閆素輝,楊兵兵,許 峰,邵慶勤,張從宇,李文陽
(安徽科技學院農學院,安徽鳳陽 233100)
?
稻茬晚播小麥胚乳淀粉粒度分布的粒位差異
閆素輝,楊兵兵,許 峰,邵慶勤,張從宇,李文陽
(安徽科技學院農學院,安徽鳳陽 233100)
摘要:為研究稻茬晚播小麥胚乳淀粉粒分布的粒位差異,以小麥品種山農1391和藁城8901為材料,設適期播種和晚播2種播期處理,研究小麥強勢、弱勢籽粒胚乳淀粉粒粒度分布特征。結果表明,小麥強、弱勢籽粒中均具有A、B型淀粉粒,但淀粉粒的分布因不同處理具有顯著差異。不同小麥品種、播期和粒位下,淀粉粒的體積分布均呈雙峰分布,峰值分別為4.878~6.453 μm和21.7~23.82 μm;淀粉粒數目分布呈單峰分布,峰值為0.520~0.571 μm。藁城8901的B型淀粉粒的體積、數目、表面積占比均顯著高于山農1391;山農1391的A型淀粉粒的體積、數目、表面積百分比顯著高于藁城8901。晚播處理使小麥B型淀粉粒占比顯著升高,A型淀粉粒占比顯著降低;弱勢粒中B型淀粉粒占比降低,A型淀粉粒占比顯著上升。晚播處理對山農1391的影響大于藁城8901。
關鍵詞:晚播小麥;淀粉粒;強勢粒;弱勢粒
小麥籽粒的淀粉含量大約占小麥胚乳干重的70%左右。小麥淀粉的品質主要取決于其體積、形態與結構[1-2]。前人對小麥胚乳淀粉粒型、粒徑分布、化學成分等已經做了大量的研究。研究認為,成熟的小麥胚乳含有A型和B型淀粉粒。A型淀粉粒似透鏡狀,顆粒較大,直徑一般在10 μm以上,約占小麥總淀粉粒數的十分之一;B型淀粉粒似多邊形,顆粒體積較小,直徑一般在10 μm以下,約占小麥總淀粉粒數的88%[3-7],因顆粒體積較小,具有更大的表面積[8-9]。小麥淀粉中A型和B型淀粉粒的組成差異對小麥食品加工品質有重要影響[9-10]。
由于土壤墑情、種植的前茬作物、天氣情況、農業機械及勞動力的原因,容易造成小麥的播種期推遲,從而形成晚播小麥。對于晚播小麥的生長發育特點前人已經做了大量的研究,發現在稻麥兩熟制的地區,晚播小麥的主莖葉齡總數和各時期的葉齡總數均比正常播期的少,晚播小麥的生育期比正常播期的小麥推遲,營養物質的積累減少,有效穗數減少,產量降低[11]。
禾本科作物的強、弱勢粒具有明顯不同的發育特性,強勢粒激素水平較高,胚乳細胞的增殖快、數目多,庫的活性高,淀粉合成能力更強,小麥穗的強勢粒和弱勢粒具有典型的禾本科作物強、弱勢粒的發育特征[12-17]。目前關于播期對小麥淀粉粒度分布的研究較為鮮見。為此,本研究以兩個小麥品種為試驗材料,分析了兩種播期條件下小麥強、弱勢籽粒的淀粉粒度分布特征,以期為改善晚播小麥的淀粉品質提供理論依據。
1材料與方法
1.1試驗材料與設計
試驗以山農1391(SN 1391)和藁城8901(GC 8901)兩個小麥品種為試驗材料,于2013年10月-2014年6月在安徽科技學院種植科技園進行。試驗地前茬作物為水稻。設適期播種(Normal sown,NS)和晚播(Late sown,LS)兩種播期處理,播期分別為2013年10月16日與11月15日。采用隨機區組設計,小區面積7.5 m2(2.5 m×3 m )。小麥成熟期取麥穗,將麥穗中部小穗籽粒分成強勢粒(小穗第1、2位籽粒)和弱勢粒(小穗第4位籽粒),分別取50粒左右,置70 ℃烘箱烘至恒重,用于淀粉粒的提取與分析。
1.2淀粉粒提取及測定
參照Peng等[17]的方法提取小麥胚乳淀粉粒,利用LS 13320 激光衍射粒度分析儀(美國Beckman Coulter公司)進行淀粉粒徑分析。
1.3數據處理
采用DPS 7.05進行統計分析,采用LSD法測驗差異顯著性。
2結果與分析
2.1不同播期淀粉粒的體積分布
由圖1可知,小麥淀粉粒的體積分布呈雙峰分布,峰值分別為4.878~6.453 μm和21.70~23.82 μm。淀粉粒平均粒徑主要受品種的影響,播期和粒位對小麥平均粒徑亦有顯著影響(表1)。山農1391平均粒徑顯著高于藁城8901。山農1391晚播處理的淀粉粒平均粒徑較適播顯著降低。
淀粉粒體積的33.55%~48.10%由小于10 μm的B型淀粉粒組成,淀粉粒體積的51.90%~66.45%是大于10 μm的淀粉粒。小于5.6 μm的淀粉粒占總體積的19.55%~31.85%,5.6~10 μm的淀粉粒占總體積的12.50%~20.90%。藁城8901小于10 μm的B型淀粉粒的體積占比顯著高于山農1391,A型淀粉粒體積占比顯著低于山農1391。晚播使山農1391的B型淀粉粒體積占比顯著升高。兩個品種弱勢粒的B型淀粉粒體積占比顯著低于強勢粒(藁城8901晚播除外),A型淀粉粒體積反之。
2.2不同播期淀粉粒的數目分布
由圖2可看出,淀粉粒數目分布呈單峰分布,峰值為0.52~0.571 μm。小于0.55 μm的淀粉粒數目占總數目的26.80%~36.40%,0.55~3.60 μm的淀粉粒數目占總數目的61.25%~71.65%,小于3.60 μm的淀粉粒數目占總數目的97.75%~98.45%,3.6~10.8 μm的淀粉粒約占1.45%~2.25%(表2)。表明B型淀粉粒是淀粉的主要組成部分。
晚播條件下兩個小麥品種強勢粒中0.55~3.6 μm的淀粉粒數目較適期播種降低,弱勢粒中顯著升高。兩個品種在晚播條件下弱勢粒中,小于0.55 μm的淀粉粒數目顯著降低,強勢粒中顯著升高。藁城8901小于3.6 μm的淀粉粒數目低于山農1391,但3.6 μm~10 μm淀粉粒數目高于山農1391。

NS:適期播種;LS:晚播;S:強勢粒;I:弱勢粒。表1~3與圖2~3同
NS:Normal sown;LS:Late sown;S:Superior grain;I:Inferior grain.The same as table 1-3 and figure 2-3

圖1 不同播期小麥胚乳淀粉粒的體積分布
表中數據為平均值±標準誤。同列數據后不同的字母表示處理間在0.05水平差異顯著,*表示在0.05水平差異顯著。下同
Data in the table are mean ± STD. Values followed by different letters are significantly different at 0.05 level. * means significant difference at 0.05 level. The same as below

圖2 不同播期下小麥胚乳淀粉粒的數目分布

%
2.3不同播期下淀粉粒的表面積分布
由圖3可以看出,不同處理小麥淀粉粒表面積呈三峰分布或雙峰分布,峰值分別為0.688~0.829 μm(部分)、2.787~4.444 μm和21.70~23.82 μm。小于5.6 μm淀粉粒的表面積占總淀粉粒表面積的63.70%~73.45%,5.6~10 μm淀粉粒表面積占淀粉粒總表面積的10.95%~17.45%(表3)。小于10 μm的B型淀粉粒表面積占淀粉粒總表面積的77.15%~85.55%,大于10 μm淀粉粒的表面積占淀粉粒總表面積的14.45%~22.85%。
藁城8901的B型淀粉粒的表面積占比顯著高于山農1391,A型淀粉粒的表面積占比則顯著低于山農1391。山農1391弱勢粒中的B型淀粉粒表面積占比顯著低于強勢粒,A型淀粉粒則相反。晚播使山農1391的B型淀粉粒的表面積占比上升,A型淀粉粒的表面積占比則降低。晚播使藁城8901弱勢粒中B型淀粉粒的表面積占比上升;使強勢粒中A型淀粉粒的表面積占比顯著升高,B型淀粉粒表面積占比顯著下降。

圖3 不同播期下小麥胚乳淀粉粒的表面積分布

%
3討 論
淀粉的存在形態主要是顆粒態,淀粉粒大小和分布對其理化性質有顯著的影響。前人研究認為,小麥淀粉粒徑呈雙峰曲線的分布,胚乳最少含有A、B型淀粉粒[16-19]。 在強勢粒中,淀粉粒在體積和表面積分布上表現為三峰分布,而在弱勢粒中則表現為雙峰分布[ 20]。本研究表明,淀粉粒的體積分布呈雙峰分布,峰值分別是4.878 ~6.453 μm和21.70~23.82 μm。淀粉粒數目分布呈單峰分布,峰值為0.520~0.571 μm。不同處理下的淀粉粒表面積分布部分呈三峰分布,部分呈雙峰分布。
小麥過早播種易造成小麥生育期提前,加速葉片衰老,播期過早和播期過遲都不利于小麥的增產;適當推遲播期,在調節小麥有效穗數與穗粒數的關系結合冬季積溫升高的背景下,仍可維持與傳統播期相近的小麥產量[21-24 ]。前人研究認為,小麥強勢粒在灌漿前、中期含有高含量的蔗糖,其灌漿及達到最大速率的時間早,弱勢粒花后長時間生長停滯,花后較長時間才開始灌漿,弱勢粒的淀粉合成能力較強勢粒弱[25]。本研究發現,山農1391淀粉粒平均粒徑顯著高于藁城8901,晚播處理平均粒徑降低,弱勢粒平均粒徑上升。藁城8901的B型淀粉粒的體積、數目和表面積占比高于山農1391,A型淀粉粒體積占比低于山農1391。晚播使山農1391的B型淀粉粒體積、數目和表面積占比顯著升高,在弱勢粒中,B型淀粉粒體積占比顯著降低,弱勢粒A型淀粉粒體積占比顯著上升。
本研究認為,強筋小麥藁城8901和弱筋小麥山農1391[26]相比,藁城8901的B型淀粉粒的體積、數目、表面積占比顯著高于山農1391,山農1391的A型淀粉粒的體積、數目、表面積占比顯著高于藁城8901。晚播處理使山農1391 B型淀粉粒粒度占比顯著升高,使A型淀粉粒占比顯著降低。弱勢粒中B型淀粉粒的占比降低,A型淀粉粒占比顯著上升,且晚播處理對山農1391淀粉粒分布的影響高于藁城8901。說明與強筋小麥藁城8901相比,弱筋小麥品種山農1391籽粒淀粉粒分布的粒位間差異較大,并對播期調控反映更加明顯。
參考文獻:
[1]Parker M L.The relationship between A-type and B-type starch granules in the developing endosperm of wheat [J].JournalofCerealScience,1985,3:271-278.
[2]Hurkman W J,Mccue K F,Altenbach S B.Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm [J].PlantScience,2003,33:40-44.
[3]Lu H,Wang C,Guo T,etal.Starch composition and its granules distribution in wheat grains in relation to post-anthesis high temperature and drought stress treatments [J].Starch/Starke,2014,66:419-428.
[4]Stoddard F L.Survey of starch particle-size distribution in wheat and related species [J].CerealChemistry,1999,76:145-149.
[5]Dengate H,Meredith P.Variation in size distribution of starch granules from wheat grain [J].JournalofCerealScience,1984,2:83-90.
[6]Ellis R P,Cochrane M P,Dale M F B,etal.Starch production and industrial use [J].JournaloftheScienceofFoodandAgriculture,1998,77:289-311.
[7]Raeker M O,Gaines C S,Finney P L,etal.Granule size distribution and chemical composition of starches from 12 soft wheat cultivars [J].CerealChemisty,1998,75:721-728.
[8]Bertolini A C,Souza E,Nelson J E,etal.Composition and reactivity of A-and B-type starch granules of normal,partial waxy and waxy wheat [J].CerealChemistry,2003,80:544-549.
[9]張傳輝,姜 東,戴延波,等.小麥籽粒淀粉粒級分布特征及其與淀粉理化特性關系研究進展[J].麥類作物學報,2005,25(6):130-133.
Zhang C H,Jiang D,Dai Y B,etal.Advances in starch granule size distribution characteristics and its relationships with physiochemical characteristics of starch in wheat grain [J].JournalofTriticeaeCrops,2005,25(6):130-133.
[10]韋存虛,張翔宇,張 軍,等.不同類型小麥品種大、小淀粉粒的分離和特性[J].麥類作物學報,2007,27(2):255-260.
Wei C X,Zhang X Y,Zhang J,etal.Isolation and properties of large and small starch grains of different types of wheat cultivars [J].JournalofTriticeaeCrops,2007,27(2):255-260.
[11]郭傳貴,崔曉云,劉瓊霞,等.黃淮麥區晚播小麥生長特點及高產配套栽培技術[J].安徽農業科學,2001,29(3):304-305.
Guo C G,Cui X Y,Liu Q X,etal.The growth characters and high-yielding cultivation techniques of late sowing wheat in Huanghuai region [J].JournalofAnhuiAgriculturalSciences,2001,29(3):304-305.
[12]封超年,郭文善,施勁松,等.小麥花后高溫對籽粒胚乳細胞發育及粒重的影響[J].作物學報,2000,26(4):399-405.
Feng C N,Guo W S,Shi J S,etal.Effect of high temperature after anthesis on endosperm cell development and grain weight in wheat [J].ActaAgronomicaSinica,2000,26(4):399-405.
[13]王瑞英,于振文.小麥籽粒發育過程中激素含量變化[J].作物學報,1999,25(2):227-231.
Wang R Y,Yu Z W.Changes of endogenous plant hormone contents during grain development in wheat [J].ActaAgronomicaSinica,1999,25(2):227-231.
[14]姜 東,于振文,李永庚,等.高產小麥強勢和弱勢籽粒淀粉合成相關酶活性的變化[J].中國農業科學,2002,35(4):378-383.
Jiang D,Yu Z W,Li Y G,etal.Dynamic changes of enzyme activities involving in starch synthesis in superior and inferior grains of high-yield winter wheat [J].ScientiaAgriculturaSinica,2002,35(4):378-383.
[15]武 翠,邵國軍,呂文彥,等.不同發育時期水稻強、弱勢粒灌漿速率的遺傳分析[J].中國農業科學,2007,40(6):1135-1141.
Wu C,Shao G J,Lü W Y,etal.Genetic analysis of grain filling rate in different growth stages of superior and inferior grains in rice [J].ScientiaAgriculturaSinica,2007,40(6):1135-1141.
[16]陸大雷,郭換粉,陸衛平.播期、品種和拔節期追氮量對糯玉米淀粉粒分布的影響[J].中國農業科學,2011,44(2):263-270.
Lu D L,Guo H F,Lu W P.Effects of sowing date,variety and nitrogen top-dressing at jointing stage on starch granule size distribution of waxy maize [J].ScientiaAgriculturaSinica,2011,44(2):263-270.
[17]戴忠民,尹燕枰,王振林,等.魯麥21和濟南17胚乳發育過程中淀粉粒的動態變化[J].中國農業科學,2009,42(3):816-823.
Dai Z M,Yin Y P,Wang Z L,etal.Starch particle size distribution in developing endosperm of wheat cultivars Lumai 21 and Jinan 17 [J].ScientiaAgriculturaSinica,2009,42(3):816-823.
[18]戴忠民,尹燕枰,鄭世英,等.不同供水條件對小麥強、弱勢粒中淀粉粒度分布的影響[J].生態學報,2009,29(12):6534-6543.
Dai Z M,Yin Y P,Zheng S Y,etal.Effect of water regime on starch granule size distribution in superior and inferior grains of wheat [J].ActaEcologicaSinica,2009,29(12):6534-6543.
[19]戴忠民,王振林,張 敏,等.不同品質類型小麥籽粒淀粉粒度的分布特征[J].作物學報,2008,34(3):465-470.
Dai Z M,Wang Z L,Zhang M,etal.Starch granule size distribution in grains of strong and weak gluten wheat cultivars [J].ActaAgronomicaSinica,2008,34(3):465-470.
[20]李文陽,尹燕枰,時俠清,等.小麥籽粒A、B型淀粉粒淀粉構成與糊化特性的比較[J].華北農學報,2011,26(1):136-139.
Li W Y,Yin Y P,Shi X Q,etal.Comparison of starch composition and pasting properties between A and B type starch granule in wheat grain [J].ActaAgriculturaeBoreali-Sinica,2011,26(1):136-139.
[21]李華英,代興龍,張 宇,等.播期對冬小麥產量和抗倒性能的影響[J].麥類作物學報,2015,35(3):357-363.
Li H Y,Dai X L,Zhang Y,etal.Effect of sowing date on grain yield and lodging resistance of winter wheat [J].JournalofTriticeaeCrops,2015,35(3):357-363.
[22]Ni Y,Wang Z,Yi Y,etal.Starch granule size distribution in wheat grain in relation to phosphorus fertilization [J].JournalofAgriculturalScience,2012,150:45-52.
[23]Lloveras J,Viudas J,Lopez A,etal.Seeding rate influence on yield and yield components of irrigated winter in a Mediterranean climate [J].AgronomyJouranl,2004,96:1258-1265.
[24]孔海波,肖麗麗,代興龍,等.地力水平和播期對冬小麥籽粒產量及氮素利用率的影響[J].山東農業科學,2014(6):35-39.
Kong H B,Xiao L L,Dai X L,etal.Effects of fertility level and sowing date on grain yield and nitrogen use efficiency of winter wheat [J].ShandongAgriculturalSciences,2014(6):35-39.
[25]呂淑芳,苗 芳,白 龍.不同溫度型小麥強勢和弱勢籽粒物質積累規律的研究[J].西北農林科技大學學報(自然科學版),2010,38(12):117-122.
Lü S F,Miao F,Bai L.Study on superior and inferior grains among different temperature-type wheat accumulation [J].JournalofNorthwestA&FUniversity(NaturalScienceEdition),2010,38(12):117-122.
[26]蔡瑞國,尹燕枰,張 敏,等.氮素水平對藁城8901和山農1391籽粒品質的調控效應[J].作物學報,2007,33(2):304-310.
Cai R G,Yin Y P,Zhang M,etal.Effects of nitrogen application rate on grain quality in wheat cultivars GC 8901 and SN 1391 [J].ActaAgronomicaSinica,2007,33(2):304-310.
收稿日期:2015-12-24修回日期:2016-01-20
基金項目:安徽省自然科學基金項目(1408085QC54);國家星火計劃項目(2015GA710018)
通訊作者:李文陽(E-mail:liwy@ahstu.edu.cn)
中圖分類號:S512.1;S311
文獻標識碼:A
文章編號:1009-1041(2016)06-0801-07
Effect of Grain Position on Starch Granule Size Distribution in Grain of Late Sowing Wheat in Rice-wheat Rotation
YAN Suhui,YANG Bingbing,XU Feng,SHAO Qingqin,ZHANG Congyu,LI Wenyang
(Agronomy College,University of Science and Technology of Anhui,Fengyang,Anhui 233100,China)
Abstract:To evaluate the effects of grain position on starch granule size distribution in endosperm of late sowing wheat in rice-wheat rotation,two wheat cultivars,Shannong(SN) 1391 and Gaocheng(GC) 8901,were grown in this study. The results showed that both superior and inferior grains contained two types of starch granules.The distribution of starch granule was significant difference because different treatments.The distribution showed typical two-peak curve in volume of starch granule(with the peak range of 4.878-6.453 μm for B type and 21.7-23.82 μm for A type),and single peak curve in number of starch granule(with the peak range of 0.520-0.571 μm). The percentages of volume number and surface area of B-type starch granules were higher than those of A-type starch granules in GC 8901,but on the contrary in SN 1391. Compared with normal sown,the percentages of B-type granules size distribution were significantly increased,and those of A-type were evidently decreased for late sown. The percentages of A-type granules size distribution in inferior grains was significantly increased,and those of B-type were decreased. The effect of late sowing on the starch granule size distribution was greater in SN 1391 than that in GC 8901.
Key words:Late sown wheat; Starch granule; Superior grain; Inferior grain
網絡出版時間:2016-05-30
網絡出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20160530.1549.034.html
第一作者E-mail:suhuiyan99@163.com(閆素輝);yangbingbing10@163.com(楊兵兵,與第一作者同等貢獻)