999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

氧化石墨烯/聚電解質層層自組裝制備單價離子選擇性膜

2016-09-13 03:10:26趙勝君張偉鄧會寧劉偉
物理化學學報 2016年3期

趙勝君 張偉 鄧會寧,* 劉偉

(1河北工業大學化工學院,天津300130;2河北工業大學海洋科學與工程學院,天津300130)

氧化石墨烯/聚電解質層層自組裝制備單價離子選擇性膜

趙勝君1張偉2鄧會寧2,*劉偉2

(1河北工業大學化工學院,天津300130;2河北工業大學海洋科學與工程學院,天津300130)

采用層層自組裝法在改性聚丙烯腈(PAN)膜表面交替沉積聚乙烯亞胺(PEI)和聚丙烯酸-氧化石墨烯(PAA-GO)混合液,制得了單價離子選擇性復合膜。X射線衍射(XRD)測試結果表明成功合成了氧化石墨烯(GO)并在復合膜中均勻分散。掃描電鏡(SEM)觀察結果證實了多層聚電解質PEI/PAA-GO成功地組裝在基膜上,并用紫外-可見(UV-Vis)光譜進一步證實了組裝過程的均勻性和連續性。接觸角和性能測試表明加入GO后,復合膜的親水性和單價陽離子的選擇性明顯增大。這種高通量、高選擇性的防污復合膜在分離和水的軟化方面有很好的應用前景。

多層結構;層層自組裝;沉積;氧化石墨烯;選擇性

Themembranes for selective separation ofmonovalent ions from multivalentones are of special utility for edible salt from seawater,water softening,and recovery of spentacids from waste water.Since multivalent ions have a larger size than themonovalentones,they could be separated bymembranesbased on a mechanism of sieve effect.The compositemembranes could form tortuouspaths in their skin with GO added,so the selectivity for monovalent ion could be enhanced.Moreover,the functional groupson GO such as carboxyland hydroxyl could also improve the hydrophilic of the surface of themembranes.Thiswould effectively enhance the antifouling ability of the prepared composite membranes.

In thisstudy,we prepared apoly(ethylenimine)/polyacrylicacid-GO(PEI/PAA-GO)compositemembraneby layer-by-layer(LBL) method for themonovalentandmultivalent ion separation.The membrane preparation procedure,the dispersibility of GO in the compositemembranes,and theeffectsof GO on hydrophilcity and monovalentcation selectivity were systematically investigated.

2 Experimental

2.1Materia ls

Natural flake graphite(99.9%)waspurchased from Qingdao Guyu Grapite Co.,Ltd.Polyethylenimine(50%(w,mass fraction), Mw=70000)was procured from A laddin IndustrialCorporation and Polyacrylic acid(25%,Mw=240,000)was purchased from Acros Organics Company.All other chemicals(99%)were obtained from Tianjin Jiangtian Chem ical Technology Co.,Ltd.The polyacrylonitrile(PAN)ultrafiltrationmembranewassupplied by the Sepro Company.

2.2Prepara tion o f laye r-by-laye r assem b led com positememb ranes

GO was prepared via amodified Hummersmethod14-16.Firstly, 2 g of graphite powderand 1 g of NaNO3were dispersed in 100m L of concentrated H2SO4at0°C,and then 6g of KMnO4was added slow ly for 1.5h.Themixturewas stirred at35°C for 30m in,and then 100mL of deionized water was added into the m ixture.To reduce the residual permanganate,200m L of distilled waterand 30mLof 30%H2O2aqueoussolutionwereadded to the m ixture sequentially at95°C2,17.Finally,them ixturewas centrifuged andwashedw ith HCl,deionizedwaterand dried18.

The supporting PANmembranewas immersed in 0.2mol?L-1sodium hydroxide solution at 60°C for 30min to convert the nitrile(―C≡N)groups of the PAN membrane to carboxylate (―COOH)11,19.The pretreated supporting membrane was immersed in 3 g?L-1poly(ethylenimine)(PEI)solution for15m in, and then immersed in am ixed solution of 3 g?L-1PAA and 1 g?L-1GO for15m in to complete the firstbilayer deposition.This procedure was repeated to obtain the desired number of bilayers. Betw een each layer of deposition,themembrane was rinsed w ith deionized water to remove the residual polyelectrolyte20.A ll the membranes were ended in PEI,because that positive charged surface could increase the selectivity for cation by electrostatic repulsion.A t last,themodified membrane w as chem ical crosslinkedw ith 12%(w)ethanol solution of epichlorohydrin to improve their stability.The poly(ethylenimine)and polyacrylic acid (PEI/PAA)membraneswere fabricatedwith similar procedurebut w ithoutGO in the PAA solution.

2.3Characterization

X-ray powder diffraction(XRD,BrukerAXSCo.,Ltd.,Germany)patternsof the sampleswere performed using a Bruker D8 Focus diffractometerwith a Cu Kαradiation(λ=0.15406nm). Scanning electronmicroscopy(SEM,FEI,Nova Nano SEM450, America)imageswere taken using an FEI/NovaNano SEM450operating at200kV.Hydrophilic of themembrane surfacewas analyzed by measuring the water contact angle using Kruss/ DAS30(Germany)contactanglemeter.To characterize the layerby-layerassembly process,aboiling piranhasolution(30:70,V/ V,H2O2/H2SO4)treated quartz slide was exposed to the PEIsolution and them ixture of PAA and GO alternatively and then testedwith a UV-Vis spectrophotometer(Beijing PurkinjeGeneral InstrumentCo.,Ltd,TU-1810,China).

The selectivity of compositemembraneswith an effectivearea of 16cm2was evaluated w ith a homemade two-com partment diffusion device.The tw ice concentration of seawater and distilled w ater w as selected as feed solution and draw solution,respectively.The volume of feed and draw solutionswere both 100m L. The prepared GO com positemembrane was fixed between the compartmentswithmodified surface facing the feed solution.The concentration of Cland bivalent cationswas titrated after90min of diffusion.Then the selective coefficient S was calculated as:

where S was the selective coefficientbetweenmonovalent ions and divalent ions,C0and CPwere the ion concentrationsof initial and infiltrated solution,respectively.The subscripts Iand II referred to themonovalentand bivalentcations.

3 Results and discussion

3.1SEMana lysis

Fig.1(a)showed the surfacemorphology of support substrate, which appearedmany poreswith diameterof about100nm,while the surfaceofmembranemodified by PEI/PAA-GO(Fig.1(b))wasdense and smooth.Thiswas due to the uniquemonolayer sheet structure of GO and the electrostatic interaction betw een polycation electrolyte PEIand polyanion electrolyte PAA-GO.In addition,the chemical crosslinking also couldmake themembrane dense and uniform21.The SEMimages indicated a successful assembly of PEI/PAA-GO by the LBL technology.

3.2XRD analys is

Fig.2 presented the XRD results of graphite,GO,PEI/PAA compositemembrane,and PEI/PAA-GO compositemembrane. The diffraction peaksat2θ=26.7°(d002=0.34nm)and 2θ=11.4° (d001=0.83 nm)in Fig.2(a)and(b)were the characteristic peaks of graphite and GO,respectively11.The increase of layer spacing indicated that the stacked layers of graphite were laterally expanded by the incorporation of oxygenated functionalgroups,and the graphitewas successfully converted into GO2,22.However,in Fig.2(d),there was no GO peak appeared in the PEI/PAA-GO compositemembrane.The characteristic peak of itw as sim ilar with the peak of PEI/PAA composite(Fig.2(c))butweakened.The decreaseof diffraction intensitywas likely due to the polar-polar interaction between PAA and GO12.

3.3UV-Visib le abso rp tion ana lysis

Fig.3 show ed the UV-visible absorption spectra of quartz slide with varying deposition numbersof PEIand PAA-GO.The peak at214nm wasattributed to theΠ-Π*transition of C=C bonds in the PAA-GO.The smaller shoulder around 300nm corresponded to the n-Π*transition of carbonylgroups23.The intensity of adsorption peak at 214nm exhibited exponentialgrow th w ith the deposition cycles(Fig.3,inset),which indicated that the compositemembrane exhibited uniform and continuousenhanced w ith the increasing numberof deposition cycles.

Fig.1 SEMimagesof the PANmembrane support(a)and PEI/PAA-GOmodifiedmembrane(b)

Fig.2 XRD patterns of graphite(a),GO(b),PEI/PAA membrane(c),and PEI/PAA-GOmembrane(d)

Fig.3 UV-Vis spectra of PEI/PAA-GO compositem emb rane The inset show s the absorbance increasing linear relationship at214.0nm.

3.4Hyd roph ilic tes t

Thewater contactangles ofmultilayer compositemembranes with andw ithoutGOmodifiedwerecompared in Fig.4.The PEI/ PAA-GO compositemembranes exhibited notable lower contact value than the PEI/PAA membranes aftermore than 3 bilayers deposited.Itshould pointed that smallamountof PAA-GO would not improve the hydrophobic of compositemembrane.The PEI-terminated membranes had an average contact angle value of 75°,which was in agreementwith other researcher24,25.The PEI-terminatedmembranesshowed higher contactangle than the PAA-term inatedmembranes because PEIwasmore hydrophobic thanPAA(Fig.4).A ll these test results confirmed the increase in hydrophilic character of the PAN basement upon GO treatment26. Therefore,the anti-pollution ofmembraneswas improved and further identified the sequentialdeposition of PEIand PAA-GO. 3.5Separation performance evaluation

Fig.5showed the separation property of themultilayer compositemembraneswith andwithoutGOmodified.With thebilayer number increased,the selectivity of the PEI/PAA-GO and PEI/ PAA compositemembraneswas both increased,while the flux of them was reduced.With 3.5bilayersdeposited,the selectivity of the PEI/PAA-GO compositemembranewas1.6timeshigher than that of the PEI/PAA compositemembrane without GO.The lamellar structureand theaggregation tendency of GO sheetswould hinder the ion transportand increase the tortuous diffusion path length,in such above conditions the ionsshould follow a long and tortuous path10.Then themonovalent cation with a smaller diameter could transportmuch faster than the bivalent cations.

Fig.4Contactanglevaluesof PEI/PAA and PEI/PAA-GO com positem em branesw ith differen tnum ber of bilayers

Fig.5Effectof the assembly numberson theselectivity and flux

4Conclusions

In this study,we introduced themixing of GO and PAA to fabricate PEI/PAA-GO compositemembrane via layer-by-layer method.The results indicated that the GO in the composite membrane could effectively enhance the antifouling ability and im prove the selectivity formonovalent ions.Therefore,the GO multilayer composite membrane could be well suited for the applicationssuch asseawater softening andwater treatment.

References

(1)Xu,Y.X.;Hong,W.J.;Bai,H.;Li,C.;Shi,G.Q.Carbon 2009,47,3538.doi:10.1016/j.carbon.2009.08.022

(2)Lee,D.C.;Yang,H.N.;Park,S.H.;Kim,W.J.J.Membr.Sci. 2014,452,20.doi:10.1016/j.memsci.2013.10.018

(3)Cao,C.H.;Daly,M.;Singh,C.V.;Sun,Y.;Filleter,T.Carbon 2015,81,497.doi:10.1016/j.carbon.2014.09.082

(4)Liang,L.;Lu,Y.;Yao,W.S.;Zhang,X.T.Acta Phys.-Chim. Sin.2015,31,1180.[梁祎,盧赟,姚維尚,張學同.物理化學學報,2015,31,1180.]doi:10.3866/PKU. WHXB201504146

(5)Ji,T.H.;Sun,M.;Zou,L.F.;Ma,N.Mater.Lett.2014,120, 30.doi:10.1016/j.matlet.2014.01.035

(6)Dreyer,D.R.;Park,S.J.;Bielawski,C.W.;Ruoff,R.S. Chem.Soc.Rev.2010,39,228.doi:10.1039/B917103G

(7)Nair,R.R.;Wu,H.A.;Jayaram,P.N.;Grigorieva,I.V.;Geim, A.K.Science 2012,335,442.doi:10.1126/science.1211694

(8)Mi,B.X.Science 2014,343,740.doi:10.1126/ science.1250247

(9)Valentini,L.Mater.Lett.2015,157,266.doi:10.1016/j. matlet.2015.05.23

(10)Li,W.Y.;He,Y.Q.;Li,Y.M.Acta Phys.-Chim.Sin.2015,31, 458.[李文有,賀蘊秋,李一鳴.物理化學學報,2015,31, 458.]doi:10.3866/PKU.WHXB201501093

(11)Dikin,D.A.;Stankovich,S.;Zimney,E.J.;Piner,R.D.; Dommett,G.H.B.;Evmenenko,G.;Nguyen,S.T.;Ruoff,R. S.Nature 2007,448,458.doi:10.1038/nature06016

(12)Rajasekar,R.;Kim,N.H.;Jung,D.;Kuila,T.;Lim,J.K.; Park,M.J.;Lee,J.H.Compos.Sci.Technol.2013,89,171. doi:10.1016/j.compscitech.2013.10.004

(13)Hu,M.;Mi,B.X.J.Membr.Sci.2014,469,80.doi:10.1016/j. memsci.2014.06.036

(14)Hummers,W.S.;Offeman,R.E.J.Am.Chem.Soc.1958,80, 1339.doi:10.1021/ja01539a017

(15)Wang,J.D.;Peng,T.J.;Xian,H.Y.;Sun,H.J.Acta Phys.-Chim.Sin.2015,31,91.[汪建德,彭同江,鮮海洋,孫紅娟.物理化學學報,2015,31,91.]doi:10.3866/PKU. WHXB201411202

(16)Goh,K.L.;Setiawan,L.;Wei,L.;Si,R.M.;Fane,A.G.; Wang,R.;Chen,Y.J.Membr.Sci.2015,474,245.doi: 10.1016/j.memsci.2014.09.057

(17)Zhou,T.N.;Chen,F.;Tang,C.Y.;Bai,H.W.;Zhang,Q.; Deng,H.;Fu,Q.Compos.Sci.Technol.2011,71,1267.doi: 10.1016/j.compscitech.2011.04.016

(18)Suresh,D.;Udayabhanu;Kumar,M.A.P.;Nagabhushana,H.; Sharma,S.C.Mater.Lett.2015,151,93.doi:10.1016/j. matlet.2015.03.035

(19)Zhang,G.J.;Yan,H.H.;Ji,S.L.;Liu,Z.Z.J.Membr.Sci. 2007,292,2.doi:10.1016/j.memsci.2006.11.023

(20)Wang,N.X.;Ji,S.L.;Zhang,G.J.;Li,J.;Wang,L.Chem. Eng.Technol.2012,213,321.doi:10.1016/j.cej.2012.09.080

(21)Wang,X.;Guo,X.Y.;Shao,H.Q.;Zhou,Q.X.;Hu,W.L.; Song,X.J.Prog.Chem.2015,27,1475.[王茜,郭曉燕,邵懷啟,周啟星,胡萬里,宋曉靜.化學進展,2015,27,1475.] doi:10.7536/PC150321

(22)Schniepp,H.C.;Li,J.L.;McAllister,M.J.;Sai,H.;Herrera-A lonso,M.;Adamson,D.H.;Prud'homme,R.K.;Car,R.; Saville,D.A.;Aksay,I.A.J.Phys.Chem.2006,110,8537. doi:10.1021/jp060936f

(23)Zhang,J.G.;Xu,Z.W.;Shan,M.J.;Zhou,B.M.;Li,Y.L.;Li, B.D.;Niu,J.R.;Qian,X.M.J.Membr.Sci.2013,448,91. doi:10.1016/j.memsci.2013.07.064

(24)Ben Ameur,S.;Barhoum i,A.;Mimouni,R.;Am louk,M.; Guermazi,H.Superlattice.Microst.2015,84,110.doi: 10.1016/j.spmi.2015.04.028

(25)Marmur,A.Langmuir2004,20,3519.doi:10.1021/la036369u

(26)Malaisamy,R.;Talla-Nwafo,A.;Jones,K.L.Sep.Purif. Technol.2011,77,370.doi:10.1016/j.seppur.2011.01.005

Layer-by-Layer Assembly of Graphene Oxide and Polyelec trolyte Composite Membranes for Monovalent Cation Separation

ZHAO Sheng-Jun1ZHANGWei2DENG Hui-Ning2,*LIUWei2
(1SchoolofChemical Engineering,HebeiUniversity ofTechnology,Tianjin 300130,P.R.China;
2School ofMarine Science and Engineering,HebeiUniversity ofTechnology,Tianjin 300130,P.R.China)

Graphene oxide(GO)com positememb ranes w ere fabricated via layer-by-layer(LBL)assem bling poly(ethylenim ine)(PEI)and am ixture ofGO and poly(acrylic acid)(PAA)on a poly(acrylonitrile)(PAN)support membrane.The com positemembranes and theirapp lication performance were characterized and eva luated. The X-ray pow der diffrac tion(XRD)spectrum show s that GO w as successfully synthesized by them od ified Hummers method,and itwas homogenously dispersed in the com posite membranes.Scanning electron m icroscopy(SEM)show s the successfulassembly ofmultip le polyelectrolyte PEIand am ixture ofGO and PAA bilayers on the PAN supportmembrane.The ultraviolet-visible(UV-Vis)spectrum indicates that the uniform ity and continuity of the com positemembrane were enhanced with the increasing numbero fassembled layers. The hydrophilic and selectivity tests reveals that the add ition o f GO decreased the wa ter contact angle and enhanced the selectivity formonovalentcations of themultilayer polyelectrolyte compositemembranes.Allthese advantages combine to fabricate a high-flux,high selectivity,and anti-fouling com positemembrane for separation applications and water softening.

Multilayer structure;Layer-by-layerassembly;Deposition;Graphene oxide;Selectivity

1 Introduction

Graphene oxide(GO)has excellent properties ofmechanics, electricity,and heat,such propertiesmake itahot topic in the field ofmaterials science and physics1-6.Moreover,thanks to the specialhoneycomb lattice two dimensional(2D)structure,variousoxygen functionalgroupsand the frictionless surface,GO also can play a block role to create polyelectrolyte compositemembranes for separation7-10.Dikin et al.11reported that GO sheets could be stacked in anear-parallelmannerundera directional flow induced by vacuum filtration and uniform ly dispersed in polyelectrolyte, resulting in the higher tensile yield strength of compositematerials than those without GO.Rajasekar et al.12prepared poly(diallyldimethylammonium)chloride(PDDA)and sulfonated polyvinylidene fluoride-graphene oxide(SPVDF-GO)composites to enhance both themechanical and gas barrier properties of the membrane.Hu and Mi13fabricated a compositemembrane by assembling GO and poly(allylam ine hydrochloride)(PAH)and found that the addition of GO greatly im proved thew ater flux in a forward osmosissystem.

September 28,2015;Revised:December 8,2015;Published onWeb:December 14,2015.

O647

10.3866/PKU.WHXB201512141

*Corresponding author.Email:huiningd@163.com;Tel:+86-22-6020241.

The projectwas supported by theNationalNatural Science Foundation of China(20906017),NaturalScience Foundation ofHebeiProvince,China (B2013202087,D2014202074),and Tianjin Research Program of Application Foundation and Advanced Technology,China(14JCZDJC38900).

國家自然科學基金(20906017),河北省自然科學基金(B2013202087,D2014202074),天津市應用基礎與前沿技術研究重點項目(14JCZDJC38900)資助?Editorialofficeof Acta Physico-Chim ica Sinica

主站蜘蛛池模板: 精品99在线观看| Jizz国产色系免费| 国产成人精品一区二区三区| 伊人激情综合网| 无码电影在线观看| 国产av一码二码三码无码| AV无码无在线观看免费| 国产亚洲欧美日韩在线一区二区三区 | AV熟女乱| 日韩AV手机在线观看蜜芽| 久久国产黑丝袜视频| 亚洲无码不卡网| 亚洲人成在线免费观看| 中文字幕在线不卡视频| 亚洲国产系列| 成年人午夜免费视频| 国产在线麻豆波多野结衣| 久久美女精品国产精品亚洲| 国产精品美女网站| 伊人久久青草青青综合| 国内毛片视频| 亚洲综合精品香蕉久久网| 国产喷水视频| 国产浮力第一页永久地址| 嫩草在线视频| 高清不卡毛片| a亚洲天堂| 亚洲不卡无码av中文字幕| 久久精品亚洲专区| 精品国产美女福到在线不卡f| 精品一区二区三区水蜜桃| 免费Aⅴ片在线观看蜜芽Tⅴ | A级毛片无码久久精品免费| 3344在线观看无码| 国产黄色视频综合| 国产亚洲美日韩AV中文字幕无码成人 | 色国产视频| 国产精品自在在线午夜区app| 国产成人啪视频一区二区三区| 精品国产自在在线在线观看| 三级视频中文字幕| 无码免费试看| 久久性妇女精品免费| 二级特黄绝大片免费视频大片| 亚洲婷婷丁香| 自拍亚洲欧美精品| 国产美女91呻吟求| 亚洲无码A视频在线| 国产国语一级毛片在线视频| 老司机精品一区在线视频| 国产日韩欧美在线播放| 欧美成一级| 日本黄色a视频| 亚洲无码视频一区二区三区| 在线国产你懂的| 国产乱子精品一区二区在线观看| 青草视频久久| 午夜人性色福利无码视频在线观看| 欧美A级V片在线观看| 制服丝袜亚洲| 欧美午夜视频| 国产在线97| 香蕉在线视频网站| 国产麻豆91网在线看| AV老司机AV天堂| 黄色网页在线观看| www.亚洲一区二区三区| 伦伦影院精品一区| 国内精品视频| 国产女同自拍视频| 色网站在线视频| 丁香六月激情综合| 精品福利视频网| 国产精品美女自慰喷水| 67194在线午夜亚洲| 国产美女一级毛片| 久久精品日日躁夜夜躁欧美| 欧美午夜理伦三级在线观看 | 亚洲国产中文在线二区三区免| 久久无码av三级| 午夜国产小视频| 秋霞国产在线|