楊 巖, 孫欽平, 鄒國元, 許俊香,李吉進,劉春生, 江麗華**
(1. 山東省農業科學院農業資源與環境研究所/山東省植物營養與肥料重點實驗室,濟南 250100;2. 北京市農林科學院植物營養與資源研究所,北京 100097;3. 山東農業大學資源與環境學院/土肥資源高效利用國家工程實驗室,泰安271018)
?
水肥減量對設施芹菜地N2O排放的影響**
楊 巖1, 孫欽平2**, 鄒國元2, 許俊香2,李吉進2,劉春生3, 江麗華1**
(1. 山東省農業科學院農業資源與環境研究所/山東省植物營養與肥料重點實驗室,濟南 250100;2. 北京市農林科學院植物營養與資源研究所,北京 100097;3. 山東農業大學資源與環境學院/土肥資源高效利用國家工程實驗室,泰安271018)
摘要:為明確減量灌溉和施肥對設施菜地N2O排放的影響,提出有效的N2O減排措施,本研究采用靜態箱法,對北京郊區設施芹菜在灌溉和有機肥(沼渣)減量處理下的N2O排放進行全生長季監測,分析灌溉和有機肥減量對土壤充水孔隙度(WFPS)、N?-N和N?-N含量及土壤N2O排放的影響。試驗為2個灌溉量和3個有機肥施用量的裂區雙因素設計,具體為:常規灌溉量(H處理)下的常規施肥(HN)、減量1/3施肥(HN3)和不施肥 (HN0),以及減量20%灌溉(L處理)下的常規施肥(LN)、減量1/3施肥(LN3)和不施肥 (LN0)共6個處理。結果表明,L處理在保證芹菜產量的前提下,對土壤充水孔隙度及無機氮含量無顯著影響,但N2O排放總量較H處理減少32.23%,達極顯著水平(P<0.01)。與常規施肥處理相比,減量1/3施肥和不施肥處理的土壤N?-N含量分別降低43.96%和76.42%,均達極顯著水平(P<0.01),不同施肥量處理間土壤N?-N含量無顯著差異;芹菜產量隨施氮量增加而增加,但減量1/3施肥和常規施肥處理對芹菜產量影響無顯著差異,芹菜全生長季的土壤累積N2O排放總量顯著減少62.04%(P<0.01)。本試驗條件下,減量20%灌溉(L處理)和減量1/3施肥(N3處理)均能保證芹菜產量,顯著降低芹菜地N2O排放通量,減少生產成本投入。
關鍵詞:水肥減量; 土壤充水孔隙度;N?-N含量;N?-N含量;N2O減排
楊巖,孫欽平,鄒國元,等.水肥減量對設施芹菜地N2O排放的影響[J].中國農業氣象,2016,37(3):281-288
農田生態系統是全球N2O排放的重要來源,占全球年排放量的35%[1],是造成近幾十年來大氣中N2O濃度持續上升的重要原因之一[2-3]。據農業部統計資料顯示,截至2013年底,中國蔬菜種植面積達2.1×107hm2,占全國農作物種植總面積的12.69%[4],因此,很多學者認為菜地土壤是農田生態系統N2O的重要排放源之一[5-6]。設施栽培是中國蔬菜種植的重要形式,近年來呈集約化、規模化的增長趨勢,2013約占全國蔬菜種植總面積的27%[4]。設施蔬菜生產中的高施肥以及頻繁高量灌溉為N2O的排放創造了有利條件[7],勢必導致氮素以N2O的形式大量損失[8-9]。研究表明,土壤溫度、濕度、無機氮含量等是設施菜地N2O排放的重要影響因素[10-11],而施肥和灌溉則是影響土壤N2O排放的重要管理措施[12-13],能夠顯著影響設施蔬菜土壤N2O排放量[14-15]。因此,通過改變灌溉和施肥措施來實現設施菜地N2O減排成為當前研究重點。
目前關于設施菜地N2O排放的研究,主要針對化肥的不同用量進行[10,14-15],灌溉對設施菜地N2O排放的影響則較少涉及[7],黃麗華等[16]指出,基于養分平衡管理的精確滴灌施肥技術可在保證作物單產的同時,有效削減單位作物產量的N2O排放量。在蔬菜的養分投入中,有機肥是重要的氮素來源[17],而施用有機肥對土壤N2O排放的促進作用比化肥更強[18]。有關調查資料顯示,蔬菜種植中有機肥施用量普遍偏高,并呈現逐年增加的趨勢[19],本試驗擬通過研究灌溉和有機肥減量的組合處理對設施芹菜地N2O排放的影響,以期為降低設施芹菜地N2O排放量及合理的水肥投入研究提供理論依據。
1.1 供試材料
試驗于2012年3-6月在北京市大興區留民營生態有機農場的日光溫室(48m×14m)中進行。農場地處北京南郊平原(116°13′E,39°26′N),土壤類型為砂質壤土,常年僅施用有機肥。0-30cm土層土壤有機質含量27.7g·kg-1,全氮1.74g·kg-1,有效磷265mg·kg-1,速效鉀205mg·kg-1,EC(水土質量比為5:1) 239μS·cm-1,pH值(水土質量比為2.5:1) 7.56,土壤容重1.10g·cm-3。
供試作物為法國西芹。2012年3月30日均勻撒施底肥后翻耕整地,3月31日定植,定植密度33萬株·hm-2,6月19日收獲,田間生長期為80d。試驗用有機肥料取自北京大興區留民營沼氣站,為雞糞沼氣發酵后的沼渣。沼渣含N 1.22%、p2O53.49%、K2O 0.74%、有機質22.8%,pH值8.49,含水率51.4%,全部作為底肥在試驗前一次性施入,試驗期間不再投入其它肥料。
1.2 試驗設計
試驗采用裂區設計,以漫灌水量為主處理,分兩個水平,以H表示常規灌溉,L表示減量灌溉。緩苗期各處理灌溉量相同,試驗開始后共進行6次灌溉,灌溉時間分別為4月6日、5月4日、5月17日、5月28日、6月4日和6月18日,常規灌溉處理的灌水量分別為48、48、60、70、70和70mm,總灌溉量為366mm,減量灌溉處理每次灌水量為H處理的80%,總灌水量為293mm。以施雞糞發酵沼渣含氮量為副處理,共設3個水平,分別為N(常規施肥即當地農民習慣施肥量,450kg·hm-2,以氮計)、N3(減量施肥1/3,施肥量為N的2/3[18],即300kg·hm-2,以氮計)、N0(表示減量100%即不施肥)。試驗共6個處理,分別為HN處理(常規水肥量,CK)、HN3處理(常規灌溉,減肥1/3)、HN0處理(常規灌溉,不施肥)、LN處理(減水20%,不減肥)、LN3處理(減水20%,減肥1/3)、LN0處理(減水20%,不施肥)。每處理3次重復,共18個小區,小區面積為5m×6m。除施肥和灌溉量外,各小區其它管理措施均保持一致。
1.3 采樣方法及測定指標
N2O的收集采用密閉式靜態箱法。箱體由兩部分組成:上部箱體為粘有透明有機玻璃的聚氯乙烯(PVC)管(直徑16cm、高5cm),有機玻璃圓心處裝有橡膠塞和三通閥,底部開口可以罩在底座上;下部底座為外圍有水槽的PVC管(高19.5cm)[20]。芹菜定植前將底座插入土中,采樣時水封槽內注滿水,將上部箱體扣上后,形成密閉性氣體空間。在利用三通閥原理采集N2O氣體時,先將20mL醫用塑料注射器與箱體連接,來回抽取排出氣體5次,以混勻箱內氣體,然后抽取氣樣注入已抽真空的12mL玻璃收集瓶中分析。
采氣時間為9:30-10:30[21],分別在0、20、40、60min時采集1次氣體;同時測定棚內氣溫和5cm深度的土層溫度。施肥后當天開始連續采樣7d,其后每4天采樣1次,收集2次后每7天采樣1次;每次灌溉后第2天開始連續采樣3d,其后每4天采樣1次,收集2次后每7天采樣1次。采集氣樣的同時,用土鉆采集表層5cm深土壤帶回實驗室測定其含水量及無機態氮含量,根據土壤容重將含水率換算為土壤充水孔隙度(Water-Filled Pore Space,WFPS)[22]。
采集到的氣體N2O濃度采用Agilent7890A氣相色譜測定,檢測器為電子捕獲檢測器(ECD),測定溫度330℃,色譜柱Porpak Q柱,柱溫70℃,載氣為高純N2,流速為25L·min-1。
1.4 計算方法和數據分析
N2O排放通量計算公式為[20]

式中,F為N2O-N的排放通量(μg·m-2·h-1);ρ為標準狀況下N2O-N的密度1.25kg·m-3;h為箱內有效空間的高度(m);dc/dt為箱內氣體濃度隨時間的變化率(μL×L-1·h-1);T為采氣箱內溫度(K)。
土壤充水孔隙度( WFPS,%)計算式為[22]

式中,P為土壤總孔隙度(%),g為土壤容重(g·cm-3),2.65為土壤密度(g·cm-3),WC為土壤質量含水率(%)。
試驗數據處理軟件為Excel2010,統計軟件為SAS8.1,多重比較用Duncan氏新復極差法(SSR)。
2.1 水肥減量對芹菜產量的影響
由表1可知,與常規灌溉(H)處理相比,減量灌溉(L)對芹菜產量未產生顯著影響;與常規施肥(N)處理相比,減量1/3施肥(N3)處理芹菜產量未顯著降低,但不施肥處理的芹菜產量降低23.47%,差異達到顯著水平(P<0.05)。經檢驗,灌溉與施肥的交互作用不顯著(P>0.05,F=0.02),說明減量灌溉及減量1/3施肥的措施,可以保證芹菜產量,降低生產成本。

表1 不同處理芹菜鮮重產量(t·hm-2)Table 1 Fresh weight of celery yield under different treatments(t·ha-1)
2.2 水肥減量對土壤充水孔隙度(WFPS)和無機態氮含量的影響
2.2.1 對土壤充水孔隙度的影響
由圖1可見,常規灌溉施肥處理(HN處理)芹菜生長季土壤充水孔隙度保持在21%~62%,基本處于適宜作物生長的范圍[23-24];減量灌溉處理(L處理)芹菜生長季的WFPS保持在20%~ 58%,與常規灌溉處理(H處理)的變化范圍相差不大,植株整個生長季基本處于較適宜的水分狀態,這可能與試驗僅采集表層土壤樣品有關;但從圖1也可以看出,在兩次灌溉間,尤其在灌溉前一天,減量灌溉處理(L)的土壤充水孔隙度明顯低于常規灌溉(H),這可能與其灌溉量較小有關。

圖1 2012年4-6月各處理土壤充水孔隙度(WFPS)的變化過程Fig. 1 Variation of WFPS in Apr.-Jun., 2012 under different treatments

圖2 2012年4-6月各處理土壤N-N含量的變化Fig. 2 Variation of soil N-N content in Apr.-Jun., 2012 under different treatments

圖3 2012年4-6月各處理土壤N-N含量的變化Fig. 3 Variation of soil N-N content in Apr.-Jun., 2012 under different treatments
2.3 水肥減量對土壤N2O-N排放的影響
2.3.1 對土壤N2O-N排放通量的影響
由圖4可見,常規灌溉施肥處理(HN)的N2O-N排放通量峰值主要集中在定植后的前11d,期間N2O排放通量平均值為4104μg·m-2·h-1。在此期間,減量灌溉條件下的各處理N2O-N排放通量平均值均極顯著低于HN處理(P<0.01),其中減量灌溉不施肥處理(LN0)的N2O-N減排效果最為顯著,排放通量平均值僅為HN處理的1.03%;常規灌溉條件下,減量1/3施肥(HN3)和不施肥處理(HN0)的N2O-N平均排放通量也均極顯著低于HN處理(P<0.01),其中常規灌溉不施肥處理(HN0)的N2O-N減排效果最為顯著,排放通量平均值僅為HN處理的1.05%。而芹菜生長后期各處理排放通量趨于一致,收獲當日各處理排放通量無顯著差異。
2.3.2 對土壤N2O排放總量的影響
由表2可見,減量灌溉處理的N2O-N排放通量平均值比常規灌溉處理降低32.8%,達極顯著水平(P <0.01);而不同施肥量間也存在極顯著差異(P<0.01),減量1/3施肥處理(N3)和不施肥處理(N0)的N2O-N排放通量平均值分別為184.11μg·m-2·h-1和10.70μg·m-2·h-1,均顯著低于常規施肥處理;灌溉與施肥處理間的交互作用不顯著(P>0.05,F=3.91)。本試驗中,減量灌溉和減量施肥處理均能顯著減少N2O-N排放通量平均值,是設施蔬菜地N2O-N減排的有效途徑。

圖4 2012年4-6月各處理N2O-N排放通量的變化Fig. 4 Variation of N2O-N fluxes in Apr.-Jun., 2012 under different treatments

表2 2012年4-6月各處理的N2O-N排放通量平均值和排放總量Table 2 The average N2O-N flux and total N2O-N emissions in Apr.-Jun., 2012 under different treatments
將芹菜生育期內,各處理每日N2O-N排放通量分別累加得到其N2O-N排放總量(表2),由表2可見,各處理排放總量表現為HN>LN>HN3>LN3 >HN0>LN0,HN處理的N2O-N排放總量最高,達到10.47kg·hm-2,LN處理的N2O-N排放總量比其減少22.25%,LN3處理的N2O-N排放總量為各施肥處理中最低,為2.21kg·hm-2,僅為HN處理N2O-N排放總量的21.1%,可見,本試驗條件下的減量灌溉和減量施肥達到了有效減少N2O排放的效果。
(1)土壤充水孔隙度是影響旱田土壤N2O排放的一個重要因子[25],韓建剛等[24]研究表明,土壤充水孔隙度(WFPS)在27%~58%時,土壤中N2O 釋放的穩定濃度與土壤充水孔隙度呈正相關。本試驗中減量灌溉處理(L處理)的土壤充水孔隙度(WFPS)在27%~58%這一范圍內的平均值為47.86%,較常規灌溉處理(H處理)的49.45%略有降低;此外,整個芹菜生長季中減量灌溉處理的土壤干濕交替程度小于常規灌溉處理,表明減量灌溉達到了菜地土壤N2O減排的效果。但本試驗中每次灌溉時,L處理的土壤充水孔隙度變化幅度仍相對較大,這在一定程度上促進了土壤N2O的排放,導致土壤N2O的排放通量出現較大增幅,因此,減少單次灌溉量與增加灌溉頻率相結合的方法,應該是設施土壤N2O減排的有效措施,但具體參數仍需進一步研究。
(2)土壤無機氮作為土壤微生物硝化和反硝化作用的氮源,其含量的變化必然會對土壤N2O排放通量產生影響[26]。本試驗中,減量1/3施肥處理(N3)土壤中的N-N含量為常規施肥處理的56.04%,其N2O-N累積排放總量比常規施肥處理顯著減少62.04%;減量1/3施肥處理(N3)土壤中的N-N含量與常規施肥處理無顯著差異,這與王爽等[27]提出的施肥量與0-80cm土層N-N累積量呈顯著正相關的結論相一致。
(3)本試驗條件下,減量灌溉20%和減量1/3施肥均能顯著降低芹菜地N2O排放通量,且減量的水肥組合處理(LN3處理)能在不影響產量的前提下,降低生產成本,并顯著減少N2O排放。
參考文獻References
[1]Kroeze C, Mosier A, Bouwman A F.Closing the global N2O budget: a retrospective analysis 1500-1994[J]. Global Biogeochemical Cycles, 1999,13(1): l-8.
[2]Bouwman A F. The role of soils and land use in the greenhouse effect[M]. Wageningen,The Netherlands: Int Soil Ref And Into Cnt,1989:14-18.
[3]謝軍飛,李玉娥.DNDC模型對北京旱地農田N2O排放的模擬對比分析[J].農業環境科學學報,2004, 23(4):691-695.
Xie J F, Li Y E. Comparative analysis on measured and DNDC modeled N2O emissions from upland farm in Beijing[J]. Journal of Agro-Environment Science,2004,23(4): 691- 695. (in Chinese)
[4]中華人民共和國統計局.中國統計年鑒[M].北京:中國統計出版社,2014.
National Bureau of Statistics of the People's Republic of China.China statistical yearbook[M].Beijing: China Statistics Press,2014.(in Chinese)
[5]Wang J Y, Xiong Z Q, Yan X Y. Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China[J].Atmospheric Environment,2011,(45): 6923-6929.
[6]Xiong Z Q, Xie Y X, Xing G, et al. Measurements of nitrous oxide emissions from vegetable production in China[J]. Atmospheric Environment,2006,40:2225-2234.
[7]武其甫,武雪萍,李銀坤,等.保護地土壤N2O排放通量特征研究[J].植物營養與肥料學報,2011,17(4): 942-948.
Wu Q F,Wu X P,Li Y K,et al.Studies on the fluxes of nitrousoxide from greenhouse vegetable soil[J]. Plant Nutrition and Fertilizer Science,2011,17(4):942-948.(in Chinese)
[8]He F F,Jiang R F,Chen Q,et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China[J].Environmental Pollution,2009, 157(5):1666-1672.
[9]Pfab H,Ruser R,Palmer I,et al.Nitrogen loss from high N-input vegetable fields:(a)direct N2O emissions, (b) spatiotemporal variability of N species(N2O,N,N)in soils[J].Geophysical Research Abstracts, 2009,(11):6278-6283.
[10]陳海燕,李虎,王立剛,等.京郊典型設施蔬菜地N2O排放規律及影響因素研究[J].中國土壤與肥料, 2012,(5):5-10.
Chen H Y,Li H,Wang L G,et al.Characteristics and influencing factors on nitrous oxide emissions from typical greenhouse vegetable fields in Beijing suburbs[J].Soil and Fertilizer Sciences in China,2012, (5):5-10.(in Chinese)
[11]賈俊香,張曼,熊正琴,等.南京市郊區集約化大棚蔬菜地N2O的排放[J].應用生態學報,2012,23(3): 739-744.
Jia J X,Zhang M,Xiong Z Q,et al.N2O emission from an intensively managed greenhouse vegetable field in Nanjing suburb,Jiangsu Province of East China[J].Chinese Journal of Applied Ecology,2012,23(3): 739-744.(in Chinese)
[12]Laura S M,Ana M,Lourdes G T.Combination of drip irrigation and organic fertilizer for mitigating emissions of nitrogen oxides in semiarid climate[J].Agriculture, Ecosystems and Environment,2010, 137(1-2): 99-107.
[13]萬運帆,李玉娥,高清竹,等.不同農業措施下冬小麥田N2O排放通量的特征[J].中國農業氣象,2008, 29(2):130-133
Wan Y F,Li Y E,Gao Q Z,et al.Characteristics of N2O flux in winter wheat field under different field managements[J]. Chinese Journal of Agrometeorology, 2008, 29(2):130-133. (in Chinese)
[14]邱煒紅,劉金山,胡承孝,等.不同施氮水平對菜地土壤N2O排放的影響[J].農業環境科學學報,2010, 29(11):2238-2243.
Qiu W H,Liu J S,Hu C X,et al.Effects of nitrogen application rates on nitrous oxide emission from a typical intensive vegetable cropping system[J].Journal of Agro-Environment Science,2010,29(11): 2238-2243.(in Chinese)
[15]張仲新,李玉娥,華珞,等.不同施肥量對設施菜地N2O排放通量的影響[J].農業工程學報,2010, 26(5):269-275.
Zhang Z X,Li Y E,Hua L,et al. Effects of different fertilizer levels on N2O flux from protected vegetable land[J]. Transactions of the CSAE,2010,26(5):269-275.(in Chinese)
[16]黃麗華,沈根祥,顧海蓉,等.肥水管理方式對蔬菜田N2O釋放影響的模擬研究[J].農業環境科學學報,2009, 28(6): 1319-1324.
Huang L H,Shen G X,Gu H R,et al.Simulation of some impacts of fertilization and water management on nitrous oxide emissions from vegetable field[J].Journal of Agro-Environment Science,2009,28(6): 1319-1324.(in Chinese)
[17]張鎖鋒,焦曉燕,白文斌,等.有機肥對蔬菜無機氮利用率及氮去向的影響[J].中國農學通報,2011, 27(16):259-265.
Zhang S F,Jiao X Y,Bai W B,et al.Responses of manure application to inorganic nitrogen use efficiency and its fate in a vegetable field soil[J].Chinese Agricultural Science Bulletin,2011,27(16):259-265.(in Chinese)
[18]張光亞,方柏山,閔航,等.設施栽培土壤氧化亞氮排放及其影響因子的研究[J].農業環境科學學報, 2004,23(1):144-147.
Zhang G Y,Fang B S,Min H,et al.N2O fluxes from greenhouse soil and its influence factors[J].Journal of Agro-Environment Science,2004,23(1):144-147.(in Chinese)
[19]劉兆輝,江麗華,張文君,等.山東省設施蔬菜施肥量演變及土壤養分變化規律[J].土壤學報,2008,45(2): 296-303.
Liu Z H,Jiang L H,Zhang W J,et al.Evolution of fertilization rate and variation of soil nutrient contents in greenhouse vegetable cultivation in Shandong[J].Acta Pedologica Sinica,2008,45(2):296-303.(in Chinese)
[20]楊巖,孫欽平,李吉進,等.不同水肥處理對設施菜地N2O排放的影響[J].植物營養與肥料學報,2013,19(2):430-436.
Yang Y,Sun Q P,Li J J,et al.Effects of different fertilizer and irrigation levels on N2O flux from greenhouse vegetable land[J].Plant Nutrition and Fertilizer Science,2013,19(2): 430-436.(in Chinese)
[21]Lou Y S,Li Z P,Zhang T L.Carbon dioxide flux in a subtropical agricultural soil of China[J].Water,Air and Soil Pollution,2004,149(1-4):281-293.
[22]程建中,李心清,周志紅,等.西南喀斯特地區幾種主要土地覆被下土壤CO2-C通量研究[J].地球化學, 2010,39(3): 258-265.
Cheng J Z,Li X Q,Zhou Z H,et al.Studies on soil CO2-C fluxes of several major types of land covers in the karst region of southwestern China[J].Geochimica,2010,39(3): 258-265.(in Chinese)
[23]農業部.水肥一體化技術指導意見[J].中國農技推廣, 2013,29(3):20-22.
Ministry of Agriculture. Issued guidance on the integration of water and fertilizer technology[J].China Agricultural Technology Extension,2013,29(3):20-22.(in Chinese)
[24]韓建剛,李占斌,朱詠莉.農田土壤中N2O釋放的水溫特征研究[J].土壤通報,2004,35(3):285-289.
Han J G,Li Z B,Zhu Y L.Characteristics of N2O emissions from farmland responding to water and temperature [J].Chinese Journal of Soil Science,2004,35(3):285-289.(in Chinese)
[25]周鵬,李玉娥,劉利民,等.施肥處理和環境因素對華北平原春玉米田N2O排放的影響:以山西晉中為例[J].中國農業氣象,2011,32(2):179-184.
Zhou P, Li Y E, Liu L M, et al. Effects of fertilization and environment factors on N2O emission in spring corn field in North China Plain: a case study of Jinzhong in Shanxi province[J].Chinese Journal of Agrometeorology,2011, 32(2):179-184.(in Chinese)
[26]閻宏亮,張璇,謝立勇,等.菜地土壤施用銨態氮肥后N2O 排放來源及其動態[J].中國農業氣象,2014,35(2):141-148
Yan H L, Zhang X, Xie L Y. Study on the pathway and dynamics of N2O emissions from the vegetable soil fertilized with ammonium nitrogen[J].Chinese Journal of Agrometeorology, 2014,35(2):141-148.(in Chinese)
[27]王爽,孫磊,陳雪麗,等.不同施氮水平對玉米產量、氮素利用效率及土壤無機氮含量的影響[J].生態環境學報,2013, 22(3):387-391.
Wang S,Sun L,Chen X L,et al.Effects of different nitrogen fertilization levels on maize yield,nitrogen utilization and inorganic nitrogen content in soil[J].Ecology and Environmental Sciences,2013,22(3): 387-391.(in Chinese)
Effects of Reducing Irrigation and Organic Fertilization on N2O Emissions from Celery Field in Facilities
YANG Yan1, SUN Qin-ping2, ZOU Guo-yuan2, XU Jun-xiang2, LI Ji-jin2, LIU Chun-sheng3, JIANG Li-hua1
(1. Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences/Shandong Province Key Laboratory of Plant Nutrition and Fertilizer, Jinan 250100, China; 2.Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097; 3.College of Resources and Environment Science, Shandong Agricultural University/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Tai’an 271018)
Abstract:In order to monitor the N2O emissions after irrigation and organic fertilization from vegetable soil in celery growing season, and make sure effective reduction measures were put forward, an experiment with 6 treatments was done in Beijing suburbs by using static chamber measurement techniques. The impact of the reductions of irrigation and organic fertilization (biogas residue) on the water-filled pore space (WFPS, 0-5cm), N?-N content, N?-N content and N2O emissions were analyzed. It was a split block experiment with irrigation and fertilization two factors. The 6 treatments were as fellows: conventional irrigation under the condition of conventional fertilization (HN), conventional fertilization with 1/3 decrement (HN3) and no fertilization (HN0), and conventional irrigation with 20% decrement under the condition of conventional fertilization (LN), conventional fertilization with 1/3 decrement (LN3) and no fertilization (LN0). The results showed that, conventional irrigation with 20% decrement reduced total N2O emissions by 32.23%, significantly lower than that of conventional irrigation(P<0.01), however, had no significantly influence on celery yield, WFPS and Nmin content of soil. Compared with conventional fertilization, the treatments of conventional fertilization with 1/3 decrement and no fertilization had no significantly influence on N?-N content of soil, however, significantly reduced N?-N content of soil (P<0.01) by 43.96% and 76.42%, respectively. In addition, conventional fertilization with 1/3 decrement made the cumulative N2O emissions from the soil in the whole growing season of celery, significantly reduced by 62.04%, however, had no significantly influence on celery yield. In this field experiment, conventional irrigation with 20% decrement (L) and conventional fertilization with 1/3 decrement (N3) both significantly reduced N2O emissions, and had no significantly influence on the celery yield, furthermore, the combination of the decrement of irrigation and fertilization (LN3) can reduce the production costs at the same time.
Key words:Reduced irrigation and fertilization; Water-filled pore space(WFPS); N?-N content of soil; N?-N content of soil; Reduce N2O emissions
doi:10.3969/j.issn.1000-6362.2016.03.003
*收稿日期:2015-09-06**通訊作者。E-mail:sunqinping@hotmail.com; jiangli8227@sina.com
基金項目:公益性行業(農業)科研專項(201303089-2);國家科技支撐項目(2012BAD14B01-08);北京市農林科學院青年科研基金(QNJJ201413);山東省科技發展計劃(2013GNC11204)
作者簡介:楊巖(1987-),博士,主要研究方向為植物營養與施肥技術。E-mail:tornado23@126.com