車升國, 袁 亮, 李燕婷, 林治安, 李燕青, 趙秉強*, 沈 兵
(1 農業部植物營養與肥料重點實驗室, 中國農業科學院農業資源與農業區劃研究所, 北京 100081;2 中國農業科學院德州鹽堿土改良實驗站, 山東德州 253015; 3 中海石油化學股份有限公司, 北京 100029)
?
我國主要麥區小麥產量形成對磷素的需求
車升國1,2, 袁 亮1, 李燕婷1, 林治安2, 李燕青1, 趙秉強1*, 沈 兵3
(1 農業部植物營養與肥料重點實驗室, 中國農業科學院農業資源與農業區劃研究所, 北京 100081;2 中國農業科學院德州鹽堿土改良實驗站, 山東德州 253015; 3 中海石油化學股份有限公司, 北京 100029)

小麥產量; 磷素吸收; 需磷量; 響應特征
近年來,有關小麥的磷肥施用效果[5]、 磷素的吸收[6]、 磷肥利用率[7-8]等已開展廣泛研究,但研究主要集中于田塊尺度,或小區域、 小樣本數田間試驗,缺乏大尺度、 大樣本數小麥磷素吸收規律及差異研究[9]。Yue等[10]總結我國1395個樣點氮素需求與產量關系表明,小麥生產100 kg籽粒需氮量隨產量的增加而逐漸降低,但大樣本數據下小麥產量與磷素的需求規律性還未見報道。本文收集了2000年后文獻中田間試驗數據,分析了我國小麥主產區黃淮海冬麥區、 長江中下游冬麥區和西北冬春兼播麥區小麥產量、 不同部位磷含量和吸磷量,以及100 kg小麥籽粒需磷量的區域差異,計算了不同小麥產量水平與籽粒和秸稈磷含量以及和100 kg籽粒需磷量的關系,為我國小麥推薦施肥模型等提供科學的區域參數,為指導小麥區域合理施肥提供理論依據與科學參考。
1.1研究區域
在我國小麥種植業區劃、 中國化肥區劃基礎上[11-12],根據2013年我國小麥區域生產布局和產量情況,選擇我國小麥3個主要生產區作為研究對象,分別為黃淮海冬(秋播)麥區(HH)、 長江中下游冬(秋播)麥區(CR)和西北冬春兼播麥區(NW)[13]。2013年三個小麥產區小麥播種面積21783千公頃,占我國小麥總播種面積的90.32%; 小麥產量11485萬噸,占我國小麥總產量的94.20%[14]。
黃淮海冬(秋播)麥區主要包括山東、 河南、 河北、 北京、 天津及江蘇和安徽北部。本區地處暖溫帶,氣候溫和,屬半濕潤性或半干旱季風氣候,土壤類型以褐土和潮土為主,小麥主要為冬小麥(冬小麥-夏玉米輪作)。2013年本區小麥播種面積和產量分別占全國的57.44%和66.64%。長江中下游冬(秋播)麥區包括浙江、 湖北、 湖南、 江西及安徽和江蘇南部等。本區位于北亞熱帶季風區,氣候溫暖濕潤,熱量豐富,土壤類型主要為水稻土、 棕壤等,小麥主要為冬小麥(冬小麥-水稻或其他作物輪作)。2013年本區小麥播種面積和產量占全國的14.53%和13.74%。西北冬春兼播麥區包括陜西、 山西、 新疆、 寧夏、 甘肅和內蒙古東部區域。本區處于中溫帶內陸地區,屬大陸性氣候,冬季寒冷,夏季炎熱,土壤以棕鈣土、 灰鈣土、 灌漠土、 灰漠土等為主。小麥有冬小麥和春小麥。2013年本區小麥播種面積和產量分別占全國的18.35%和13.82%[14]。
1.2數據來源
數據來源包括“十一五”、 “十二五”國家科技支撐計劃課題試驗數據,2000年后公開發表的期刊文獻、 碩博畢業論文、 書籍等。共收集產量數據5484組、 籽粒磷吸收量680組、 秸稈磷吸收量651組、 籽粒磷含量1096組、 秸稈磷含量887組、 植株磷積累量1397組和100 kg籽粒需磷量數據1574組。詳細樣點分布見表1和參考文獻[13]。
1.3數據處理

2.1不同主產區小麥磷素吸收規律
社會福利政策質量評價是保障和促進社會福利政策質量的重要環節。科學的評價活動能夠發現社會福利政策過程中存在的問題,以便及時總結經驗,糾正錯誤,從而公正地判斷某一政策本身的價值和質量,為延續、革新或終結政策提供依據。因此,社會福利政策質量評價不僅有利于檢驗社會福利政策的效果、效率及效益,也有利于提高決策的民主化、科學化水平和政策質量。

在不同麥區,小麥產量以黃淮海冬麥區最高 (7.07 t/hm2,n=2976),長江中下游冬麥區次之 (5.60 t/hm2,n=1059),西北冬春兼播麥區最低 (4.71 t/hm2,n=1389)。同樣,小麥地上部吸磷總量以黃淮海冬麥區最高,平均為32.2 kg/hm2(n=716),長江中下游冬麥區次之,為22.3 kg/hm2(n=167),西北冬春兼播麥區最低,僅為19.4 kg/hm2(n=487)。籽粒和秸稈磷吸收量也均以黃淮海冬麥區最高,平均分別為21.3 kg/hm2(n=289)和8.7 kg/hm2(n=289),長江中下游冬麥區次之,為15.8 kg/hm2(n=8)和5.4 kg/hm2(n=8),西北冬春兼播麥區最低,僅為13.8 kg/hm2(n=382)和2.7 kg/hm2(n=353)。籽粒磷含量以長江中下游冬麥區最高,為0.43% (n=22),黃淮海冬麥區居中,為0.33%,西北冬春兼播麥區最低,為0.30%。秸稈磷含量則以黃淮海冬麥區最高,為0.09% (n=486),長江中下游冬麥區次之,為0.08% (n=8),西北冬春兼播麥區最低,僅為0.06% (n=370)。這一結果表明,小麥產量與磷素吸收量相關。


表1 小麥主產區小麥產量、 磷吸收累積及100 kg籽粒需磷量
注(Note): HH—Huanghuaihai winter wheat planting area; CR—Changjiang river winter wheat planting area; NW—Northweat China spring-winter wheat planting area.
2.2小麥磷素吸收特征對產量的響應


圖1 小麥主產區及全國小麥產量與地上部磷吸收總量的相關關系Fig.1 Relationship of shoot P uptakes and wheat yields in the main winter wheat region and whole China[注(Note): HH—黃淮海冬麥區 Huanghuaihai winter wheat planting area; CR—長江中下游冬麥區 Changjiang River winter wheat planting area; NW—西北冬春小麥兼播區 Northweat China spring-winter wheat planting area; All— 全國 All China.]

圖2 小麥不同產量水平下100 kg籽粒需磷量Fig.2 P requirement per 100 kg wheat grain in different yield ranges in China[注(Note): 圖中箱體中部實線和虛線分別代表中值和平均值,箱體上下邊代表75%和25%位點,上下橫線代表90%和10%位點,上下圓點代表95%和5%位點Solid and dashed lines in the boxes indicate the median and mean, respectively. The box boundaries indicate the 75th quartiles and 25th quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles represent the 95th and 5th percentiles.]


圖3 我國小麥不同產量水平籽粒磷含量和秸稈磷含量Fig.3 P contents in both grains and straw of wheat at different yield ranges in China[注(Note): 圖中箱體中部實線和虛線分別代表中值和平均值,箱體上下邊代表75%和25%位點,上下橫線代表90%和10%位點,上下圓點代表95%和5%位點Solid and dashed lines in the boxes indicate the median and mean, respectively. The box boundaries indicate the 75th quartiles and 25th quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles represent the 95th and 5th percentiles.]


我國田間試驗的小麥產量、 地上部吸磷總量、 籽粒吸磷量、 秸稈吸磷量、 籽粒磷含量和秸稈磷含量變異性大,區域差異明顯。其對應參數全國平均值分別為6.18 t/hm2、 26.4 kg/hm2、 17.0 kg/hm2、 5.4 kg/hm2、 0.32%和0.08%,變異系數分布為33.1%、 58.6%、 55.1%、 94.8%、 34.3%和75.0%。除籽粒磷含量外,小麥產量、 地上部磷吸收量、 籽粒磷吸收量、 秸稈磷吸收量和秸稈磷含量均以黃淮海麥區最高,長江中下游冬麥區次之,西北冬春麥區最低。

[1]趙秉強. 施肥制度與土壤可持續利用[M]. 北京: 科學出版社, 2012.
Zhao B Q. Fertilization systems and land use sustainability[M]. Beijing: Science Press, 2012.
[2]李慶逵, 朱兆良, 于天仁. 中國農業持續發展中的肥料問題[M]. 南昌: 江西科學技術出版社, 1988.
Li Q K, Zhu Z L, Yu T R. Fertilizer issue of sustainable agriculture development in China[M]. Nanchang: Jiangxi Science and technology Press, 1988.
[3]張福鎖,王激情,張衛峰,等. 中國主要糧食作物肥料利用率現在與提高途徑[J]. 土壤學報, 2008, 915-924.
Zhang F S, Wang J Q, Zhang W F,etal. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 915-924.
[4]李東坡, 武志杰. 化學肥料的土壤生態環境效應[J]. 應用生態學報, 2008, 19(5): 1158-1165.
Li D P, Wu Z J. Impact of chemical fertilizers application on soil ecological environment[J]. Chinese Journal of Applied Ecology, 2008, 19(5): 1158-1165.
[5]何曉雁. 黃土高原旱地長期施磷肥對土壤磷素循環的影響[D]. 楊凌: 西北農林科技大學碩士學位論文, 2012.
He X Y. Effect of long-term phosphor fertilization on soil phosphorus cycling in dry land on Loess Plateau [D]. Yangling: MS Thesis of Northwest A&F University, 2012.
[6]姜宗慶, 封超年, 黃聯聯, 等. 施磷量對小麥物質生產及吸磷特性的影響[J]. 植物營養與肥料學報, 2006, 12(5): 628-634.
Jiang Z Q, Feng C N, Huang L L,etal. Effects of phosphorus application on dry matter production and phosphorus uptake in wheat (TriticumaestivumL.)[J]. Plant Nutrition and Fertilizer Science, 2006, 12(5): 628-634.
[7]陽顯斌, 張錫洲, 李廷軒, 等. 磷素籽粒生產效率不同的小麥品種磷素吸收利用差異[J]. 植物營養與肥料學報, 2011, 17(3): 525-531.
Yang X B, Zhang X Z, Li T X,etal. Differences of phosphorus uptake and utilization in wheat cultivars with different phosphorus use efficiency for grain yield[J]. Plant Nutrition and Fertilizer Science, 2011, 17(3): 525-531.
[8]高靜, 張淑香, 徐明崗, 等. 長期施肥下三類典型農田土壤小麥磷肥利用效率的差異[J]. 應用生態學報, 2009, 20(9): 2142-2148.
Gao J, Zhang S X, Xu M G,etal. Phosphorus use efficiency of wheat on three typical farmland soils under long-term fertilization[J]. Chinese Journal of Applied Ecology, 2009, 20(9): 2142-2148.
[9]串麗敏. 基于產量反應和農學效率的小麥推薦施肥方法研究[D]. 北京: 中國農業科學院博士學位論文,2013.
Chuan L M. Methodology of fertilizer recommendation based on yield response and agronomic efficiency for wheat [D]. Beijing: PhD Dissertation, China Academy of Agricultural Sciences, 2013.
[10]Yue S C, Meng Q F, Zhao R F,etal. Change in nitrogen requirement with increasing grain yield for winter wheat[J]. Agronomy Journal, 2012, 104: 1687-1693.
[11]趙廣才. 中國小麥種植區劃研究(一)[J]. 麥類作物學報, 2010, 30(5): 886-895.
Zhao G C. Study on Chinese wheat planting regionalization (一)[J]. Journal of Triticeae Crops, 2010, 30(5): 886-895.
[12]中國農業科學院土壤肥料研究所. 中國化肥區劃[M]. 北京: 中國農業科技出版社, 1986. 36-66.
Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences. Zone of fertilizer in China[M]. Beijing: China Agricultural Science and Technology Press, 1986. 36-66.
[13]車升國, 袁亮, 李燕婷, 等. 我國主要麥區小麥氮素吸收及其產量效應[J]. 植物營養與肥料學報, 2016, 22 (2): 287-295.
Che S G, Yuan L, Li Y T,etal. Characteristic of N uptake and it response to grain yield of wheat in main wheat production regions in China[J]. Plant Nutrition and Fertilizer Science, 2016, 22 (2): 287-295.
[14]中華人民共和國國家統計局. 中國統計年鑒[M]. 北京: 中國統計出版社, 2014.
National Bureau of Statistics of the People’s Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2014.
[15]Liu M Q, Yu Z R, Liu Y H,etal. Fertilizer requirements for wheat and maize in China: the QUEFTS approach[J]. Nutrient Cycling in Agroecosystems, 2006, 74: 245-258.
[16]Liu X Y, He P, Jin J Y,etal. Yield gaps, indigenous nutrient supply, and nutrient use efficiency of wheat in China[J]. Agronomy Journal, 2011, 103: 1452-1463.
[17]車升國. 區域作物專用復合(混)肥料配方制定方法與應用 [D]. 北京: 中國農業大學博士論文, 2015.
Che S G. Design method and application of formula of regional crop-based compound fertilizer [D]. Beijing: PhD Dissertation, China Agricultural University, 2015.
[18]魯如坤. 土壤植物營養學原理與施肥[M]. 北京: 化學工業工出版社,1998. 1-3.
Lu R K. Principles of plant nutrient and fertilization[M]. Beijing: Chemical Industry Press, 1998. 1-3.
[19]Zhang Y, Hou P, Gao Q,etal. On-farm estimation of nutrient requirements for spring corn in North China[J]. Agronomy Journal, 2012, 104: 1437-1442.
[20]Xu X P, He P, Pampolino M F,etal. Nutrient requirements for maize in China based on QUEFTS analysis[J]. Field Crops Research, 2013. 115-125.
[21]Buresh R J, Pampolino M F, Witt C. Field-specific potassium and phosphorus balances and fertilizer requirements for irrigated rice-based cropping systems[J]. Plant and Soil, 2010, 335, 35-64.
[22]Witt C, Dobermann A, Abdulrachman Setal. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia[J]. Field Crops Research, 1999, 63: 113-138.
[23]黨紅凱,李瑞奇,李雁鳴,等. 超高產栽培條件下冬小麥對磷的吸收、 積累和分配. 植物營養與肥料學報, 2012, 18(3): 531-541.
Dang H K, Li R Q, Li Y M,etal. Absorption, accumulation and distribution of phosphorus in winter wheat under super-highly yielding conditions[J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 531-541.
[24]于振文, 田奇卓, 潘慶民, 等. 黃淮麥區冬小麥超高產栽培的理論與實踐[J]. 作物學報, 2002, 28(5): 577-585.
Yu Z W, Tian Q Z, Pan Q M,etal. Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow river and Huaihe river districts[J]. Acta Agronomica Sinica, 2002, 28(5): 577-585.
Phosphorous requirement for yield formation of wheat in main wheat production regions of China
CHE Sheng-guo1,2, YUAN Liang1, LI Yan-ting1, LIN Zhi-an2, LI Yan-qing1, ZHAO Bing-qiang1*, SHEN Bing3
(1MinistryofAgricultureKeyLaboratoryofPlantNutritionandFertilizer,InstituteofAgriculturalResourcesandRegionalPlanning,ChineseAcademyofAgriculturalSciences,Beijing100081,China; 2DezhouExperimentalStationofChineseAcademyofAgriculturalSciences,Dezhou,Shandong253015; 3ChinaBlueChemicalLtd.,Beijing100029,China)
【Objectives】 Phosphorous uptake of wheat and the regional variations is the base to guild reasonable phosphorous fertilization strategy. This paper aimed to investigate the P absorption amount and the response to phosphorous fertilization in the main wheat-planting regions. 【Methods】 Data were collected from the published papers and field experiments, in which the wheat yields, P absorption in both grains and straw, P uptakes in the shoots and P concentrations in grains and straw were analyzed in the Huang-Huang-Hai winter wheat planting region (HH), Northwest China spring-winter wheat planting region (NW) and Changjiang River winter wheat planting region (CR), and the wheat P absorption under different yield levels was studied. 【Results】 The results showed that wheat grain yields, P contents in grains and straw, above-ground P uptake, P absorptions in both grains and straw and P amounts needed to produce per 100 kg grains had significant regional variations. The mean grain yield in China was 6.18 t/hm2with a variation coefficient of 33.1%. The mean values of P concentrations in both grains and straw were 0.32% and 0.08%, and the corresponding variation coefficients were 34.3% and 75.0%. The shoot P uptake and P absorption in grains and in straw were 26.4 kg/hm2, 17.0 kg/hm2and 5.4 kg/hm2with the variation coefficients of 58.6%, 55.1% and 94.8%, respectively. Excluding the P concentrations in grains, all other parameters were highest in HH, and lowest in NW. The averaged P amount needed to produce 100kg grain was 0.46 kg with the variation of 37.0% in China, and HH had the highest value of 0.50 kg, while the amounts for YR and NW were 0.44 kg and 0.41, respectively. As increasing wheat yield, N requirement per 100 kg grain was increased consequently, and the N requirements were 0.41 kg, 0.43 kg, 0.50 kg, 0.52 kg for wheat yields <4.50 t/hm2, 4.50-6.50 t/hm2, 6.50-8.50 t/hm2, and >8.50 t/hm2, respectively. The P concentrations in grains maintained the certain levels with 0.32%, 0.31%, 0.31% and 0.33%, respectively for the corresponding yield levels. The P concentrations in straw increased with the corresponding values of 0.05%, 0.07%, 0.11% and 0.12% for the grain yield levels. 【Conclusions】 Differences of temperature, water and soil in the wheat-planting regions caused the differences of P absorption characteristics. For improving wheat yield and N use efficiency, wheat grain yield and P absorption for a region should be taken into account.
wheat yield; P uptake; P requirement; response characteristic
2015-01-08接受日期: 2015-09-24網絡出版日期: 2016-05-23
國家“十二五”科技支撐計劃項目(2011BAD11B05, 2013BAD05B04)資助。
車升國(1983—), 男, 山東臨沂人, 博士, 助理研究員, 主要從事農田土壤肥力研究。
Tel: 010-82108664, E-mail: cheshengguo@caas.cn。*通信作者 Tel: 010-82108658, E-mail: zhaobingqiang@caas.cn
S143.5; S158
A
1008-505X(2016)04-0869-08