舒 波, 李偉才, 劉麗琴, 魏永贊, 石勝友
(中國熱帶農業科學院南亞熱帶作物研究所, 農業部熱帶果樹生物學重點實驗室, 廣東湛江 524091)
?
叢枝菌根(AM)真菌與共生植物物質交換研究進展
舒 波, 李偉才, 劉麗琴, 魏永贊, 石勝友*
(中國熱帶農業科學院南亞熱帶作物研究所, 農業部熱帶果樹生物學重點實驗室, 廣東湛江 524091)
叢枝菌根(Arbuscular Mycorrhizal,AM)真菌能與約 80% 的陸生植物形成共生關系,植、 菌間礦質養分、 碳水化合物的物質交換是自然界物質循環的重要內容。目前,AM 真菌促進共生植物礦質養分吸收的研究相對較多。研究表明, AM 真菌可通過根外菌絲更小的吸收直徑,加強礦質養分的空間有效性; 通過釋放有機酸、 土壤酶,活化土壤中被固定的礦質養分; 通過根外菌絲上較低Km值的礦質養分轉運蛋白,保證養分從土壤至根外菌絲的轉運效率; 通過礦質養分在菌絲內運輸形式的改變,增強養分的運輸速率; 通過誘導共生植物礦質養分轉運蛋白表達,提高植、 菌間養分的轉運效率。相較于 AM 真菌促進共生植物養分吸收,植物反饋真菌碳水化合物的研究相對較少。鑒于 AM 真菌與植物共生關系在生態系統中的重要作用,明晰植、 菌間礦質養分和碳水化合物交換的具體場所(叢枝、 根內菌絲、 根外菌絲)、 具體形式(離子、 聚合物、 氨基酸、 蔗糖、 單糖)、 具體過程(主動運輸)具有重要科學意義。本文對 AM 真菌與共生植物物質交換的叢枝、 菌絲雙膜結構,氮(N)、 磷(P)、 糖等物質交換的具體形式以及跨雙膜、 耗能量、 互耦連的物質交換過程進行綜述,并從物質交換的場所、 形式、 過程三個方面提出了植、 菌物質交換的研究方向。
礦質養分; 碳水化合物; 膜結構; 轉運蛋白

AM 真菌侵染植物后,植物礦質養分的吸收轉變為兩種方式,一種依賴于植物根毛吸收養分—根系直接吸收方式; 另一種則依賴根外菌絲吸收養分—菌根吸收方式。相較于根系直接吸收方式,菌根吸收方式存在諸多優勢。AM 真菌通過根外菌絲更小的吸收直徑,增加養分吸收面積,加強礦質養分的空間有效性[7]; 通過自身或誘導共生植物釋放有機酸、 土壤酶等物質,活化土壤中被固定的礦質養分,提高礦質養分有效濃度[8-9]; 通過根外菌絲上較低Km值和較高 Vmax 值的礦質養分轉運蛋白,保證養分從土壤轉運至根外菌絲的效率[10-11]; 通過礦質養分在 AM 真菌菌絲內運輸形式的改變,加快養分的運輸速度[12-13]; 通過誘導定位于叢枝前體質膜(peri-arbuscular membrane)上共生植物礦質養分轉運蛋白表達,提高植、 菌間養分的轉運效率[14]。以此為交換,共生植物反饋 AM 真菌碳水化合物,以幫助此類嚴格活體營養型真菌完成其生活史[5]。具體地,共生植物光合作用產生的碳水化合物運抵根系叢枝細胞后,在叢枝前體質膜與叢枝膜(arbuscular membrane)上相關轉運蛋白作用下穿過雙膜結構,完成植物碳水化合物向 AM 真菌的轉運[15-16]。
AM 真菌與共生植物間的物質交換相互促進、 互相關聯。目前,關于 AM 真菌利用自身優勢促進共生植物礦質養分吸收的研究已較為廣泛,但涉及植、 菌間碳水化合物與礦質養分的交換過程卻少有歸納。鑒于植、 菌共生關系在自然與農業生態系統中的重要作用,明確兩者物質交換的過程有重要科學意義。本文對 AM 真菌與共生植物間礦質養分和碳水化合物物質交換場所、 物質交換形式、 物質交換過程進行梳理,以探討植、 菌物質交換的研究方向。
1.1AM 真菌與共生植物物質交換的雙膜結構
AM 真菌與共生植物間絕大部分的物質交換發生于叢枝細胞內[17]。叢枝雙膜結構的形成,標志真菌與植物互利共生關系的真正建立。叢枝是根內菌絲在特定細胞內的密集分支,其本質是 AM 真菌與共生植物于根系細胞內形成的雙膜結構。叢枝內部為真菌膜(叢枝膜),外部則由植物膜包被(叢枝前體質膜),雙膜之間為儲存交換物質的間隙[18]。形式上,雙膜結構將植、 菌雙方間隔開來,叢枝膜一側為 AM 真菌,叢枝前體質膜一側為共生植物; 功能上,雙膜結構又將植、 菌雙方緊密聯系起來,雙膜結構上附著的大量轉運蛋白與離子通道是植、 菌雙方物質交換的載體[15-18]。雖然菌絲也可作為植、 菌間礦質養分與單糖物質交換的場所,但普遍認為其作用甚微[15]。
1.2雙膜結構上的轉運蛋白
叢枝雙膜上附著的水分、 離子通道、 礦質養分以及單糖轉運蛋白是植、 菌間物質交換的基礎。真菌源離子通道、 轉運蛋白定位于叢枝膜,植物源離子通道、 轉運蛋白則定位于叢枝前體質膜,且 AM 真菌的侵染能特異誘導定位于叢枝前體質膜上的植物源礦質養分轉運蛋白表達,以轉運根外菌絲吸收的礦質養分[19-20]。


2.1礦質養分的交換形式

2.2碳水化合物的交換形式
作為共生植物附加的一個 “庫”,AM 真菌碳水化合物需求促使蔗糖從共生植物流向 AM 真菌[44]。蔗糖在運抵叢枝細胞后于叢枝前體質膜上蔗糖轉運蛋白的作用下轉運至雙膜間隙。而后在植物蔗糖裂解酶、 蔗糖轉移酶催化下,裂解為葡萄糖和果糖[45-46]。再經叢枝膜上 AM 真菌單糖轉運蛋白交換至根內菌絲,最后葡萄糖和果糖在菌絲內轉化為海藻糖與糖原,為 AM 真菌所用[45]。但新近研究表明,葡萄糖并非 AM 真菌碳源利用的唯一形式, 叢枝亦不是 AM 真菌獲取碳源的唯一場所,即便是根外菌絲也能吸收諸如木糖,甘露糖等單糖[15]。因此,關于 AM 真菌碳源的獲取還需要廣泛深入的探索。
3.1轉運蛋白的結構
AM 真菌與共生植物間礦質養分、 碳水化合物的交換由跨膜轉運蛋白實現。真菌源、 植物源礦質養分轉運蛋白共同負責礦質養分跨過真菌膜與叢枝前體質膜由 AM 真菌向共生植物運輸,而植物源、 真菌源蔗糖、 單糖轉運蛋白則擔負碳水化合物跨過叢枝前體質膜與真菌膜由共生植物向 AM 真菌轉運[47-48]。真菌源與植物源磷轉運蛋白具有一致的框架結構,總共都包括十二個跨膜域,N 端、 C 端各六個。十二個跨膜域在中間圍成一個親水環,具有“6-環-6”的二級結構[49]。細節上,不同親和力磷轉運蛋白在跨膜結構上存在差異。一般而言,高親和力磷轉運蛋白的親水環在第六和第七個跨膜域之間,低親和力磷轉運蛋白的親水環則在第八和第九個跨膜域之間[50-51],高親和力磷轉運蛋白氨基酸序列的 N 端和 C 端均朝向細胞膜內,低親和力磷轉運蛋白則相反。
植物源蔗糖、 單糖轉運蛋白和真菌源單糖轉運蛋白都屬于 MFS 家族(major facilitator superfamily),兩者均為高疏水性蛋白,序列高度保守。MFS 成員二級結構一致,含有十二個跨膜結構域。中間面向細胞質的部分由一個大的胞質環,將蛋白分為各含六個跨膜結構域的兩個半區。雖然跨膜域具有很高的一致性,但在一些重要結構域內,部分保守氨基酸存在差異,且這幾個氨基酸的差異與底物特異性相關[52]。植物源單糖轉運蛋白的數量隨物種的不同呈現差異。迄今,擬南芥有至少五十三個單糖轉運蛋白被鑒定分離,蓖麻與灰綠藜中各發現八個與七個單糖轉運蛋白[53-54]。AM 真菌Glomussp(DAOM 19789)基因組預測其不具備編碼蔗糖裂解酶的能力,但其至少編碼三個單糖轉運蛋白[15]。真菌源單糖轉運蛋白的數量是否因種的不同而變化?另外,蔗糖轉運蛋白擔負碳水化合物轉運過叢枝前體質膜的任務,但植物細胞內的單糖是否作為蔗糖的補充形式導入雙膜間隙,進而進入 AM 真菌也有待進一步研究。
3.2物質交換的過程
AM 真菌與共生植物間礦質養分和碳水化合物的交換同時進行,兩者相互耦連,互相促進。如圖1所示,諸如氮、 磷等礦質養分,從真菌一側經叢枝膜上的真菌源轉運蛋白[圖1中(a)、 (d),多數為未知蛋白]導入叢枝前體質膜與真菌膜之間的間隙,再由定位于叢枝前體質膜上的植物源礦質養分轉運蛋白[圖1中(c)、 (e),多數為已知蛋白]轉運至共生植物[18, 54]。與礦質養分相對應,蔗糖經定位于叢枝前體質膜上的蔗糖轉運蛋白轉運至雙膜間隙[圖1中(g)],而后于雙膜間隙內酶解為單糖,再由叢枝膜上的真菌源單糖轉運蛋白導入胞內菌絲。無論礦質養分由雙膜間隙導入共生植物還是單糖由雙膜間隙導入 AM 真菌,都包括與 H+的同向共轉運。而 H+離子濃度梯度的驅動則由 H+-ATPase[圖1中(b)]所供給,即 AM 真菌與共生植物間礦質養分和碳水化合物的交換為涉及能量的主動運輸過程[22]。礦質養分、 碳水化合物轉運蛋白與 H+-ATPases 共表達,H+-ATPases 活性被抑制后新的叢枝雙膜結構無法形成,即便是已經發育完好的叢枝也會慢慢消解[55]。叢枝結構內,質膜 H+-ATPase 產生 H+梯度,驅動 H+與 Pi,H+與單糖同向轉運的結論已在多種植、 菌共生體上得以證實[56-57]。因 H+的同向運輸,礦質養分與碳水化合物的轉運相互關聯。高土壤磷條件下,真菌單糖轉運蛋白基因MST2 與蒺藜苜蓿PT4 (AM 真菌侵染特異誘導的磷轉運蛋白)同時下調,且 RNAi 抑制MST2 表達時,菌根結構(尤其是叢枝)發育緩慢,PT4 表達水平下降[15]。與此相印證,高土壤磷條件下,根系中持續表達SUT1 糖轉運蛋白基因的土豆株系擁有較高的菌根侵染率[58]。上述事實證明植物碳水化合物與真菌氮、 磷等礦質養分的交換相耦連,AM 真菌吸收的礦質養分與共生植物供給的碳水化合物實行“等價交換”,四個跨膜運輸過程缺一則難以為繼[59-61]。

圖1 真菌氮(N)、 磷(P)與共生植物碳水化合物在雙膜界面上的物質交換示意圖Fig.1 The scheme illustrates N, P, and carbohydrate exchanges at the mycorrhizal interface(改編自 Adopted from Harrison[18], Casieri[22], Guether[60])
AM 真菌與共生植物間礦質養分、 碳水化合物的物質交換廣泛存在于自然界。研究植、 菌間物質交換的過程,對了解菌根類植物的養分吸收具有重要意義。交換場所方面,AM 真菌與植物共生關系形成后二者物質交換的主要場所為根內叢枝。然而根內菌絲與叢枝具有一致的雙膜結構,且真菌源的磷轉運蛋白在根內菌絲上亦有表達。筆者推測根內菌絲亦為 AM 真菌與共生植物間物質交換的場所之一,其物質交換的作用可能主要表現于叢枝形成前的早期侵染階段。除根內菌絲外,在 AM 真菌發育的多個時期,根外菌絲能夠吸收諸如木糖,甘露糖等單糖[15]。因此,根外菌絲能否吸收土壤中植物根系分泌的某些碳源(諸如脂肪酸類)作為 AM 真菌與共生植物間物質交換的補充,有待進一步研究。同時,栽培生產上是否能通過外源單糖,加強 AM 真菌碳源強度以此促進菌根效應的提升,可作為 AM 真菌應用研究的一個方向。交換形式方面,AM 真菌與共生植物間物質雙向交換,真菌供給共生植物氮、 磷的交換形式較為明晰而其他諸如鉀(K)、 鋅(Zn)等元素的交換形式有待研究。進一步,因部分礦質養分轉運蛋白的轉運功能存在多樣性(磷轉運蛋白只能轉運磷酸根離子,氮、 硫轉運蛋白能轉運氨基酸)。AM 真菌與共生植物間物質交換形式是否隨環境條件(如逆境脅迫)而變化仍需要進一步研究(圖1); 目前,共生植物反饋 AM 真菌碳水化合物的研究相對較少,葡萄糖是共生植物供給 AM 真菌的主要碳源。但菌根植物種類繁多,其光合產物亦存在多樣性(蔗糖、 山梨醇、 甘露醇、 木糖醇),當 AM 真菌與植物共生關系形成后以糖醇類物質作為光合產物的共生植物是否能將糖醇類物質直接供給 AM 真菌(圖1)?如若不能,此類物質在碳水化合物及礦質養分交換過程中的代謝途徑有待進一步明晰。交換過程方面,AM 真菌、 共生植物間礦質養分、 碳水化合物的物質交換過程相互耦連、 相互促進。而涉及此過程的信號分子、 調控模式、 代謝通路猶未可知,明晰二者交換耦連的機理對 AM 真菌與植物共生的研究同樣具有理論與應用意義。
[1]Remy W, Taylor T N, Hass H,etal. Four hundred-million-year-old vesicular arbuscular mycorrhizae[J]. Proceedings of the National Academy of Sciences, 1994, 91: 11841-11843.
[2]Redecker D, Kodner R, Graham L E. Glomalean fungi from the Ordovican[J]. Science, 2000, 289: 1920-1921.
[3]Smith S E, Read D J. Mycorrhizal symbioses (3rd ed.)[M]. London: Academic, 2008.
[4]Jakobsen I, Rosendahl L. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants[J]. New Phytologist, 1990, 115(1): 77-83.
[5]Douds Jr D D, Pfeffer P E, Shachar-Hill Y. Application of in vitro methods to study carbon uptake and transport by AM fungi[J]. Plant and Soil, 2000, 226: 255-261.
[6]Bago B, Pfeffer P E, Abubaker J,etal. Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid[J]. Plant Physiology, 2003, 131(3): 1496-1507.
[7]Bago B. Putative sites for nutrient uptake in arbuscular mycorrhizal fungi[J]. Plant and Soil, 2000, 226: 263-274.
[8]劉進法, 夏仁學, 王明元, 等. 接種叢枝菌根真菌對枳吸收利用磷酸鋁的影響[J]. 應用生態學報, 2008, 19(10): 2155-2160.
Liu J F, Xia R X, Wang M Y,etal. Effects of inoculation with arbuscular mycorrhizal fungi on AlPO4uptake byPoncirustrifoliata[J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2155-2160.
[9]Shu B, Wang P, Xia R X. Effects of mycorrhizal fungi on phytate-phosphorus utilization in trifoliate orange (PoncirustrifoliataL. Raf.) seedlings[J]. Acta Physiologiae Plantarum, 2014, 36(4): 1023-1032.
[10]Maldonado-Mendoza I E, Dewbre G R, Harrison M J. Expression of aGlomusintraradicesphosphate transporter gene (GiPT) in the extra-radical mycelium of an arbuscular mycorrhiza: regulation in response to phosphate[J]. Molecular Plant-Microbe Interactions, 2001, 14: 1140-1148.
[11]Benedetto A, Magurno F, Bonfante P, Lanfranco L. Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungusGlomusmosseae[J]. Mycorrhiza, 2005, 15: 620-627.
[12]Neumann E, George E. Extraction of arbuscular mycorrhiza mycelium from compartments filled with wet sieved soil and glass beads[J]. Mycorrhiza, 2005, 15: 533-537.
[13]Neumann E, Schmid B, Romheld V, George E. Extraradical development and contribution to plant performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial rootzone drying[J]. Mycorrhiza, 2009, 20: 13-23.
[14]Koltai H, Kapulnik Y. Arbuscular mycorrhizas: physiology and function[M]. Berlin: Springer, 2010.
[15]Helber N, Wippel K, Sauer N,etal. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungusGlomusspis crucial for the symbiotic relationship with plants[J]. The Plant Cell, 2011, 23: 3812-3823.
[16]Bouwmeester H J, Roux C, Lopez-Raez J A, Bécard G. Rhizosphere communication of plants, parasitic plants and AM fungi[J]. Trends in Plant Science, 2007, 12(5): 224-230.
[17]Smith S E, Read D J. Mycorrhizal symbiosis[M]. London: Academic Press, 1996.
[18]Harrison M J, Dewbre G R, Liu J Y. A phosphate transporter fromMedicagotruncatulainvolved in the acquisiton of phosphate released by arbuscular mycorrhizal fungi[J]. The Plant Cell, 2002, 14: 2413-2429.
[19]Rékangalt D, Pépin R, Verner M C,etal. Expression of the nitrate transporternrt2 gene from the symbiotic basidiomycete Hebeloma cylindrosporum is affected by host plant and carbon sources[J]. Mycorrhiza, 2009, 19(3): 143-148.
[20]Thomson B D, Clarkson D T, Brain P. Kinetics of phosphorus uptake by the germ-tubes of the vesicular-arbuscular mycorrhizal fungus,Gigasporamargarita[J]. New Phytologist, 1990, 116(4): 647-653.
[21]Harrison M J, van Buuren M L. A phosphate transporter from the mycorrhizal fungusGlomusversiforme[J]. Nature, 1995, 378: 626-629.
[22]Casieri L, Lahmidi N A, Doidy J,etal. Biotrophic transportome in mutualistic plant-fungal interactions[J]. Mycorrhiza, 2013, 23(8): 597-625.
[23]Xu G H, Chague V, Melamed-Bessudo C,etal. Functional characterization ofLePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression[J]. Journal of Experimental Botany, 2007, 58(10): 2491-2501.
[24]Nagy R, Karandashov V, Chague V,etal. The characterization of novel mycorrhiza-specific phosphate transporters fromLycopersiconesculentumandSolanumtuberosumuncovers functional redundancy in symbiotic phosphate transport in solanaceous species[J]. The Plant Journal, 2005, 42(2): 236-250.
[25]Chen A, Chen X, Wang H,etal. Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato[J]. BMC Plant Biology, 2014, 14(1): 61.
[26]Liu J, Versaw W K, Pumplin N,etal. Closely related members of theMedicagotruncatulaPHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities[J]. Journal of Biological Chemistry, 2008, 283(36): 24673-24681.
[27]Grunwald U, Guo W, Fischer K,etal. Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treatedMedicagotruncatularoots[J]. Planta, 2009, 229(5): 1023-1034.
[28]Watts-Williams S J, Jakobsen I, Cavagnaro T R,etal. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth inMedicagotruncatula[J]. Journal of Experimental Botany, 2015, 66(13): 4061-4073.
[29]Paszkowski U, Kroken S, Roux C, Briggs S P. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences, 2002, 99(20): 13324-13329.
[30]Glassop D, Godwin R M, Smith S E, Smith F W. Rice phosphate transporters associated with phosphate uptake in rice roots colonised with arbuscular mycorrhizal fungi[J]. Botany, 2007, 85(7): 644-651.
[31]Shu B, Xia R X, Wang P. Differential regulation of Pht1 phosphate transporters from trifoliate orange (PoncirustrifoliataL. Raf.) seedlings[J]. Scientia Horticulturae, 2012, 146: 115-123.
[32]Misson J, Thibaud M C, Bechtold N,etal. Transcriptional regulation and functional properties ofArabidopsisPht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants[J]. Plant Molecular Biology, 2004, 55(5): 727-741.
[33]Shin H, Shin H S, Dewbre G R, Harrison M J. Phosphate transport inArabidopsis:Pht1; 1 andPht1; 4 play a major role in phosphate acquisition from both low- and high- phosphate environments[J]. The Plant Journal, 2004, 39(4): 629-642.
[34]Ai P, Sun S, Zhao J,etal. Two rice phosphate transporters,OsPht1; 2 andOsPht1; 6, have different functions and kinetic properties in uptake and translocation[J]. The Plant Journal, 2009, 57(5): 798-809.
[35]Doidy J, van Tuinen D, Lamotte O,etal. TheMedicagotruncatulasucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi[J]. Molecular Plant, 2012, 5: 1346-1358.
[36]Shachar-Hill Y, Pfeffer P E, Douds D,etal. Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek[J]. Plant Physiology, 1995, 108: 7-15.
[37]Solaiman M D Z, Saito M. Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry[J]. New Phytologist, 1997, 136: 533-538.
[38]Govindarajulu M, Pfeffer P E, Jin H R,etal. Nitrogen transfer in the arbuscular mycorrhizal symbiosis[J]. Nature, 2005, 435: 819-823.
[39]Jin H, Pfeffer P E, Douds D Detal. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis[J]. New Phytologist, 2005, 168: 687-696.
[40]Cruz C, Egsgaard H, Trujillo C,etal. Enzymatic evidence for the key role in arginine in nitrogen translocation by arbuscular mycorrhizal fungi[J]. Plant Physiology, 2007, 144: 782-792.
[41]Allen J W, Shachar-Hiil Y. Sulfur transfer through an arbuscular mycorrhiza[J]. Plant Physiology, 2009, 149: 549-560.
[42]Smith S E, Jakobsen I, Gronlund M, Smith F A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition[J]. Plant Physiology, 2011, 156: 1050-1057.
[43]Chalot M, Blaudez D, Brun A. Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface[J]. Trends in Plant Science, 2006, 11: 263-266.
[44]Heinemeyer A, Ineson P, Ostle N, Fitter A H. Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature[J]. New Phytologist, 2006, 171: 159-170.
[45]Blee K A, Anderson A J. Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules[J]. Plant Molecular Biology, 2002, 50(2): 197-211.
[46]Garcia-Rodriguez S, Azcon-Aguilar C, Ferrol N. Transcriptional regulation of host enzymes involved in the cleavage of sucrose during arbuscular mycorrhizal symbiosis[J]. Physiologia Plantarum, 2007, 129: 737-746.
[47]Javot H, Penmetsa R V, Terzaghi N,etal. AMedicagotruncatulaphosphate transporter indispensable for the arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences, 2007, 104(5): 1720-1725.
[48]Schüβler A, Martin H, Cohen D,etal. Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi[J]. Nature, 2006, 444(7121): 933-936.
[49]Raghothama K G. Phosphate acquisition[J]. Annual Review of Plant Biology, 1999, 50(1): 665-693.
[50]Reizer J, Reizer A, Saier Jr M H. A functional superfamily of sodium/solute symporters[J]. Biochimica et Biophysica Acta, 1994, 1197(2): 133-166.
[51]Daram P, Brunner S, Persson B L,etal. Functional analysis and cell-specific expression of a phosphate transporter from tomato[J]. Planta, 1998, 206(2): 225-233.
[52]Büttner M, Sauer N. Monosaccharide transporters in plants: structure, function and physiology[J]. Biochimica et Biophysica Acta, 2000, 1465(1): 263-274.
[53]Büttner M. The monosaccharide transporter (-like) gene family inArabidopsis[J]. Febs Letters, 2007, 581(12): 2318-2324.
[54]Klepek Y S, Geiger D, Stadler R,etal.ArabidopsisPOLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-symport of numerous substrates, including myo-inositol, glycerol, and ribose[J]. The Plant Cell, 2005, 17(1): 204-218.
[55]Wang E, Yu N, Bano S A,etal. A H+-ATPase that energizes nutrient uptake during mycorrhizal symbioses in rice andMedicagotruncatula[J]. The Plant Cell, 2014, 26(4): 1818-1830.
[56]Mimura T. Physiological control of phosphate uptake and phosphate homeostasis in plant cells[J]. Functional Plant Biology, 2001, 28(7): 655-660.
[57]Williams L E, Lemoine R, Sauer N. Sugar transporters in higher plants-a diversity of roles and complex regulation[J]. Trends in Plant Science, 2000, 5(7): 283-290.
[58]Gabriel-Neumann E, Neumann G, Leggewie G, George E. Constitutive overexpression of the sucrose transporterSoSUT1 in potato plants increases arbuscular mycorrhiza fungal root colonization under high, but not under low, soil phosphorus availability[J]. Journal of Plant Physiology, 2011, 168(9): 911-919.
[59]Fellbaum C R, Gachomo E W, Beesetty Y,etal. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences, 2012, 109(7): 2666-2671.
[60]Guether M, Neuh?user B, Balestrini R,etal. A mycorrhizal-specific ammonium transporter fromLotusjaponicusacquires nitrogen released by arbuscular mycorrhizal fungi[J]. Plant Physiology, 2009, 150(1): 73-83.
[61]Kiers E T, Duhamel M, Beesetty Y,etal. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis[J]. Science, 2011, 333(6044): 880-882.
Progress on material exchange between arbuscular mycorrhizal(AM) fungi and host plant: A review
SHU Bo, LI Wei-cai, LIU Li-qin, WEI Yong-zan, SHI Sheng-you*
(SouthSubtropicalCropsResearchInstitute,CATAS,Zhanjiang/KeyLaboratoryofTropicalFruitBiology,MinistryofAgriculture,Zhanjiang,Guangdong524091,China)
Arbuscular mycorrhizal (AM) fungi can form symbiosis with 80% of terrestrial plant species. The exchange between mineral nutrients of AM fungi and carbohydrate of host plant is important for material cycle in whole ecosystem. Nowadays, there are many studies on the AM fungi promoting host plant mineral nutrient absorption. The AM fungi can enhance availability of mineral nutrients by small diameter of extraradical hyphae, activate soil nutrients by releasing organic acids and soil enzymes, ensure the efficiency of soil nutrition transport into extraradical hyphae by the lower value ofKmnutrient transporter on extraradical hyphae, ensure the rate of nutrition transport in intraradical hyphae by converting nutrients ions to suitable forms, and promote the efficiency of the nutrition transport into host plant by inducing symbiotic plant nutrients transporters. However, the progress of plant feedback carbohydrate to fungi is few. As the important role of AM symbiosis in whole ecosystem, researches about the locations (arbuscule, intraradical hyphae and extraradical hyphae), the forms (ionic forms, polymer, amino acid, sucrose and monosaccharide) and the process (active transport) of the mineral nutrients and carbohydrate exchange are significant. This review summarizes the characteristics of membrane system of arbuscule and intraradical hyphae, the forms of nitrogen (N), phosphate (P) and carbohydrate within the exchange, and the process of exchange which relates to transmembrane, energy expenditure and N or P coupling with carbohydrate. Finally, the prospect of AM fungi and host plant materials exchanges is proposed.
mineral nutrients; carbohydrate; membrane system; transporter
2014-11-25接受日期: 2015-05-25網絡出版日期: 2015-07-17
國家自然科學基金(31401818); 中央級公益性科研院所基本科研業務費專項(1630062014006)資助。
舒波(1985—), 男, 四川廣安人, 博士, 助理研究員, 主要從事果樹菌根方面的研究。E-mail: bshbest@163.com
E-mail: ssy7299@163.com
Q945.12; S154.34
A
1008-505X(2016)04-1111-07