999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

增強UV-B輻射對喜樹生理指標及喜樹堿含量的影響

2016-07-04 07:55:48王玲麗周曉君劉文哲
西北植物學報 2016年5期

王玲麗,周曉君,劉文哲

(1 運城學院 生命科學系,山西運城 044000;2 西北大學 生命科學學院,西安 710069;3 洛陽師范學院 生命科學學院,河南洛陽 471022)

增強UV-B輻射對喜樹生理指標及喜樹堿含量的影響

王玲麗1,2,周曉君2,3,劉文哲2*

(1 運城學院 生命科學系,山西運城 044000;2 西北大學 生命科學學院,西安 710069;3 洛陽師范學院 生命科學學院,河南洛陽 471022)

摘要:喜樹(Camptotheca acuminata Decne.)隸屬于藍果樹科(Nyssaceae)喜樹屬(Camptotheca),為抗癌藥物喜樹堿的主要資源,提高喜樹堿的積累以滿足臨床需求是喜樹堿開發的重要途徑。該研究運用UV-B輻射對2年生喜樹進行每天8 h輻射處理,對1年生喜樹分別設置每天2 h、4 h、6 h和8 h的輻射處理,連續處理12 d后分別測定各處理喜樹葉的葉綠素、MDA、游離脯氨酸 (Fpro)含量和SOD活性,以及幼葉、幼枝和根中喜樹堿含量,分析UV-B輻射對喜樹生理指標和次生代謝物的影響,以揭示喜樹堿為喜樹適應UV-B輻射逆境的防御產物。結果顯示:(1)2年生喜樹經UV-B每天8 h輻射處理12 d后,葉綠素含量較對照顯著降低,而MDA、Fpro和喜樹堿含量均增加,說明每天8 h UV-B輻射對2年生喜樹產生了較強的脅迫傷害。(2)1年生喜樹經UV-B輻射處理12 d后,隨著每天UV-B輻射時間的增加,葉綠素含量不斷降低,Fpro含量顯著增加;每天2~6 h處理的MDA含量與對照無顯著差異,但總體隨處理時間增加呈上升趨勢;每天8 h UV-B輻射的MDA含量較對照顯著增加;SOD活性隨每天處理時間的延長呈先下降、后上升、再下降的變化趨勢,說明每天8 h的UV-B輻射對一年生喜樹也產生了脅迫傷害。(3)1年生喜樹幼葉、幼枝和根中喜樹堿含量隨著每天UV-B輻射時間的延長均呈遞增趨勢,而且每天8 h輻射處理的喜樹堿含量均最高,其中幼葉和幼枝中喜樹堿含量顯著高于根中含量。實驗結果表明,增強UV-B輻射對喜樹造成了一定的傷害,而喜樹通過改變生理以及次生代謝機制,以進一步產生喜樹堿來響應增強UV-B的脅迫。

關鍵詞:喜樹;UV-B輻射;喜樹堿含量;生理指標

Camptotheca acuminataDecne.belongstotheNyssaceaefamilyandisaperennialdeciduousplantthatisuniquetoChina,andismainlydistributedalongtheYangtzeRiverandSouthwestprovincesofChina[1].Theplantisknowntobotanyandmedicinebecauseitsvariousorganscontainthealkaloidcamptothecin(CPT)anditsderivativeswhichhaveimportantbiologicalactivities.

CPT,apentacyclicquinolinealkaloid,isaneffectivemedicineincancertreatment,whichwasfirstisolatedfromthestemofC. acuminata,andthestructuresofthisalkaloidweredeterminedbyWallandhiscollaborators[2].CPTisknownforitsremarkableanti-canceractivitytoinhibittheeukaryoticDNAtopoisomeraseI[3].Italsoinhibitsretrovirusessuchasthehumanimmunodeficiencyvirus(HIV)andtheequineinfectiousanemiavirus[4].CPTisavaluablecompoundasachemicalprecursoroftopotecanandirinotecanwhichwereapprovedbytheUSFoodandDrugAdministrationin1996forthetreatmentofovarianandcolorectalcancers[5].

AlthoughmuchisknownaboutmanyfactorswhichaffecttheaccumulationofCPTinC. acuminata,stillonlylittleisknownabouttheeffectofUV-BradiationonCPTaccumulation.BecauseofthepromisingclinicalusesofCPT,itisimportanttoinvestigatethefactorsaffectingCPTyieldinplantmaterial.Inthepaststudy,droughtcanincreasedCPTcontentinleavesofC. acuminata[6].MethyljasmonicacidandthetreatmentsofyeastextractonleafdiscspunchedfromC. acuminataseedlingspromotedthemRNAexpressionoftryptophandecarboxylase(TDC),akeyenzymeinvolvedinCPTbiosynthesis[7].Similarly,methyljasmonicacidandyeastextracttreatmentsonC. acuminatacellsuspensionculturesincreasedCPTaccumulation[8].ItcanenhanceCPTproductionbyethanoladditioninthesuspensioncultureoftheendophyte, Fusarium solani[9].Wanget al[10]reportedCPTcontentdecreasedafter10daysUV-Bradiation,andincreasedafter40daysUV-Bradiation.ButtheydidnotstudythechangeofCPTcontentbetween10daysUV-Bradiation.ThisstudyinvestigatedtheeffectsofUV-Bradiationbetween12daysontheaccumulationofCPTinC. acuminata,whichwouldprovideabasisformaximizingCPTyieldanddesigninganaffectiveCPTproductionsystem.

1Materials and methods

1.1Plant materials

One-year-oldandtwo-year-oldC. acuminataplantsweregrownfromseeds.SeedsofC. acuminatawereselectedtogatherfromBotanicalGardenofXi’aninNovemberof2012and2013,thenrespectivelyembeddedinwetsandat25 ℃inMarchthenextyear.Aftertheseedsgeminated,theuniformseedlingswereselectedandtransplantedintoflowerpotsinthebotanicalgardenofNorthwestUniversity(Xi’an,China).

1.2UV-B radiation

SupplementalUV-BradiationwasprovidedbyfilteredGucunbrand(GucunInstrumentFactory,Shanghai,China) 30Wsunlamps.Lampsweresuspendedaboveandperpendiculartotheplantedrowsandfilteredwitheither0.13mmthickcellulosediacetate(transmissiondownto290nm)forUV-Birradianceor0.13mmpolyesterplasticfilms(absorbsallradiationbelow320nm)asacontrol.Thedesiredirradiationwasobtainedbychangingthedistancebetweenthelampsandtheplants.ThespectralirradiancefromthelampswasdeterminedwithanOptronicsModel742 (OptronicsLaboratories,Orlando,FL,USA)spectroradiometer.Thespectralirradiancewasweightedwithageneralizedplantresponsespectrumandnormalizedat300nmtoobtainthedesiredlevelofbiologicallyeffectiveUV-Bradiation.Thelampheightabovetheplantswasadjustedtomaintainadistanceof0.15mbetweenthelampsandthetopoftheplantsandprovidedsupplementalirradiancesof2.1effectiveuw·cm-2.Two-year-oldplantswereirradiatedfor12daysand8hdaily.InordertofurtherillustratetheeffectsofsupplementalUV-Birradiance,one-year-oldplantswereirradiatedfor12daysandrespectivelyarranged2h, 4h, 6hand8hradiationdaily.FilteredUV-Bradiationwasregardedasthecontrol(CK).

1.3Determination of physiological parameters

PhysiologicalparametersweredeterminatedinleavesofC. acuminata.Chlorophyllwasextractedwith96%alcohol,andchlorophyllcontentwasmeasuredaccordingtothemethodofZhang[11].Malonaldehyde(MDA)contentwasdeterminedaccordingtothemethodofHeathandPacker[12].Fprocontentwasextractedfromleavesin3%aqueoussulphosalicylicacidandestimatedusingninhydrinreagent[13].Superoxidedismutase(SOD)activitywasdeterminedaccordingtothemethodofGiannopolitisandRies[14].

1.4CPT content analysis

1.4.1HPLCanalysisTheHPLCsystemconsistedofaHPLCpump(LC-10ATvp),areversedphasecolumn(VP-ODS, 150mm×4.6mm, 5μm)andaUV-VISdetector(SPD-10Avp)forthedetectionofCPTat254nm[15].Sampleinjectionvolumewas10μLaccordingtothepresumablealkaloidcontent.Theflowratewas1.0mL·min-1.Themobilephaseusedwasmethanol/water(62/38,V/V).Columntemperaturewas25 ℃.Underthiscondition,theHPLCchromatogramsofthestandardandsamplesolutionswereshowedinFig.1.CPTstandardwaskindlysuppliedbyDr.H.BischoffofBoehringerIngelheimPharmaKG.inGermany.

Fig.1 The HPLC chromatograms of the standard and sample (peak 1: camptothecin)

1.4.2StandardcurveCPTstandard2.5mgwasputin50mLvolumetricflask,suitableamountofchromatographicmethanolwasadded,andmeteredvolumeaftertheultrasonichelpingdissolve.Thesolutionwasshakedandfilteredwith0.45μmmicroporousmembrane,then0.05mg·mL-1standardsolutionwasgot. 2, 3, 5, 8and10mLofCPTstandardsolutionwerepreciselymeasuredandputin10mLvolumetricflask,dilutedwithchromatographicmethanol,thenrespectivelymeteredvolume.ThestandardcurveforCPTwasconstructedbyseparateinjectionof10μLoftheabove-mentionedstandardsolutionaccordingtotheabovechromatographyconditions.TheregressionequationbetweenpeakareaYandtheconcentrationofcamptothecinX (μg·mL-1)was: Y=16 686X-6 577.5, R2=0.999 3.

1.4.3DeterminationofCPTcontentThesamplesweredriedintheshadeandgroundedinamortar. 100mgofthesampleswastransferredtoacentrifugetubeand4mLmethanolwasadded.Afterextractedwithsonicationfor10minatroomtemperature, 30mLwaterand40mLdichloromethanewereaddedandthiswasmixedvigorouslyfor5minonamagneticalstirrer[16],centrifugationfor10minat2 000r·min-1yieldedtwophases.ThedichloromethanephasewhichwasprovedtocontainCPT,wasrecoveredandevaporatedtodrynessinvacuumusingarotavapor.Theremainingresiduewasre-dissolvedinHPLC-grademethanol(1mL),filteredwith0.45μmmicroporousmembranethengotsamplesolutionwhichwasusedforthedeterminationofCPTcontent.Samplepeakswiththesameretentiontimetostandardswereverifiedbyspectralscananalysis.

2Results

2.1Effects of UV-B radiation on two-year-old C. acuminata

Thecontentsofchlorophyll,MDAandFproaswellasSODactivityweremeasuredaftertwo-year-oldplantswereirradiatedwithUV-Bradiation.TheresultsshowedinTable1,chlorophyllaandbcontentswerereduced,chlorophylla/bratiohadalesserextentincreaseunderenhancedUV-B.MDAandFprocontentsincreased.TheactivityofSODwasreduced.CPTcontentsinyoungleaves,youngshootsandrootofC. acuminatahadobviouslyincreasedafterUV-Btreatmentcomparedwiththecontrol,CPTcontentinroothasnosignificantdifferencecomparedwiththecontrol.

2.2UV-B radiation effects on chlorophyll contents in one-year-old C. acuminata

TheeffectsofenhancedUV-Bonchlorophyllcontentsinone-year-oldC. acuminatawereshowninFig.2.Thesametotwo-year-oldplant,chlorophyllcontentsdecreasedafterUV-Bradiation,andwiththetreatmenttimeprolonging,thechlorophyllaandchlorophyllbcontentsgraduallydecreased.Thetotalchlorophyllcontentof2h, 4h, 6hand8hUV-Btreatmentdailywasrespectivelyreducedby9.4%, 10.8%, 15.7%, 26.8%thanthecontrol.While8hUV-Btreatmentdaily,chlorophyllaandbcontentsdecreased26.4%and27.8%,respectively.Chlorophylla/bratiohadalittlechangecomparedwiththecontrol,itissuggestedthatthedifferenceofdestroyedextentaboutchlorophyllaandbisnotobvious.

Table 1 Effects of UV-B radiation on physiological indices

Note:Eachassaywasrepeatedthreetimesfromthreeindependentexperiments.Thedataarethemeans±SEMofthreereplicates.Asterisk(*)indicatesstatisticallysignificantdifference(P< 0.05;ANOVA,Tukeytest).

2.3UV-B radiation effects on MDA, Fpro contents and SOD activity in one-year-old C. acuminata

Each assay was repeated three times from three independent experiments. The data are the means ± SEM of three replicates. Different letters indicate statisticallysignificant differences (P< 0.05; ANOVA, Tukey test).The same as belowFig.2 Effect of UV-B radiation on chlorophyll content in one- year-old C. acuminata

Fig.3 Effects of UV-B radiation on MDA, Fpro contents and SOD activity in one- year-old C. acuminata

Fig.4 Effect of UV-B radiation on CPT content in one-year-old C. acuminata

2.4UV-B radiation effects on CPT contents in one-year-old C. acuminata

UV-BradiationalsohadobviouseffectsonCPTcontentsinyoungleaves,youngshootsandrootsofone-year-oldC. acuminata (Fig.4).WhenthetimeofenhancedUV-Btreatmentreachedto8hdaily,theCPTcontentsweresignificantlyincreasedcomparedwiththecontrol.WiththetimeofUV-Bradiationprolonging,CPTcontentsinyoungleavesandshootsincreasedfasterthanthatintheroot,andCPTcontentofyoungleavesincreasedto0.230%from0.106%ofthecontrolgroupafter8hradiationdaily,youngstemincreasedfrom0.064%to0.158%,andtheincreaseofCPTcontentinroothadalittlechange,increasedfrom0.036%to0.065%.

3Discussion

UV-Bradiationhasmanyeffectsonplants.AlthoughtherearesomesignificanteffectsaboutUV-Bradiationonplantgrowthanddevelopmentincertainspeciesandecosystems,itturnedoutthattheoveralldamagingeffectsofabove-ambientUV-Baremodestordifficulttodetectundernaturalconditions[17].Anexaminationofmorethan200plantspeciesrevealsthatroughly20%aresensitive, 50%aremildlysensitiveortolerantand30%arecompletelyinsensitivetoUV-Bradiation[18].UV-Bradiationactsasakindofenvironmentalstress,andtheplantwouldhavetoadapttoUV-Bradiationtominimumthedamagewhenthestresslevelreachtoalimitation.WithashortperiodofUV-BradiationinArabidopsis thalianaseedlings,rootswereelongatedandchlorophyllandsolubleproteincontentwereincreasedinleaf,butprolongedUV-Bradiationinhibitedtheelongatedrootlength,causedleafchlorophyllcontent,solubleproteincontentdecrease[19].TheeffectsofenhancedUV-Bradiationonplantphysiology,morphology,growthandbiomasshavebeeninvestigatedextensively.EnhancedUV-Bradiationmayexertanadverseinfluenceonthephysiologicalandbiochemicalprocessesofplants.Inthisstudy,wereportedtheresponsesofC. acuminataplanttoenhancedUV-Bradiation.ThisissupportedbytheearlierfindingsofintraspecificresponsesinflavonoidmetabolisminCucumis sativus[20],soybean[21]andA. thaliana[22]andinflavonoidcontentandchlorophyllcontentdecreasedinrice[23].

UV-BradiationhadobviouseffectsonchlorophyllcontentsofC. acuminata.TheUV-Bradiationmechanismofdecreasingchlorophyllcontentswasstillnotclear.ChangesinchlorophyllcontentshaveoftenbeenusedasanindextoassessthedegreesofUV-Bradiationsensitivity.Inthisstudy,chlorophyllcontentsinC. acuminataleaveswerealsosensitivetoenhancedUV-Bradiation.UV-Bradiationsignificantlydecreasedchlorophyllcontents,primarilybecauseUV-Bradiationdestroyedthestructureofthechloroplast,inhibitedthesynthesisofnewchlorophyllanddestroyedthestructureofchloroplastenvelopemembraneandincreasedthedegradationofchlorophyll.Yanget al.[24]reportedthatUV-Bradiationreducedthephotosyntheticpigmentinleaves(includingthecontentsofchlorophyllandcarotenoid,especiallythecontentofchlorophylla).ZhangindicatedthatUV-Bradiationofdifferentintensitycanmakethegrowth,chlorophyllcontentsdecreaseinVicia fabaseeding[25].TheseresultsshowedthatenhancedUV-Bradiationmadetheplantchlorophylldamage,changedtheproportionofchlorophyllaandchlorophyllb,affectedtheformationofphotosyntheticproteincomplexes,andinhibitedtheformationoforganelles.

Freeprolineaccumulationhasbeenobservedinresponsetoawiderangeofabioticandbioticstressesinplants.Prolineisconsideredtobeoneofthefirstmetabolicresponsestostress,andisperhapsasecondmessenger[29].Environmentalfactorsincludingwaterdeprivation,salinization,highandlowtemperature,heavymetaltoxicity,pathogeninfection,nutrientdeficiency,atmosphericpollutionandUV-radiationinducetheelevationoftheprolinelevelinplants.InC. acuminataplant,enhancedUV-BradiationmadeFprocontentincrease,itmaybeanadaptiveresponsetoresistUV-Bradiationstress.AnegativecorrelationbetweenSODactivityandFprocontentwasfoundunderUV-BstressconditioninC. acuminata.

MDAistheproductofmembranelipidperoxidationwhentheplanttissuesufferedoxidativestress,whichreflectsthedegreeofcellmembranelipidperoxidationandtheplanttorespondtostress.Inthispaper,MDAcontentshavenosignificantdifferencebetween6hUV-Bradiationcomparedwiththecontrol,however,MDAcontentwassignificantlyincreasedafter8hUV-Btreatment.AlowdoseofUV-BstressinducedtheproductionofacertainamountofROS,whileinherentSODinC. acuminatarapidlyeliminatedtheseROS,andresultedinthedecreaseofSODactivity.WhenthetimeofUV-Btreatmentreachedto8hdaily,alargenumberofROSweregeneratedandcausedmembranelipidperoxidation,soMDAcontentwassignificantlyincreased.Inconclusion,thereisacertaincorrelationamongthechangeofSODactivity,FprocontentandMDAcontentunderUV-Bstress,thedecreaseofSODactivityisaccompaniedbytheincreaseofMDAor/andFprocontent.

Undertheconditionofadversity,inadditiontotheplantphysiologicalindicescanbeinducedsomechanges,thesecondarymetabolismofplantwillalsobechanged.Plantsinteractwiththeirenvironmentbyproducingadiversearrayofsecondarymetabolites,oneofwhichisalkaloid.Bioticandabioticenvironmenthaveimportantrolesinthesecondarymetabolizingofplant.Asasecondarymetabolite,CPTmayplayacrucialroleduringbioticandabioticstresses,whichposeagreatimpactonalkaloidbiosynthesisandaccumulation[30].TheincreaseofalkaloidaccumulationduringseedlingsdevelopmentwasobservedandthisshowedthatCPTmayplayadefensivefunctionfortheplantsduringthisvulnerablestageoftheirlifecycle.UVlightresponsiveregionsinthepromoterofthetryptophandecarboxylase(tdc)geneinCathatranthus roseushadbeenidentified[31].Inourstudy,UV-BradiationcanobviouslyenhanceCPTcontentinC. acuminata,wehypothesizethatUV-BmightstimulatetheexpressionoftdcgeneandincreaseCPTaccumulationinC. acuminata.CPTaccumulationinducedbyUV-BradiationdemonstratedthatCPTwasinvolvedinplantdefenseagainstUV-Bradiation.WhenC. acuminatasufferedUV-Bradiationinalowdose(2h, 4h),CPTcontentwasincreasedslowly;withthetimeofUV-Bradiationincreasing(6h, 8h),CPTcontentwasincreasedrapidly,whichillustratedthatthelongtimeofUV-BradiationcausedcertaindamagetoC. acuminata,andC. acuminatadefensedprimarilybyincreasingthesecondarymetabolites-CPT.Moreover,CPTcontentsinyoungleavesandshootswereincreasedmoreobviouslythanthoseinroot,itindicatedthatenhancedUV-BradiationcouldpriorityimproveCPTaccumulationofaerialorganinC. acuminata,becauseaerialorganmainlysufferedUV-Bstress.

EnhancedUV-BradiationcausedcertaindamagetoC. acuminata,notonlyaffectsthemorphologyofC. acuminata[10],butalsoaffectsthephysiologicalandbiochemicalmetabolism.UnderthestressofUV-B, C. acuminataitselfdefensedthisstressbychangingphysiologicalindices(i.e.,SODactivity,MDAandFprocontent)andsecondarymetabolismtoaccumulateCPT.Therefore,thechangesofphysiologicalindicesandCPTaccumulationarealsotheadaptivemechanismtoresponsetothestressofenhancedUV-BradiationinC. acuminata.Furthermore,intheindustryplantingofC. acuminata,themethodofsupplementing8hUV-BradiationdailytopromotetheincreaseofCPTcontentisfeasible.

References:

[1]中國科學院中國植物編輯委員會,中國植物志[M].北京:科學出版社,1983.52(2):144-147.

[2]WALLME,WANIMC,COOKECE, et al.Plantantitumoragents,theisolationandstructureofcamptothecin,anovelalkaliodalleukaemiaandtumorinhibitorfromCamptotheca acuminata [J]. Journal of American Chemical Society, 1966, 88(16): 3 888-3 890.

[3]KJELDSENE,SVEJSTRUPJQ,GROMOVAII, et al.CamptothecininhibitsboththecleavageandrelegationreactionsofeukaryoticDNAtopoisomeraseI[J]. Journal of Molecular Biology, 1992, 228(4): 1 025-1 030.

[4]PRIELE,SHOWWALTERSD,ROBERTSM, et al.ThetopoisomeraseIinhibitor,camptothecin,inhibitsequineinfectionsanemiavirusreplicationinchronicallyinfectedCF2Thcells[J]. Journal of Virology, 1991, 65(8): 4 137-4 141.

[5]GREEMERSJP,DESPASR,FAVALLIG, et al.Topotecan,anactivedruginthesecond-linetreatmentofepithelialovariancancer:resultsofalargeEuropeanphaseIIstudy[J]. Journal of Clinical Oncology, 1996, 14(12): 3 056-3 061.

[6]LIUZJ.Drought-inducedinvivosynthesisofcamptothecininCamptotheca acuminataseedlings[J]. Physiologia Plantarum, 2000, 110(4): 483-488.

[7]LPEZ-MEYERM,NESSLERCL.TryptophandecarboxylaseisencodedbytwoantonomouslyregulatedgenesinCamptotheca acuminatawhicharedifferentiallyexpressedduringdevelopmentandstress[J]. The Plant Journal, 1997, 11(6): 1 167-1 175.

[8]SONGSH,BYUNSY.CharacterizationofcellgrowthandcamptothecinproductionincellculturesofCamptotheca acuminata[J]. Journal of Microbiology and Biotechnology, 1998, 8(6): 631-638.

[9]VENUGOPALANA,SRIVASTAVAS.Enhancedcamptothecinproductionbyethanoladditioninthesuspensioncultureoftheendophyte, Fusarium solani [J]. Bioresource Technology, 2015, 188: 251-257.

[10]王海霞,劉文哲.增強UV-B輻射對喜樹幼苗生物量和兩種生物堿含量的影響[J].植物科學學報,2011, 29(6): 712-717.

WANGHX,LIUWZ,EffectsofenhancedUV-Bradiationonbiomassandcontentsofcamptothecinand10-hydroxy-camptothecininCamptotheca acuminata [J]. Plant Science Journal, 2011, 29(6): 712-717.

[11]張振清.植物生理學實驗手冊[M].上海:上海科學技術出版社, 1985: 134-135.

[12]HEATHRI,PACKERL.Photoperoxidationinisolatedchloroplasts:I.Kineticsandstoichiometryoffattyacidperoxidation[J]. Archives of Biochemistry and Biophysics, 1968, 125(1): 189-198.

[13]BATESLS,WALDRONRP,TEAREID.Rapiddeterminationoffreeprolineforwater-stressstudies[J]. Plant and Soil, 1973, 39(1): 205-208.

[14]GIANNOPOLITISCN,RIESSK.Superoxidedismutases.I.Purificationandquantitativerelationshipwithwater-solubleproteininseedlings[J]. Plant Physiology, 1977, 59(2): 315-318.

[15]王玲麗.喜樹營養器官的結構及喜樹堿含量動態變化的研究[D].西安:西北大學,2006.

[16]VANHENGELAJ,HARKESMP,WICHERSHJ, et al.CharacterizationofcallusformationandcamptothecinproductionbycelllinesofCamptotheca acuminata[J]. Plant Cell, Tissure and.Organ Culture, 1992, 28(1): 11-18.

[17]SEARLESPS,FLINTSD,CALDWELLMM.Ameta-analysisofplantfieldstudiessimulatingstratosphericozonedepletion[J]. Oecologia, 2001, 127(1): 1-10.

[18]TERAMURAAH.Effectsofultraviolet-Bradiationonthegrowthandyieldofcropplants[J]. Physiologia Plantarum, 1983, 58(3): 415-427.

[19]HANW,HANR.EffectofdifferenttimesofUV-BradiationonseedlinggrowthofArabidopsis thaliana[J]. Chinese Bulletin of Botany, 2015, 50(1): 40-46.

[20]MURALINS,TERAMURAAH.IntraspecificdifferencesinCucumis sativussensitivitytoultraviolet-Bradiation[J]. Physiologia Plantarum, 1986, 68(4): 673-677.

[21]D’SURNEYSJ,TSCHAPLINSKITJ,EDWARDSNT, et al.BiologicalresponsesoftwosoybeancultivarsexposedtoenhancedUV-Bradiation[J]. Environmental and Experimental Botany, 1993, 33(3): 347-356.

[22]FISCUSEL,PHILBECKR, et al.GrowthofArabidopsisflavonoidmutantsundersolarradiationandUVfilters[J]. Environmental and Experiment Botany, 1999, 41(3): 231-245.

[23]TERAMURAAH,ZISKALH,SZTEINAE.ChangesingrowthandphotosyntheticcapacityofricewithincreasedUV-Bradiation[J]. Physiologia Plantarum, 1991, 83(3): 373-380.

[24]楊景宏,陳拓,王勛陵.增強UV-B輻射對小麥葉片內源ABA和游離脯氨酸的影響[J]. 生態學報, 2000, 20(1): 39-42.

YANGJH,CHENT,WANGXL.EffectofenhancedUV-BradiationonendogenousABAandfreeprolinecontentsinwheatleaves[J]. Acta Ecologica Sinica, 2000, 20(1): 39-42.

[25]張紅霞,吳能表,胡麗濤,等.不同強度UV-B輻射脅迫對蠶豆幼苗生長及葉綠素熒光特性的影響[J]. 西南師范大學學報(自然科學版),2010, 35(1): 105-110.

ZHANGHX,WUNB,HULT, et al.TheeffectsofdifferenttreatmentswithUV-BradiationstressonseedlinggrowthandcharacterofchlorophyllfluorescenceofVicia fabaL..[J]. Journal of Southwest China Normal University (NaturalScienceEdition), 2010, 35(1): 105-110.

[26]馮建燦,張玉潔,楊天柱.低溫脅迫對喜樹幼苗SOD活性、MDA和脯氨酸含量的影響[J].林業科學研究,2002, 15(2):197-202.

FENGJC,ZHANGYJ,YANGTZ.Effectoflowtemperaturestressonthemembrane-lipidperoxidationandtheconcentrationoffreeprolineinCamptotheca acuminataseedling[J]. Forest Research, 2002, 15(2):197-202.

[27]陳拓,任紅旭,王勛陵.UV-B輻射對小麥葉抗氧化系統的影響[J]. 環境科學學報,1999, 19(4):453-455.

CHENT,RENHX,WANGXL.InfluenceofenhancedUV-Bradiationonantioxidantsystemsinwheatleaves[J]. Acta Scientiae Circumstantiae, 1999, 19(4): 453-455.

[28]馮國寧,安黎哲,馮虎元,等.增強UV-B輻射對菜豆蛋白質代謝的影響[J].植物學報,1999, 41(8): 833-836.

FENGGN,ANLZ,FENGHY, et al.EffectsofenhancedUV-Bradiationonproteinmetabolismofbeanleaves[J]. Acta Botanica Sinica, 1999, 41(8): 833-836.

[29]HAREPD,CRESSWA,Metabolicimplicationsofstress-inducedprolineaccumulationinplants[J]. Plant Growth Regulation, 1997, 21(2): 79-102.

[30]祖元剛,唐中華,于景華,等.喜樹幼苗中喜樹堿和10-羥基喜樹堿對熱激的響應特點和意義[J]. 植物學報,2003, 45(7): 809-814.

ZUYG,TANGZH,YUJH, et al.Differentresponsesofcamptothecinand10-hydroxy-camptothecintoheatshockinCamptotheca acuminataseedlings[J]. Acta Botanica Sinica, 2003, 45(7): 809-814.

[31]OUWERKERKPBF,HALLARDD,VERPOORTER, et al.IdentificationofUV-Blight-responsiveregionsinthepromoterofthetryptophandecarboxylasegenefromCatharanthus roseus[J]. Plant Molecular Biology,1999, 41(4): 491-503.

(編輯:潘新社)

EffectsofEnhancedUltraviolet-BRadiationonPhysiologicalIndicesandCamptothecinContentinCamptotheca acuminataDecne

WANGLingli1,2,ZHOUXiaojun2,3,LIUWenzhe2*

(1DepartmentofLifeScience,YunchengUniversity,Yuncheng,Shanxi044000,China; 2CollegeofLifeScience,NorthwestUniversity,Xi’an, 710069,China;3SchoolofLifeSciences,LuoyangNormalUniversity,Luoyang,He’nan471022,China)

Abstract:Camptotheca acuminata Decne. (Nyssaceae) is a major source of anticancer camptothecin (CPT). It is imperative to induce CPT accumulation in order to develop CPT production strategies to satisfy clinical uses of CPT. In this study, two-year-old C. acuminata were dealt 8 h each day with UV-B radiation for 12 days, and one-year-old C. acuminata were respectively arranged to radiate 2 h,4 h,6 h and 8 h with UV-B radiation each day for 12 days. The contents of chlorophyll, MDA and free proline (Fpro), the activity of SOD in leaf and CPT content in young leaves, young shoots and root were separately measured after UV-B treatment. In order to reveal that camptothecin is the defense product of UV-B stress, the effects of UV-B radiation on the physiological indices and secondary metabolites were analyzed. The results showed that: (1) in two-year-old C. acuminata, chlorophyll content was significantly decreased, MDA, Fpro and CPT contents were significantly increased after 8 h UV-B treatment daily. It indicated that 8 h UV-B radiation caused great stress influences on two-year-old C. acuminata. (2) In one-year-old C. acuminata, with the time of UV-B radiation increasing, chlorophyll content was gradually decreased; Fpro content was significantly increased; MDA content had no significantly difference between 2 h and 6 h UV-B radiation, but significantly increased after 8 h radiation compared with the control; SOD activity decreased firstly, then increased, lastly decreased with the time of UV-B radiation prolonging every day. It showed that 8 h UV-B radiation also caused stress influences on one-year-old C. acuminata. (3) CPT contents in vegetative organs of one-year-old C. acuminata were gradually increased with the time of UV-B radiation prolonging, and the contents were the highest after 8 h UV-B radiation each day. Moreover, CPT content increased more obviously in young leaves and young shoots than those in roots. It confirmed that enhanced UV-B radiation caused certain damage to C. acuminata, and C. acuminata responded to this stress by not only changing physiological indices, but also changing secondary metabolism to accumulate CPT.

Key words:Camptotheca acuminata; ultraviolet-B (UV-B) radiation; camptothecin (CPT) content; physiological index

文章編號:1000-4025(2016)05-0979-08

doi:10.7606/j.issn.1000-4025.2016.05.0979

收稿日期:2015-10-12;修改稿收到日期:2016-03-28

基金項目:國家自然科學基金(31270428)

作者簡介:王玲麗(1980-),女,在讀博士研究生,講師,主要從事結構植物學研究。 E-mail:wanglingli_521@163.com *通信作者:劉文哲,教授,博士生導師,主要從事結構植物學與繁殖生態學研究。E-mail: lwenzhe@nwu. edu.cn

中圖分類號:Q945.79;

文獻標志碼:A

主站蜘蛛池模板: 国产成人a毛片在线| 超碰色了色| 色偷偷综合网| 福利片91| 天天爽免费视频| 国产成人综合亚洲欧美在| 青草视频网站在线观看| 亚洲免费福利视频| 久久香蕉国产线看精品| 黄色三级网站免费| 免费在线视频a| 午夜精品福利影院| 国产一区二区视频在线| 亚洲69视频| 欧美天堂久久| 亚洲色图欧美一区| 婷婷综合色| 欧洲日本亚洲中文字幕| 欧美日韩导航| 九九线精品视频在线观看| 日本a级免费| 91最新精品视频发布页| 秋霞午夜国产精品成人片| 91破解版在线亚洲| 国产91全国探花系列在线播放 | 广东一级毛片| 欧美国产视频| 亚洲女同一区二区| 欧美日韩va| 亚洲欧美自拍一区| 国产欧美日韩在线在线不卡视频| 亚洲美女高潮久久久久久久| 国产午夜看片| 国产网站免费看| 九九视频免费在线观看| 国产精品30p| 污污网站在线观看| 亚洲欧洲日本在线| 亚洲中文制服丝袜欧美精品| 免费一极毛片| 91视频精品| 国产a v无码专区亚洲av| 呦女精品网站| 五月天久久综合| 国产精品久久自在自2021| 亚洲免费福利视频| 日韩成人在线一区二区| 人人爽人人爽人人片| 9cao视频精品| 欧美在线一二区| 亚洲色图欧美在线| 国产黑人在线| 国产日韩av在线播放| 免费播放毛片| 国产在线观看成人91| 国产av剧情无码精品色午夜| 55夜色66夜色国产精品视频| 青青草原国产一区二区| 亚洲另类国产欧美一区二区| 精品午夜国产福利观看| 国产精品 欧美激情 在线播放| 一本大道视频精品人妻| 国产精品极品美女自在线网站| 亚洲一区二区三区国产精品| 精品国产香蕉伊思人在线| 欧洲高清无码在线| 国产精品免费电影| 国产熟睡乱子伦视频网站| 免费在线a视频| 国产尤物jk自慰制服喷水| 亚洲AV无码久久天堂| 亚洲欧美另类久久久精品播放的| 亚洲乱码精品久久久久..| 亚洲欧美日韩久久精品| 久久精品亚洲中文字幕乱码| 中文字幕欧美日韩| 亚洲va在线观看| 国产浮力第一页永久地址| 欧美精品在线观看视频| 日韩在线网址| 日韩在线成年视频人网站观看| 亚洲最新网址|