薛幫燦,郝麗娜,楊 輝
(東北大學 機械工程與自動化學院,沈陽 110819)
?
3DOF-PAM并聯(lián)機器人設計與動力學建模*
薛幫燦,郝麗娜,楊輝
(東北大學 機械工程與自動化學院,沈陽110819)
摘要:該設計依據氣動肌肉特性和并聯(lián)機器人理論,結合仿生學的設計方法,開發(fā)了一個3自由度氣動肌肉并聯(lián)機器人機構。基于氣動肌肉的變剛度特性,將其簡化為變剛度彈簧,并通過考慮其在機構運動過程中的質心變化特性,結合拉格朗日動力學方法對3DOF-PAM并聯(lián)機器人進行動力學建模,運用MATLAB軟件對建立的動力學模型進行仿真分析研究,分析3DOF-PAM并聯(lián)機器人在不同負載下運動過程中的動力學特性,為氣動肌肉驅動的并聯(lián)機器人的高精度軌跡控制建立理論基礎。
關鍵詞:氣動肌肉;并聯(lián)機器人;結構設計;動力學建模
0引言
由于氣動肌肉具有高功率密度比、良好的柔順性及安全性、以及輕質、靈活等優(yōu)點,故其在高功率密度比的驅動裝置的設計開發(fā)中得到了廣泛應用。例如美國華盛頓天主教大學研究了拮抗的氣動肌肉手臂結構[1],納什維爾大學研制了6自由度的機械臂[2-3],日本Bridgestone公司研制了5自由度的柔順機械臂[4]等,但是對于采用氣動肌肉并聯(lián)驅動方式的機器人機構的研究相對較少。目前國外,新西蘭奧克蘭大學研制了一種四根氣動肌肉驅動的三自由度柔性并聯(lián)機器人用于腳踝康復[5],韓國釜山東義大學研制了3DOF-PAM并聯(lián)外骨骼式康復機器人[6]。國內,華中科技大學研究由3根PAM組成的非對稱并聯(lián)機器人平臺[7],北京理工大學研究了3DOF-PAM球面并聯(lián)機器人[9]。
目前在建立PAM機械臂精準動力學模型方面,國內外均進行了一定的研究,例如文獻[1]利用能量守恒和虛功原理建立氣動肌肉靜態(tài)模型,結合拉格朗日動力學方法建立氣動肌肉手臂的動力學模型;文獻[7]利用氣動肌肉靜態(tài)模型與牛頓-歐拉方法建立并聯(lián)機器人動力學模型。由此可知,目前針對氣動肌肉驅動的機器人裝置的動力學建模,大多是從能量守恒原理或變截面氣缸的角度來建立PAM靜力學模型,并結合裝置機構特點建立整個系統(tǒng)的動力學模型。
本文基于氣動肌肉的變剛度特性,將其簡化為變剛度彈簧,并通過考慮其在機構運動過程中的質心變化特性,根據拉格朗日方程建立3DOF-PAM并聯(lián)機器人的動力學模型,并對其動力學特性進行仿真分析,從而為仿生肘關節(jié)的變剛度控制奠定理論基礎。
13DOF-PAM并聯(lián)機器人結構設計
根據身高168mm中國成年男子上臂尺寸以及并聯(lián)機器人理論,設計基于氣動肌肉驅動的并聯(lián)機器人機構。其采用3自由度并聯(lián)機構,由固定平臺、運動平臺、支撐桿、虎克鉸、連接小軸及氣動肌肉等組成,其中固定平臺安有3個虎克鉸、運動平臺安有4個虎克鉸,每個虎克鉸通過連接小軸與對應平臺相連;3根氣動肌肉的兩端分別通過虎克鉸與固定平臺及運動平臺相連;支撐桿下端通過螺紋與固定平臺固連,上端通過虎克鉸與運動平臺相連。分別對3根氣動肌肉進行充放氣,從而對運動平臺位姿進行調整,實現(xiàn)運動平臺的屈/伸、外展/內收以及旋內/旋外3個旋轉自由度。根據外觀圖1,3DOF-PAM并聯(lián)機器人的主要參數如表1所示,其設計指標如表2所示。

表1 氣動肌肉并聯(lián)機器人主要參數

表2 設計指標參數

圖1 3DOF-PAM并聯(lián)機器人
23DOF-PAM并聯(lián)機器人動力學建模
2.1氣動肌肉靜態(tài)模型
文獻[9]采用能量守恒原理和虛功原理,建立氣動肌肉輸出力與壓力和長度之間的函數關系。其首先假設氣動肌肉是壁厚為0的圓柱體,且其編織網擁有很低的延展性,氣動肌肉的體積主要取決于編織網的長度,如圖2所示。

圖2 氣動肌肉簡圖
圖中:L—為圓柱體長度、θ—為編織網線與圓柱體軸之間的夾角、D—為圓柱體直徑、n—為線纏繞匝數、b—為單根絲線的長度。其L=b·cosθ,D=b·sinθ/nπ,圓柱體體積為:
(1)
氣動肌肉輸出力F可表示為輸入壓強p′與編織角θ的函數,表達式如下:
(2)
對上述氣動肌肉理想數學模型做進一步的數學變換,得到如下表達式:
(3)
式中:D0為氣動肌肉初始直徑、θ0為編織網的初始編織角、ε為氣動肌肉收縮率。
2.2并聯(lián)機器人動力學建模
根據拉格朗日法L=K-P,其中K為機械系統(tǒng)的動能,P為機械系統(tǒng)的勢能。

(4)
將L=K-P代入(1)式中則有:
(5)

圖3 3DOF-PAM并聯(lián)機器人簡化模型
3DOF-PAM并聯(lián)機器人簡化模型如圖3所示,由于氣動肌肉可以簡化為變剛度彈簧,氣動肌肉實際長度L與初始長度L0之差相當于彈簧的伸長量x。由3.1節(jié)中的氣動肌肉的靜態(tài)數學模型(3)式可求得氣動肌肉的剛度k:
(6)
式中:x是氣動肌肉的收縮量,x=L-L0。

ρ(y)=ms/l
(7)
氣動肌肉上任意兩點間的位置坐標間關系式為:
(8)
式中:αi為氣動肌肉軸線與水平面的夾角,li為氣動肌肉拉伸后的長度。
氣動肌肉質心到端點的距離Lci為:
(9)
根據圖3所示坐標系,機構的旋轉矩陣為:

(10)
zpi′=BRmbi′m-BRmbim=
所以對上述表達式進行簡化得:
(11)
設氣動肌肉軸線與水平面的夾角為α;則夾角滿足:

所以氣動肌肉質心到端點的距離為:
(12)
各根氣動肌肉總動能為:
綜上,該機構的總動能為:
(13)
機構的總勢能為平臺勢能與各桿的勢能之和,其中氣動肌肉的勢能包括重力勢能和彈性勢能,則有:
(14)
結合(2)、(13)、(14)式,可得到動力學方程為:

(15)
33DOF-PAM并聯(lián)機器人動力學仿真分析
對于3DOF-PAM并聯(lián)機器人的動力學研究,主要是分析肘關節(jié)在不同的運動形式下,三根氣動肌肉的驅動力變化情況。根據已建立的并聯(lián)機器人動力學方程,針對并聯(lián)機器人在不同的運動形式下,對三根氣動肌肉的驅動力情況進行仿真實驗研究,圖4為并聯(lián)機器人空載運動時各根氣動肌肉驅動力變化情況,圖5為并聯(lián)機器人負重2.5kg條件下運動時各根氣動肌肉驅動力變化情況,圖6為負重5kg條件下運動時各根氣動肌肉驅動力變化情況。輸入轉角分別為φ=50°sint、θ=50°sint。

圖4 并聯(lián)機器人空載動力學仿真結果
仿真結果分析:圖4為3DOF-PAM并聯(lián)機器人空載運動時,各根氣動肌肉驅動力變化仿真結果。圖4a中并聯(lián)機器人的運動平臺繞X軸轉動時,由于第一根氣動肌肉位于XOZ平面內,其長度沒有發(fā)生變化,所以驅動力為恒定值;另外兩根氣動肌肉驅動力不斷發(fā)生變化,且為一大一小,原因為運動平臺轉動過程中,兩根肌肉的收縮量變化不同。在運動平臺轉到最大轉角位置,氣動肌肉驅動力最大為277N。圖4b為并聯(lián)機器人的運動平臺繞Y軸轉動,運動平臺質心靠近L2、L3兩根氣動肌肉,在平臺轉動到極值位置,L2、L3驅動力也較第一根氣動肌肉大,主要由其承受運動平臺自身負載。

圖5 肘關節(jié)帶載2.5kg動力學仿真結果
圖5為并聯(lián)機器人運動平臺帶載2.5kg時,各根氣動肌肉驅動力變化仿真結果。從圖5a可以看出在負重2.5kg情況下,運動平臺達到最大轉角時,L2和L3兩根氣動肌肉驅動力達到380N,較空載運動時驅動力增大了103N。圖5b中當運動平臺達到最大轉角處,出現(xiàn)L2和L3驅動力變化顯著大于L1的驅動力值,主要因為運動平臺質心位置靠近L2和L3,運動平臺到達靠近L2和L3位置的最大轉角處,負載主要由這兩根氣動肌肉承擔,收縮量也增大,故驅動力增大,并且驅動力值接近500N。


圖6 肘關節(jié)帶載5kg動力學仿真結果
圖6為并聯(lián)機器人的運動平臺帶載5kg時,各根氣動肌肉受力變化仿真結果。圖6a相比圖5a可知,在平臺運動過程中,各根氣動肌肉驅動力的變化趨勢沒有改變,但在運動平臺達到最大轉角位置處,氣動肌肉驅動力顯著增加,增加值近170N。從圖6b中可以看出,當運動平臺達到最大轉角時,氣動肌肉驅動力已經超過其極限載荷值750N,故該3DOF-PAM并聯(lián)機器人所能承受最大負載不能超過5kg。
4結論
(1)本文基于氣動肌肉的變剛度特性,將其簡化為變剛度彈簧,通過考慮其在機構運動過程中的質心變化特性,并結合拉格朗日動力學方法建立了3DOF-PAM并聯(lián)機器人的動力學模型。
(2)運用MATLAB軟件仿真分析了并聯(lián)機器人在所設計的轉角指標范圍內運動時,各根氣動肌肉的受力變化情況。從仿真結果可知運動平臺空載和帶載兩種情況下運動,氣動肌肉驅動力的變化趨勢有所不同;帶載時,在不同負載條件下,3根氣動肌肉各自驅動力的變化趨勢不變,但隨著負載的增加,其最大驅動力均有不同程度的增大。根據仿真結果可以看出并聯(lián)機器人所能承受最大負載不超過5kg。
通過動力學模型的建立與仿真分析,為3DOF-PAM并聯(lián)機器人的高精度軌跡控制以及人工肌肉機械臂的研發(fā)建立了理論基礎。
[參考文獻]
[1]ColbrunnRW,NelsonGM,QuinnRD.Designandcontrolofaroboticlegwithbraidedpneumaticactuators[C].IntelligentRobotsandSystems,2001.Proceedings.2001IEEE/RSJInternationalConferenceon.IEEE,2001,2:992-998.
[2]KawamuraK,BagchiS,ArousM,etal.Intelligentroboticsystemsinserviceofthedisabled[J].RehabilitationEngineering,IEEETransactionson,1995,3(1):14-21.
[3]AAlford,SNorthrup,KKawamura,etal.Amusicplayingrobot[C].Proc.oftheConf.onFieldandServiceRobots.1999:29-31.
[4]KanjiInoue.Rubbertuatorsandapplicationsforrobots[C].Proceedingsofthe4thinternationalsymposiumonRoboticsResearch.MITPress,1988:57-63.
[5]PrashantKumarJamwal,etal.Kinematicdesignoptimizationofaparallelanklerehabilitationrobotusingmodifiedgeneticalgorithm[J].RoboticsandAutonomousSystems,2009,57(10):1018-1027.
[6]Young-minKim,Sung-yoonJung,InhyukMoon.Designofawearableupper-limbrehabilitationrobotusingparallelmechanism[C].ICCAS-SICE,2009.IEEE,2009:785-789.
[7] 楊鋼, 李寶仁,傅曉云.氣動人工肌肉并聯(lián)機器人平臺[J].機械工程學報,2006,42(7):39-45.
[8] 范偉,彭光正,高建英,等.氣動人工肌肉驅動三自由度球面并聯(lián)機器人關節(jié)的位置控制研究[J].液壓氣動與密封,2003(6):1-5.
[9]CPChou,BHannaford.StaticandDynamicCharacteristicsofMcKibbenPneumaticArtificialMuscles[C].Proceedingsof1994IEEEInternationalConferenceonRoboticandAutomation.SanDiego,USA.1994,1:281-286.
[10]LeDuyKhoa,DinhQuangTruong,KyoungKwanAhn.Synchronizationcontrollerfora3-Rplanarparallelpneumaticartificialmuscle(PAM)robotusingmodifedANFISalgorithm[J].Mechatronics,2013,23:462-479.
[11]RASIMS,ALIZADEI.Forwardandreversedisplacementanalysisofa6-DOFin-parallelmanipulators[J].InternationalJournalofTools&Manufacture,1997,39(2):321-342.
[12] 余躍慶,徐齊平.柔順機構PR偽剛體動力學建模與特性分析[J].農業(yè)機械學報,2013,44(3):225-229.
[13] 韓方元,趙丁選,李天宇.3-RPS并聯(lián)機構正解快速數值算法[J].農業(yè)機械學報,2011,42(4):229-233.
[14] 王南,趙乘康,高鵬,等.并聯(lián)機構3-SPS/S的靜、動態(tài)剛度性能研究[J].機械設計與制造,2013(8):213-215.
(編輯李秀敏)
文章編號:1001-2265(2016)07-0052-04
DOI:10.13462/j.cnki.mmtamt.2016.07.015
收稿日期:2015-08-13;修回日期:2015-09-10
*基金項目:國家高技術研究發(fā)展計劃(863計劃)(2015AA042302);裝備預先研究項目(62501040412);遼寧重大裝備制造協(xié)同創(chuàng)新中心資助
作者簡介:薛幫燦(1990—),男,河南周口人,東北大學碩士研究生,研究方向為氣動肌肉仿人機械臂的研究;通訊作者:郝麗娜(1968—),女,遼寧莊河人,東北大學教授,博士生導師,研究方向是機器人系統(tǒng)與智能控制,(E-mail)haolina@me.neu.edu.cn。
中圖分類號:TH166;TG506
文獻標識碼:A
Design and Dynamic Modeling of 3DOF-PAM Parallel Robot
XUE Bang-can,HAO Li-na,YANG Hui
(SchoolofMechanicalEngineering&Automation,NortheasternUniversity,Shenyang110819,China)
Abstract:According to the pneumatic muscle characteristics and parallel robot theory,combined with bionics design method,a 3DOF-PAM parallel robot was designed. Based on the change of stiffness of pneumatic muscle, it is simplified as a variable stiffness spring,and the change of centroid of PAM during motion of mechanism is considered.Dynamics model of 3DOF-PAM parallel robot was established by using the Lagrange dynamics method. MATLAB software was employed to conduct simulation experiments of the dynamics model, and dynamics characteristic of 3DOF-PAM parallel robot was studied in the movement process of different load.The foundation of the high precision trajectory control of parallel robot driven by PAM was established.
Key words:pneumatic muscle;parallel robot;architectural design;dynamics modeling