999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

BP神經網絡算法在數值預報產品釋用中的應用

2016-09-29 14:15:12
科技視界 2016年20期

趙冬玉 王利偉

【摘 要】根據2015年3月份的GTS實測數據及渤海區域內海洋站的實況數據,建立BP神經網絡數值預報產品釋用模型,在模式數值預報的基礎上,進行0-24小時、24-48小時以及48-72小時渤海區域氣象要素模擬預測。模式業務試用結果表明,BP神經網絡模型具有較強的自適應學習和非線性映射能力,其擬合值與實際值相吻合的較好,預報準確率精度較高。

【關鍵詞】BP神經網絡;數值預報產品釋用;預報準確率

0 引言

數值預報產品的釋用是解決數值預報產品本地化的一項重要技術,也是提高本地區預報準確率的一種有效手段。目前數值預報產品的釋用工作大都基于統計的分析方法,如MOS法[1]、PPM法[2]中的多元線性判別與回歸方程、卡爾曼濾波等。本文采用人工神經網絡方法中應用最為廣泛的BP算法開展數值產品定點釋用,實現站點要素客觀量化預報。

1 數值預報產品釋用原理

BP網絡是人工神經網絡中的一種多層前饋網絡的學習算法,它可以通過神經網絡的自學習功能,確定神經元之間的耦合權值,從而使網絡整體具有近似函數的功能,非常適用于非線性系統的建模研究。圖1給出數值預報產品釋用流程。

2 BP神經網絡數值預報產品釋用模型

2.1 建立數值預報產品釋用模型

圖1 具有兩個隱層的BP網絡

兩個隱層的BP網絡結構如圖1所示,該網絡共分4層:第1層為變量輸入,xj(j=1,2,…,n0)為輸入變量,no為輸入變量的個數。若設x0為第一隱層中激活函數的域值,則輸入向量總共為no+1維。x0一般取為-1將其增廣到輸入量中,作為一個分量,則有x=(x0,x1,…,xn0)。第2層為第1隱層,設有n1個神經元,則其輸出向量g=(g0,g1,…, gn1),其中g0為第一隱層中激活函數的域值,一般取為-1。第3層為第2隱層,設有n2個神經元,其輸出向量h=(h0,h1,…),第4層為輸出層,設有m個神經元,網絡的輸出向量為y=(h1,h2…,hm)[3-4]。

上面各式中,η表示學習率,其值通常在 0.01-1.0 之間,學習率η選得太小,會導致網絡參數(耦合權值)修改量過小,收斂緩慢,選得太大,雖然可以加快學習速度,但可能致使權值修改量在穩定點附近持續震蕩,難以收斂,mc為動量因子,一般取0.9左右。動量項的作用在于記憶前一時刻聯接權值的變化方向,增加動量項,利用其“慣性效應”來抑制可能產生的震蕩,起到平滑作用,這樣可以采用較大的學習率η,以提高學習速度。

3 學習訓練及預報準確率檢驗

實況數據包含2015年3月份的GTS實測數據及渤海區域內海洋站的實況數據,數據主要提取的變量包括3小時一次的氣壓(海平面氣壓及本站氣壓值)、氣溫、能見度、降水、云量;海洋站數據提取的變量主要為風向、風速資料。

以海平面氣壓為例,選用psfc變量作為預報因子,將2015年3月份樣本數據,運用BP神經網絡方法,進行訓練學習,圖2給出網絡擬合及預測值與實際值的對比曲線。從圖2中可知,BP網絡的擬合值與實際值在大部分時段相吻合。

圖2 BP網絡的擬合值和預測值與實際值的對比曲線

各時段海平面氣壓、溫度、相對濕度、能見度、降水、風向和風速的預報準確率如表1所示,從表1中可知,相對于傳動的數值預報釋用方法,采用BP神經網絡算法,海平面氣壓、溫度、能見度的預報準確率大大提高了。

表1 各時段預報結果準確率

4 結論

目前,數值預報產品釋用方法大多數基于統計的分析方法,但是基于該方法的氣象要素的準確率較低。利用BP神經網絡算法進行數值預報產品的釋用,其擬合值與實際值在大部分時段相吻合的較好,各時段渤海區域氣象要素預報準確率較高,具有非常廣闊的應用前景。

【參考文獻】

[1]Zbynk Sokol. Mos-Based Precipitation Forecasts for River Basins[J]. Weather and Forecasting, 2003, 18(5): 769-781.

[2]Ashok Kumar, Parvinder Maini, S.V.Singh. An Operational Model for Forecasting Probability of Precipitation an Yes/No Forecast[J]. Weather and Forecasting, 1999, 14(1): 38-48.

[3]金 龍.神經網絡氣象預報建模理論方法與應用[M].北京:氣象出版社,2004.

[4]蔣宗禮.人工神經網絡導論[M].北京:高等教育出版社,2001.

主站蜘蛛池模板: 538国产视频| 第一区免费在线观看| 亚洲国产成人自拍| 久久这里只精品热免费99| 亚洲第一区精品日韩在线播放| 精品无码一区二区在线观看| 亚洲视频三级| 香蕉国产精品视频| 欧美精品H在线播放| h网址在线观看| 久久99热这里只有精品免费看| 国产99视频在线| 欧美一区二区福利视频| 欧美久久网| 亚洲精品成人片在线观看| 免费人成在线观看成人片| www.99在线观看| 亚洲欧洲国产成人综合不卡| 伊人久久影视| 午夜a级毛片| 日韩欧美网址| 亚洲一区二区在线无码| 91精品小视频| 亚洲国产中文精品va在线播放| 亚洲无码精品在线播放| 美女裸体18禁网站| a毛片免费看| 夜夜操天天摸| 午夜在线不卡| 在线观看免费国产| 国产00高中生在线播放| 亚洲第一香蕉视频| 91蝌蚪视频在线观看| 玖玖精品在线| 91福利在线看| 日日碰狠狠添天天爽| 2020精品极品国产色在线观看| 国内嫩模私拍精品视频| 伊在人亞洲香蕉精品區| 人妻无码中文字幕一区二区三区| 色婷婷色丁香| 色天堂无毒不卡| 久热这里只有精品6| 高潮毛片无遮挡高清视频播放| 国产无遮挡猛进猛出免费软件| 在线看AV天堂| 91成人在线观看| 找国产毛片看| 亚洲欧美在线精品一区二区| 午夜啪啪福利| 国产女人综合久久精品视| 国产麻豆aⅴ精品无码| 亚洲毛片一级带毛片基地| 欧美在线综合视频| 国产毛片网站| 最新国产成人剧情在线播放| 色天天综合久久久久综合片| 国产精品久久久久无码网站| 国产成人亚洲精品色欲AV| 丝袜亚洲综合| 免费av一区二区三区在线| 国产va免费精品观看| 日韩精品一区二区三区中文无码| 成人免费黄色小视频| 国产高清无码第一十页在线观看| 青青热久免费精品视频6| 精品福利国产| 色呦呦手机在线精品| 欧美精品一区二区三区中文字幕| 欧美成人在线免费| 亚洲另类国产欧美一区二区| 国产杨幂丝袜av在线播放| 欧美亚洲一区二区三区导航| P尤物久久99国产综合精品| 日韩在线影院| 日韩小视频在线观看| 免费a在线观看播放| 国产全黄a一级毛片| 婷婷色一二三区波多野衣| 一本大道香蕉中文日本不卡高清二区| 国产高清色视频免费看的网址| 国产精品无码制服丝袜|