的局限性,而且該研究不針對正交空時分組編碼(Orthogonal Space Time Block Code, OSTBC)MIMO系統。
基于上述原因,本文開展基于i.n.i.d.廣義K衰落信道的OSTBCMIMO系統的性能研究,同時考慮了波形參數m和k取不同正整數的情形。雖然要在數學上獲得基于i.n.i.d.廣義K衰落信道的OSTBCMIMO系統性能的精確閉式非常困難,但是本文通過推導近似等效信噪比的概率密度函數,獲得了OSTBCMIMO系統的近似性能的閉式。在仿真分析中,著重考察了信道參數k對于系統性能的影響,并得出了科學的結論。
1系統模型
如圖1所示,在i.n.i.d.廣義K衰落信道中,具有Nt個發射天線和Nr個接收天線的MIMO系統采用正交空時分組編碼。首先,信源被調制成星座大小為M的正交振幅調制(Quadrature Amplitude Modulation, QAM)符號集合S,這些符號被OSTBC編碼器編成大小為T×Nt的正交分組空時碼C,T為正交分組空時碼的分組長度。C可以表示為C=∑Ll=1slAl+s*lBl,其中符號{sl}(l=1,2,…,L)選自QAM符號集合S,Al,Bl∈CT×Nr是常數。于是系統輸入和輸出的關系可以表示為:
Y=CΗ+n(1)
其中:信道矩陣Η∈CNt×Nr,并假設在一個分組周期T內信道系數是不變的;信道矩陣中的元素hn, j=αn, jeiφn, j代表第nth根發射天線到第jth根接收天線間的信道系數,αn, j為相應子信道的幅值,服從i.n.i.d.廣義K分布,φn, j是相應子信道的相位,服從(0,2π]的均勻分布。n是大小為T×Nr的噪聲矩陣,其中的元素假定為服從CN(0,N0)的復循環對稱高斯隨機變量。
3仿真分析
本節通過蒙特卡洛仿真驗證理論推導的正確性以及獲得系統性能數據。產生1010個i.n.i.d.廣義K分布隨機數,根據式(4)、(5),得到輸出端的等效信噪比。圖2描繪了i.n.i.d.廣義K衰落信道中OSTBCMIMO系統在16QAM調制下的平均符號差錯概率與信噪比的關系,其中發射天線數分別為2和3,接收天線數為1。可以看出當增加發射天線數目時,平均符號差錯概率有了明顯的減小。至于信道參數kl對平均符號差錯概率的影響,通過在相同的仿真設置下,僅改變參數kl的取值來考察平均符號差錯概率。圖2中,在發射天線數為2且參數ml不變的情況下,kl=1,2時的平均符號差錯概率比kl=3,4時的平均符號差錯概率大。相同的結論在發射天線數為3的數據中也觀察到。這說明當參數kl增大時,各子信道的信道狀況變好導致平均符號差錯概率變小,可見參數kl對平均符號差錯概率有著顯著的影響。
4結語
本文通過在獨立非同分布廣義K衰落信道中獲得近似等效信噪比的PDF閉式解決了等效信噪比的精確PDF閉式難以獲得,進而不能獲得基于獨立非同分布廣義K衰落信道的OSTBCMIMO系統性能閉式這一問題。所得到的平均符號差錯概率、中斷概率以及容量的閉式性能與仿真結果高度一致,從而驗證了理論分析的正確性。需要重視的是,數值分析表明波形參數k在平均符號差錯概率和中斷概率上的影響是顯著的,在容量上存在細微影響,然而已有的研究往往忽略了參數k在實際MIMO子信道中的差異對系統性能的影響,本文的工作完善了這一理論問題,具有一般性,取得了積極的進展。
參考文獻:
[1]
UJJINIMATAD R, PATIL S R. Signal detection in cognitive radio networks over AWGN, Nakagamim and Nakagamiq channels [C]// Proceedings of the 2014 11th International Conference on Wireless and Optical Communications Networks. Piscataway, NJ: IEEE, 2014:1-5.
[2]
BACHA M, HASSAN S A. Distributed versus clusterbased cooperative linear networks: a range extension study in Suzuki fading environments [C]// Proceedings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications. Piscataway, NJ: IEEE, 2013: 976-980.
[3]
TRIGUI I, AFFES S, STEPHENNE A. Analysis of relay capacity over generalizedK fading channels with cochannel interference [C]// Proceedings of the 2014 IEEE Wireless Communications and Networking Conference. Piscataway, NJ: IEEE, 2014: 144-148.
[4]
JUNG J, LEE S R, PARK H, et al. Capacity and error probability analysis of diversity reception schemes over generalizedK fading channels using a mixture gamma distribution [J]. IEEE Transactions on Wireless Communications, 2014, 13(9): 4721-4730.
[5]
GUPTA S, KATIYAR H. Outage performance of regenerative cooperative relay network in KG fading channel [C]// Proceedings of the 2014 20th National Conference on Communications. Piscataway, NJ: IEEE, 2014: 1-5.
[6]
BITHAS P S, SAGIAS N C, MATHIOPOULOS P T, et al. On the performance analysis of digital communications over generalizedK fading channels [J]. IEEE Communications Letters, 2006, 10(5): 353-355.
[7]
LI X, LI L, SU X. Approximate capacity analysis for distributed MIMO system over generalizedK fading channels [C]// Proceedings of the 2015 IEEE Wireless Communications and Networking Conference. Piscataway, NJ: IEEE, 2015:235-240.
[8]
張紅霞,戴居豐.3GPP信道模型中STBCOFDM系統性能分析[J].計算機應用,2009,29(10):2614-2616.(ZHANG H X, DAI J F. Performance of STBCOFDM system in 3GPP channel model [J]. Journal of Computer Applications, 2009, 29(10): 2614-2616.)
[9]
YOON C, LEE H, KANG J. Effect of generalizedK fading on the performance of symmetric coordinate interleaved orthogonal designs [J]. IEEE Communications Letters. 2014, 18(4): 588-591.
[10]
ARTI K M K, MALLIK R K, SCHOBER R. Performance analysis of OSTBC relaying in AF MIMO relay systems with imperfect CSI [J]. IEEE Transactions on Vehicular Technology, 2015, 64(7): 3291-3298.
[11]
CHEN H, WANG Z J. SER of orthogonal spacetime block codes over Rician and Nakagami m RF backscattering channels [J]. IEEE Transactions on Vehicular Technology, 2014, 63(2): 654-663.
[12]
LEGNAIN R M, HAFEZ R H M, MARSLAND I D. Multiuser detection for Rate1/2 OSTBC with four transmit antennas [C]// Proceedings of the 2013 1st International Conference on Communications, Signal Processing, and their Applications. Piscataway, NJ: IEEE, 2013: 1-4.
[13]
MATTHAIOU M, CHATZIDIAMANTIS N D, SURAWEERA H A, et al. Performance analysis of spacetime block codes over generalizedK fading MIMO channels [C]// Proceedings of the 2011 IEEE Swedish Communication Technologies Workshop. Piscataway, NJ: IEEE, 2011: 68-73.
[14]
CHATZIDIAMANTIS N D, KARAGIANNIDIS G K, MICHALOPOULOS D S. On the distribution of the sum of gammagamma variates and applications in RF and optical wireless communications [J]. IEEE Transactions on Wireless Communications, 2011, 59(5):1298–1308.
CHATZIDIAMANTIS N D, KARAGIANNIDIS G K, MICHALOPOULOS D S. On the distribution of the sum of gammagamma variates and applications in RF and optical wireless communications [C]// GLOBECOM 09: Proceedings of the 28th IEEE Conference on Global Telecommunications. Piscataway, NJ: IEEE, 2009: 1768-1773.
[15]
GRADSHTEYN I S, RYZHIK I M. Table of Integrals, Series, and Products [M]. 7th ed. Burlington: USA Academic Press, 2007.
http://samples.sainsburysebooks.co.uk/9781483265643_sample_872153.pdf
[16]
MAAREF A, AISSA S. Exact error probability analysis of orthogonal spacetime block codes with arbitrary rectangular QAM over MIMO Nakagamim fading channels [C]// Proceedings of the 2007 IEEE Wireless Communication and Networking Conference. Piscataway, NJ: IEEE, 2007: 768-772.
[17]
Wolfram Research. The Wolfram functions site [EB/OL]. [20160125]. http://functions.wolfram.com/.
[18]
SHARMA B L, ABIODUN R F A. Generating function for generalized function of two variables [J]. Proceedings of the American Mathematical Society, 1974, 46(1): 69-72.