999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一種基于像素差值特征的車輛檢測方法

2016-08-04 02:07:36
網絡安全與數據管理 2016年13期

連 捷

(中國電子科技集團公司第三十八研究所,安徽 合肥 230088)

?

一種基于像素差值特征的車輛檢測方法

連捷

(中國電子科技集團公司第三十八研究所,安徽 合肥 230088)

摘要:為了快速定位監控場景中的車輛位置,提出了一種基于像素差值特征的車輛檢測方法。首先提取圖像的歸一化像素差值特征(NPD),之后使用深度二次樹(DQT)學習最優的特征子集,最后使用AdaBoost算法篩選最具區分力的特征構建強分類器。以含有正面、側面及背面三個角度超過3 500個樣本為測試集進行了快速車輛檢測測試,并與梯度方向直方圖(HOG)和Haar的組合特征進行了對比。對比實驗表明,基于NPD的車輛檢測方法最優,其檢測率和檢測時間分別為85.47%和200 ms。

關鍵詞:車輛檢測;NPD特征;深度二次樹;級聯分類器

引用格式:連捷. 一種基于像素差值特征的車輛檢測方法[J].微型機與應用,2016,35(13):43-44,50.

0引言

公共安全中的汽車是一個關鍵性元素,如何快速檢測出車輛,并進行后續分析具有實際意義。基于視頻分析的車輛檢測算法主要包括:幀間差分法、光流法、背景差分[1-3]等。這些算法要么過于簡單,檢測效果不好,要么過于復雜,計算量太大,對于海量視頻分析不太現實。基于AdaBoost 算法[4]雖然速度快,但是虛警率較高,檢測效果一般。NEGRI P等人[5]綜合了HOG特征和Haar特征,將兩種特征的融合特征作為AdaBoost訓練的輸入,該方法對單一角度的車輛檢測結果較好,但對多角度的車輛檢測擴展性能不好。本文對傳統AdaBoost 算法進行改進,結合歸一化像素差值特征(NPD)和深度二次方樹(DQT)[6],使用多角度車輛樣本來訓練AdaBoost,實驗結果表明本文方法與參考文獻[5]中的檢測算法相比較,檢測速度更快,檢測率更高。

1基于NPD及DQT的車輛檢測方法

1.1歸一化像素差值特征空間

一幅圖像中的兩個像素的歸一化像素差值(NPD)特征可以定義如下:

(1)

其中,x≥0,y≥0是兩個像素的灰度值,當x=y=0 時,定義f(0,0)為0。

NPD特征度量兩個像素值的相對差異性。f(x,y)的符號表示像素x和y的序數關系,幅值表示兩個像素的相對差值。NPD對于灰度值的線性變化具有不變性。

1.2深度二次樹

傳統的基于AdaBoost 分類器的車輛檢測算法是將若干弱分類器通過訓練組合成一個強分類器。這種弱分類器的缺點是解析不同特征空間維數的相關性的能力較弱,另外它也忽略了特征中的高階信息。本文提出了一個更好的弱分類器,使用二次元分割策略和一個更深的樹形結構。對于一個特征x,本文使用如下函數劃分一個樹的節點:

ax2+bx+c

(2)

其中,a、b、c是常值,t是劃分閾值,驗證其是否位于兩個學習到的閾值之間。式(2)同時考慮特征x的一階和二階信息,使其可以更好地解析劃分策略。

1.3車輛檢測器

由于 NPD特征含有很多冗余信息,本文使用AdaBoost 算法學習最有區分力的特征,構建強分類器[8],并采用Gentle AdaBoost算法[9]來學習基于NPD特征的深度二次元樹。

參考文獻像[7]一樣,一個級聯分類器被進一步學習用于快速車輛檢測。這里只學習一個級聯分類器來進行車輛檢測。此外還采用了軟級聯結構[10]來快速學習和排除負樣本。軟級聯看作一個AdaBoost分類器,每個弱分類器有一個終點。每個迭代過程中,一個深度二次元樹作為弱分類器被學習,當前AdaBoost分類器的閾值也被學習。多個深度二次元樹被組合成一個強分類器。

2實驗結果

為對本文提出的算法進行測試,采用了合肥交通局提供的交通監控圖像。實驗圖像由10個相機在合肥不同的路口進行采集,原始圖像大小覆蓋范圍為1 920×1 080~2 448×2 048。圖1顯示了部分車輛圖像。

圖1 實驗圖像

用于訓練的樣本是1 499張圖像中的4 957個車輛,大小歸一化為24×24,負樣本由不包含車輛圖像的24 840個樣本組成。最終的檢測器包含1 226個深度二次元樹,46 401個NPD特征。NPD特征的計算可以通過查表法來加速計算。

使用3 568個車輛圖像對算法進行測試,正確檢測的評價標準是檢測出的目標框與標記的框交并比大于某一閾值,本文將閾值取為0.5。將車輛圖像分為較難、中等和較易3個數據集,對應每個數據集的車輛數目分別為1 073、960和1 535,每種車輛數據集對應的檢測結果如表1所示。由圖2的檢測結果可以看出,本文提出的方法對不同尺度、不同角度的車輛魯棒性較好。

表1 檢測結果比較

圖2 車輛檢測結果

另外,為了與之前的方法進行對比,使用NEGRI P[7]提出的HOG和Haar組合特征在相同的訓練集上訓練AdaBoost分類器,負樣本從362張不含車輛的圖片隨機裁切,使用訓練好的分類器對3個難度不同的測試集進行測試,結果如表1所示。實驗結果表明本文所使用的NPD特征在檢測性能上超越了HOG和Haar特征,對于降采樣后平均尺寸為640×480的圖像,檢測一張圖像NPD約需200 ms,而HOG-Haar組合特征約需1 s。

3結論

針對海量視頻中的快速有效車輛檢測問題,本文提出了一種改進的AdaBoost算法,結合歸一化像素差值特征(NPD)和深度二次方樹(DQT)來提高模型的表示能力,通過各種角度的車輛樣本訓練得到改進的AdaBoost車輛檢測器。實驗結果表明,與傳統AdaBoost算法相比較,本文算法能夠快速有效地檢測前后面、側面的車輛,具有一定實用性。

[1] SEKI M, FUJIWARA H, SUMI K. A robust background subtraction method for changing background[C].Applications of Computer Vision, 2000, Fifth IEEE Workshop on. IEEE, 2000: 207-213.

[2] 李喜來, 李艾華, 白向峰. 智能交通系統運動車輛的光流法檢測[J]. 光電技術應用, 2010, 25(2):75-78.

[3] STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[C].Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on. IEEE, 1999, 2:252.

[4] 金立生, 王巖, 劉景華, 等. 基于 Adaboost 算法的日間前方車輛檢測[J]. 吉林大學學報: 工學版, 2014, 3(6): 1604-1608.

[5] NEGRI P, CLADY X, HANIF S, et al. A cascade of boosted generative and discriminative classifiers for vehicle detecti-on [J]. EURASIP Journal on Advances in Signal Processing, 2008(1):1-12.

[6] LIAO S, JAIN A, LI S. A fast and accurate unconstrained face detector [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 38(2):211-223.

[7] SINHA P. Qualitative representations for recognition[C]. Biologically motivated computer vision. Springer Berlin Heidelberg, 2002: 249-262.

[8] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features [C].Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. IEEE, 2001.

[9] FREDMAN J, HASTIE T, TIBSHIRANI R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)[J]. The annals of statistics, 2000, 28(2): 337-407.

[10] BOURDEV L, BRANDT J. Robust object detection via soft cascade[C].Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. IEEE, 2005: 236-243.

中圖分類號:TP391.4

文獻標識碼:A

DOI:10.19358/j.issn.1674- 7720.2016.13.014

(收稿日期:2016-04-05)

作者簡介:

連捷(1988-),男,碩士,助理工程師,主要研究方向:智能交通圖像處理和模式識別。

An efficient vehicle detection method based on pixel difference features

Lian Jie

(China Electronics Technology Group Corporation No.38 Research Institute, Hefei 230088, China)

Abstract:An efficient vehicle detection algorithm is proposed for traffic surveillance images, which is based on a new image feature called Normalized Pixel Difference (NPD).A deep quadratic tree is constructed to learn the optimal subset of NPD features and their combinations. And AdaBoost algorithm is used to select discriminative features and form a strong classifier. A dataset with three viewpoints, which consists of more than 3 500 images is used to test the proposed method. The experimental results indicate that compared with the HOG and Haar combination feature, the proposed NPD based method is the best with a detection accuracy of 85.47% and an elapsed time of 200 ms.

Key words:vehicle detection; NPD feature; deep quadratic tree; cascade classifier

主站蜘蛛池模板: 国产欧美日韩18| 免费无遮挡AV| 国语少妇高潮| 国产h视频在线观看视频| 91精品国产自产在线老师啪l| 亚洲欧美日韩中文字幕在线一区| 国产91精品调教在线播放| 国产在线第二页| 小蝌蚪亚洲精品国产| 99久久精品免费观看国产| 啊嗯不日本网站| 国产激爽爽爽大片在线观看| 亚洲欧美另类中文字幕| 亚洲精品午夜无码电影网| 国产精品免费p区| 日韩免费中文字幕| 国产69囗曝护士吞精在线视频| 欧美成人二区| 欧美一区二区人人喊爽| 国产免费久久精品99re丫丫一| 亚洲AV电影不卡在线观看| 99久久精品国产综合婷婷| 人妻一本久道久久综合久久鬼色| 欧美日韩国产在线播放| 激情综合激情| 久久国语对白| 亚洲经典在线中文字幕| 亚洲欧洲AV一区二区三区| 夜夜高潮夜夜爽国产伦精品| 精品无码国产自产野外拍在线| 亚洲视频一区在线| 九九香蕉视频| 免费观看三级毛片| 国产精品网址你懂的| 爆乳熟妇一区二区三区| 乱人伦中文视频在线观看免费| 91美女视频在线| 国产极品美女在线| 鲁鲁鲁爽爽爽在线视频观看 | 99国产精品免费观看视频| 亚洲美女操| 成人毛片免费在线观看| 国产精品成人一区二区不卡| 亚洲无码高清一区二区| 国产精鲁鲁网在线视频| 伊人色在线视频| 国产精品自在线天天看片| 亚洲毛片一级带毛片基地| 狠狠色丁香婷婷| 天堂网亚洲系列亚洲系列| 国产手机在线小视频免费观看| 久久精品人人做人人爽| 亚洲高清中文字幕在线看不卡| 亚洲V日韩V无码一区二区| 久久精品视频一| 国产精品视频系列专区| 男人天堂亚洲天堂| 亚洲精品色AV无码看| 综合色在线| 久久狠狠色噜噜狠狠狠狠97视色 | 久久久久亚洲精品无码网站| 91精品最新国内在线播放| 国产嫖妓91东北老熟女久久一| 精品视频91| 久久 午夜福利 张柏芝| 久草网视频在线| 亚洲大尺度在线| 91精品情国产情侣高潮对白蜜| 青青久视频| 国产v精品成人免费视频71pao | 欧美在线三级| 国产波多野结衣中文在线播放 | 高清免费毛片| 午夜啪啪网| 成人另类稀缺在线观看| 97久久精品人人做人人爽| 欧美中文字幕在线播放| 国产在线精彩视频论坛| 免费一级成人毛片| 永久免费精品视频| 国产sm重味一区二区三区| 国产一级在线观看www色 |