999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Efficient tracker based on sparse coding with Euclidean local structure-based constraint

2016-07-01 00:51:37WANGHongyuanZHANGJiCHENFuhua
智能系統學報 2016年1期

WANG Hongyuan, ZHANG Ji, CHEN Fuhua

(1. School of Information Science and Engineering, Changzhou University, Changzhou, Jiangsu, China 213164; 2. Department of Natural Science and Mathematics, West Liberty University, West Virginia, United States 26074)

Efficient tracker based on sparse coding with Euclidean local structure-based constraint

WANG Hongyuan1, ZHANG Ji1, CHEN Fuhua2

(1. School of Information Science and Engineering, Changzhou University, Changzhou, Jiangsu, China 213164; 2. Department of Natural Science and Mathematics, West Liberty University, West Virginia, United States 26074)

Abstract:Sparse coding (SC) based visual tracking (l1-tracker) is gaining increasing attention, and many related algorithms are developed. In these algorithms, each candidate region is sparsely represented as a set of target templates. However, the structure connecting these candidate regions is usually ignored. Lu proposed an NLSSC-tracker with non-local self-similarity sparse coding to address this issue, which has a high computational cost. In this study, we propose an Euclidean local-structure constraint based sparse coding tracker with a smoothed Euclidean local structure. With this tracker, the optimization procedure is transformed to a small-scale l1-optimization problem, significantly reducing the computational cost. Extensive experimental results on visual tracking demonstrate the e?ectiveness and efficiency of the proposed algorithm.

Keywords:euclidean local-structure constraint; l1-tracker; sparse coding; target tracking

Citation:WANG Hongyuan, ZHANG Ji, CHEN Fuhua. Efficient tracker based on sparse coding with Euclidean local structure-based constraint[J]. CAAI Transactions on Intelligent Systems, 2016, 11(1): 136-147.

Recently, visual target tracking was widely used in security surveillance, navigation, human-computer interaction, and other applications[1-2]. In a video sequence, targets for tracking often change dynamically and uncertainly because of disturbance phenomena such as occlusion, noisy and varying illumination, and object appearance. Many tracking algorithms were proposed in the last twenty years that can be divided into two categories: generative tracking and discriminant tracking algorithms[1-2]. Generative algorithms (e.g., eigen tracker, mean-shift tracker, incremental tracker, covariance tracker[2]) adopt appearance models to express the target observations, whereas discriminant algorithms (e.g., TLD[3], ensemble tracking[4], and MILTrack[5]) view tracking as a classification problem, thus attempting to distinguish the target from the backgrounds. Here, we present a new generative algorithm.

Based on sparse coding (SC; also referred to as sparse sensing or compressive sensing)[6-7], Mei proposed an l1-tracker for generative tracking[8-9], addressing occlusion, corruption, and some other challenging issues. However, this tracker incurs a very high computational cost to achieve efficient tracking (see section 2.1 and Fig.1 for details), and the local structures of similar regions are ignored, which may cause the instability and even failure of the l1-tracker. Indeed, the sparse coefficients, for representing six similar regions (CR1-CR6) under ten template regions (T1-T10) with original l1-tracker, are diversified (Fig. 3). ConsideringCR1andCR4, for example, we can see that although the latter is almost the partial occlusion version of the former, their sparse representations are very different. TrackingCR4(the woman’s face) may fail, because the tracker is likely to incorrectly consider the regionT8(the book) as its target.

Contrary to expectations, Xu proved that a sparse algorithm cannot be stable and that similar signals may not exhibit similar sparse coefficients[10]. Thus, a trade-off occurs between sparsity and stability when designing a learning algorithm. In addition, instability in the l1-optimization problem affects the performance of the l1-tracker.

Lu developed a NLSSS-tracker (NLSSST) based on SC applying a non-local self-similarity constraint by introducing the geometrical information of the set of candidates as a smoothing term to alleviate the instability of the l1-tracker[11]. However, its low efficiency (even slower than the original l1-tracker, Table 4) restricts its applicability in real-time tracking. In this study, motivated by the robustness of the l1-tracker and stability of NLSSST, we propose a novel tracker, called ELSS-tracker (ELSST), that is both robust and efficient. The main contributions of this study are as follows:

1)An efficient tracker, i.e., ELSST, is developed by considering the local structure of the set of target candidates. In contrast to the Lu5s[11]and Mei5s-tracker[8-9], our tracker is more stable and sparse.

2)The proposed tracker shows excellent performance in tracking different video sequences with regard to scale, occlusion, pose variations, background clutter, and illumination changes.

The rest of this study is organized as follows: l1- and NLSSS-tracker are introduced in section 2; in section 3, we analyze the disadvantages of these two trackers and propose our tracker; experimental results with our tracker and four comparison algorithms are reported in section 4; the conclusion and future work are summarized in section 5.

1Related works

1.1Sparse coding and the l1-tracker

Sparse coding is an attractive signal reconstruction method proposed by Candes[6-7]that reconstructs a signal y∈Rm×1with an over-complete dictionary D∈Rm×(n+2m)withasparsecoefficientvectorc∈Rn×1.TheSCformulationcanbewrittenasthel0-norm-constrainedoptimizationproblemasfollows:

(1)

whichisNP-hard,where‖·‖Fdenotesthevector’sFrobeniusnorm(i.e.,l2-norm),and‖·‖0countsthenumberofnon-zeroelementsofthevector.Candesprovedthatthel1-norm‖·‖1isthetightestupperboundofthel0-norm‖·‖0,andthus,Eq.(1)canberewrittenasthefollowingl1-optimizationproblem[6-7]:

(2)

BasedonSC,Meipresentedanicel1-trackerforrobusttracking[8-9](Fig. 1).Consideringthatthetargetislocatedinthelatestframe,thel1-trackerisinitializedinthenewarrivalframeandNcandidateregionsaregeneratedwithBayesianinference(Fig. 1a,b).Withntemplateslearnedfromprevioustrackingand2mtrivialtemplates(mpositiveonesandmnegativeones,wheremisthedimensionof1Dstretchedimage,Fig. 1c),Eq.(2)canbesolved(Fig. 1d,e,f).Withpositiveandnegativetrivialtemplates,Meiaddedanon-negativeconstraintc≥0inEq.(2),withwhichthereconstructionerrorsofallcandidateregionswithSCcoefficientscanbeusedtodeterminetheweightsforeachcandidate,andtheobjectinthenewarrivalframecanbelocatedwiththesumoftheweightedcandidates.Thedictionariesupdatingstrategiescanbeseenin[8-9].

Fig.1 Original l1-tracker algorithm

1.2Non-local self-similarity based sparse coding for tracking (NLSSST)

Recently, Xu indicated the trade-off between sparsity and stability in sparse regularized algorithms[10]. Moreover, Yang pointed out the same A-optimization issue in pattern classification[12]. Based on the fact that lots of similar regions exist in allNcandidates generated by Bayesian inference, Lu proposed his tracker with the non-local self-similarity constraint as

(3)

(4)

Taking the solution of the l1-tracker from Eq.(2) as the initial coefficientsc0, Eq.(4) can be solved through iterative computations[11]. However, the high computational cost of the original l1-tracker and iterative procedure for maintaining the neighborhood constraints of sparse coefficients make NLSSST inefficient in achieving real-timing tracking. In contrast to Fig. 1, the schematic diagram of NLSSST presented in Fig. 2, includes an additional neighborhood constraint betweenyiandNK(yi).

Fig. 2 Lu’s NLSSST Algorithm

2Euclidean local structure-based sparse coding for tracking (ELSST)

To circumvent the heavy computation burden of the l1-tracker and NLSSST (Table 4), we propose an efficient tracker, called ELSST, that considers the local Euclidean structures of the candidates.

2.1Original euclidean local structure constraint sparse coding (Original ELSSC)

It is evident from Eq. (4) that NLSSST attempts to solve a double l1-norm problem. However, it is well known that the l2-norm is much more commonly used for measuring the distance between two vectors and is much easier to optimize than the l1-norm. Thus, we take the former to measure the relationships between the sparse coefficient vectors, which are close to each other, i.e., the Euclidean local-structure constraint, and the latter l1-norm ofCto maintain the sparsity of the optimization as follows:

(5)

Table 1 Optimization for ELS constraint based SC(ELSSC)

Equation (5) is the objective function of our Euclidean local structure constraint-based SC and can be solved through iterative computation. In particular, at thet-th iteration, for a single candidateyiinY, Eq. (5) can be written as follows:

(6)

(7)

whereλis convex. According to Daubechies[13], when λI-DTDisastrictlypositivedenitematrix,ψ(ci,c0)isstrictlyconvexforanyc0withrespecttoci.Hence,inourexperiments,theconstantλissetaccordingly(λ=γ- 2β;Table1).Oncetheover-completedictionaryDisfixed,wecanderivethefollowingconvexobjectivefunctionfromEq. (7):

(8)

where

and

(9)

To solve Eq. (9) using SVD, we decompose the over-complete dictionaryD∈Rm×(n+2m)asD=UΣVT,whereU∈Rm×m,Σ∈Rm×(n+2m)andV∈R(n+2m)×(n+2m). SinceVisanorthogonalmatrix,Eq. (9)canberewrittenas

(10)

2.2Improved euclidean local structure constraint sparse coding (Improved ELSSC)

IfminEq. (10)islarge,itistime-consumingtoobtaintheoptimizationresultci,asthatinl1-optimizationandNLSSSC.Fortunately,intermsofSVDandthestructureofD(Figs. 1and2),wehave

(11)

whereIdenotesthem-orderedidentitymatrix.Σ′isthefirstnrowsofΣ,V′consistsofthefirstnrowsandthefirstncolumnsofV,andm?n.Asaresult,whenconstructingthedictionaryVinEq. (10),onlythefirstnrowsandfirstncolumnsofVmustbeprepared,whereastheremainingpartsofVarenotconsideredtomakeanycontributiontothetargettemplatesT.Thus,thelargescaleoptimizationinEq. (10)canbereducedtoamuchsmalleroneasfollows:

(12)

2.3Original and improved ELSSC-tracker

Basedontheabovealgorithm,ourtrackercanbeobtainedwiththeframeworkoftheoriginall1-tracker[8-9](Table2).Weneedtoiterativelysolvethelarge-scalel1-optimizationprobleminEq. (10)twice,uptothreetimesforeachcandidateinthealgorithm,andmorethanvetimesinNLSSST.Theinitialsparsecoecientsc0areconsideredasall-zerovectorsanditerativelysolvetheproblemwithoutanyl1-optimizationissues,asinTable1in[11].Nevertheless,wendthat,inNLSSST,itismoreeectiveandaccuratetoinitializec0asthesolutionofthel1-optimizationproblem.Therefore,thecomputationcomplexityofourtrackerisofthesameorderofmagnitudeasthatofthel1-trackerandNLSSST.Whenweresizealln = 10targetsandN = 200candidateregionsto40 × 40,i.e., m = 1 600 (Figs. 1and2),thentheover-completedictionaryDis1 600 × 3 210andtheorthogonalmatrixVis3 210 × 3 210inEq. (10).Itisverydifficulttosolvethecorrespondingl1-optimizationproblemwithsuchaD(inl1-trackerandNLSSST)orV(inourELSST).

WiththeimprovedELSSC,Σ′isthefirsttenrowsofΣ,andV′consistsofthefirsttenrowsandfirsttencolumnsofV.Thus,eachiterationofeachcandidateregioninELSSTcanbereducedfromthelarge-scalel1-optimizationproblemtoamuchsmalleronebecauseofthemuchsmallerscaleV′∈R10×10.Toovercometheproblemofocclusionsintracking,theanalogoustrivialtemplatesareusedtoconstructthenewdictionaryV″∈R10×30,i.e.,aten-orderedidentitymatrixandten-orderednegativeidentitymatrix.

3Experiments

3.1Experimental setting

Inordertoevaluatetheproposedtracker,experimentson12videosequenceswereconducted,includingSurfer,Dudek,Faceocc2,Animal,Girl,Stone,Car,Cup,Face,Juice,Singer,Sunshade,Bike,CarDark,andJumping[17-19].Thesesequencescoveredalmostallchallengesintracking,includingocclusion(evenheavyocclusion),motionblur,rotation,scalevariation,illuminationvariation,andcomplexbackground.Forcomparison,weusedfourstate-of-the-artalgorithmswiththesameinitialpositionsandthesamerepresentationsofthetargets.Theyweretheincrementallearning-basedtracker(IVT,acommondiscriminanttracker)[14],thecovariance-basedtracker(CovTrack,agenerativetrackeronLie-group)[15],thel1-tracker(agenerativetrackingmethod)[8-9],andtheNLSSST[11].Alltheexperimentswererunonacomputerwitha2.67GHzCPUanda2GBmemory.

Themainparametersusedinourexperimentsaresetasfollows:thenumberofcandidateregionsN=200,thenumberoftemplateregionsisn = 10,andthecandidatesandtargetsareresizedto40×40.

3.2Experimental results for sparsity and stability

ThesparsecoecientsofCR1,…, CR6generatedwiththel1-,theNLSSSC-,theoriginalELSSC-,andtheimprovedELSSC-optimizationareplottedinFig. 3.Inparticular,sixsimilarregionshaveverydierentrepresentationcoecients,whenusingtheoriginall1-optimizationproblem,whichignoresthestructureinformationbetweenregions.Theresultsoftheotherthreealgorithmsaremuchmorestable,becauseofpreservationofthestructuralinformation.Iftworegionsaresimilartoeachother,theyalsohavesimilarsparsecoecients.Thisimprovestherobustnessoftracking;otherwise,thetrackermaydegenerateorevenfailtotrack. CR4forexample,withl1-optimization,canberepresentedbyT2, T8, T6, T7,andT1,andthetrackermayfailtotrackthetopofthebook.Meanwhile,experimentalresultsshowthat,NLSSSCandourtwoELSSCaresparserthantheoriginall1-optimizationproblem.

Fig. 3 Comparisions of sparsity and stability with the original l1-, NLSSSC-, and our ELSSC-optimization. The sparse coefficients only are accurated to the second decimal place.

3.3Experimental results for visual target tracking

Weevaluatetheinvestigatedalgorithmscomparatively,usingthecenterlocationerrors,theaveragesuccessrates,andtheaverageframespersecond.TheresultsareshowninFigs. 4&5andinTables3&4.ThetemplatesofNLSSST,theoriginalELSST,andtheimprovedELSSTareshowninFig. 4(g-o).Overall,ouroriginalandimprovedtrackersoutperformtheotherstate-of-the-artalgorithms.

Forocclusion,vealgorithms,exceptIVT,functionsatisfactorily,especiallyat#206, #366oftheDudeksequenceinFig. 4 (b) (theheadintrackingiscoveredbythehandandglasses), #143, #265, #496oftheFaceocc2sequenceinFig. 4 (c) (theheadintrackingiscoveredbythebook), #85, #108, #433oftheGirlsequenceinFig.4 (e) (theheadintrackingturnsright,turnsback,andblockssomeoneelse),and#56, #104, #301oftheFacesequenceinFig. 4(i) (theheadintrackingisalsocoveredbythebook).Afterthetargetrecoversfromocclusion,thesevetrackerscanseekitquickly.IVTworkspoorly,evenlosesthetargetin#10oftheGirlsequence(Fig. 5(e)),becausethenumberofpositiveandnegativesamplesislimited(consideringthelearningeciency),andtheincrementalupdatingoftheclassierinIVTislesseective.CovTrackinghasalargesizeofcandidates(basedonthedenitionofintegralimage,thefeatureextractionofthesecandidatesissofast,thatitscostcanbeignored),whichmakesitrobustforocclusion,scalevariation,andblur.NLSSSTandouroriginalandimprovedtrackersallworkwell,whenthetargetsareoccluded;ourtwotrackersworkevenbetter.

Formotionblur,ourtwotrackersworkbetterthanIVTandtheoriginall1-tracker.Moreover,CovTrackingalsorevealsitsabilitytohandleblur(e.g., #4, #9,and#38inFig. 4(d,o).Intheformersequence,theanimalrunsandjumpsfast(motionblur)withalotofwatersplashing(occlusion),whileinthelatter,themanropesskippingandthecameracannottaketheclearfaceoftheman.IVTandl1-trackerfailbothfrom#4inFig. 4(d),andneverrecoverafterthat.OuroriginalandimprovedELSSlostthetargetin#31and#41,thenrecoveredin#33and#44 (Fig. 4(d)).In#12to#21and#44to#71,theimprovedELSSTworksbetterthanoriginalELSST,CovTracking,l1-tracker,andNLSSST.

Forrotationandscalevariation,ourtrackersalsoperformrobustly(Figs. 4(a,c,e,g,j)and5(a,c,e,g,j).Whenthesurferfallsforwardandbackward,thegirlturnsleftandright,movestowardsandawayfromthecamera,themanturnsleftandright,thecarturnsover,andthejuicebottlebecomesbiggerandsmallerinSurfer,Girl,Faceocc2,Car,andJuicesequence,respectively,vetrackersexceptIVTperformwell,especiallytheNLSSS-trackerandourtwoELSSC-trackers.

Inacomplexbackgroundandwithhighilluminationvariance(Fig. 4(f)),therearemanysimilarstonestotrack.Thel1-trackerandourtwotrackersworkbetterthanotherthreetrackers.Cov-trackerfails,becauseitextractsedgeinformationoftargetsasonedimensionoffeatures,andinthissequences,edgeoftargetsareambiguousandhardtobedistinct.SimilarresultsareobtainedfromFig. 4(h,l,m).

Table3summarizestheaveragesuccessrates.GiventhetrackingresultsRTandtheground-truthRG,weusethedetectioncriterioninthePASCALVOCchallenge[16],i.e.,

toevaluatethesuccessrate.Ingeneral,fromtheaboveanalysis,wendthatouroriginalandimprovedELSSC-trackersperformalmostthesame,andtheformerisslightlybetter,especiallyintheDudek,Faceocc2,Surfer,Stone,CarDark,andJumpingsequences(Fig. 5(a,b,c,f,n,o).However,wealsondfromTable4,whichsummarizestheaverageframespersecond,thattheimprovedELSSTworksmuchfasterthantheoriginalELSSTandalmostalltheothertrackers;IVTisfasterthantheimprovedELSSTwhendealingwithSurferandDudeksequences,butitssuccessrateismuchworsethanthatoftheimprovedELSST.Itissensitiveunderthephenomenaofocclusion,rotation,andtargetmotionblur.Theoriginall1-trackerperformswellinmostframes,butitisalsotime-consumingandfailstotracksometimes;Cov-Trackingissuitableforocclusionandrotation,butfailswhenfacingacomplexbackground.

Fig. 4 Some tracking results

Fig. 5 Quantitative evaluation in terms of center location error (in pixel)

VideoIVTCovTrackl1-trackerNLSSSTELSST1ELSST2Sufer0.05150.47700.03880.46460.46670.4052Dudek0.20110.42160.62150.65280.67260.6604Faceocc20.45530.39180.60840.45790.57470.4641Animal0.02180.27010.03360.36920.40780.4117Girl0.02280.21710.48690.48530.40060.4693Stone0.09740.11140.58340.41090.66110.6572Car0.06070.18580.09560.34180.32780.3825Cup0.63000.37690.55980.57380.52380.5637Face0.33410.28060.04790.52480.54960.5827Juice0.07430.42180.51110.52990.51860.5835Singer0.33260.13610.11840.57900.47810.5651Sunshade0.04810.18030.52570.53480.47430.4948Bike0.05760.37210.04510.44380.36080.3917CarDark0.08310.30870.07900.01100.42080.3737Jumping0.05770.27550.07110.08470.45300.4505

Thebesttworesultsareshowninbold.Ouroriginalandimprovedalgorithmsareshowninthelasttwocolumns,respectively.

Table 4 Average Frames per Second

Thebesttworesultsareshowninbold.Ouroriginalandimprovedalgorithmsareshowninthelasttwocolumns,respectively.

4Conclusions

Inthisstudy,todealwithsparsityandinstabilityinthel1-optimizationproblem[10-12]andthehightimecomplexityoftheNLSSSC-tracker[11],weproposeanovelefficienttracker,i.e.,theEuclideanlocal-structureconstraintbasedsparsecoding(ELSSC).Ournewalgorithmisal1-trackerwithareconstructedover-completedictionary,whichisdierentfromthatintheoriginall1-trackerandNLSSSC-tracker.Moreover,wesimplifythelarge-scalel1-optimizationprobleminourtrackertoamuchsmalleroneinourimprovedELSSC-tracker.

Comparedwiththeoriginall1-tracker,ourELSSC-trackerintroducesthestructureinformationamongthecandidateregionsgeneratedbytheBayesianinferencetothel1-tracker,similartothatintheNLSSSC-tracker.Withourderivation,theoptimizationprocedureofourtracker(Eq.(10))canbesolvedasthatinthel1-optimizationbutverydierentlyfromthatintheNLSSSC.Furthermore,ourimprovedtrackerismuchmoreecientthanthel1-trackerandNLSSSC-tracker.Ourexperimentsdemonstratethesparsity,stability,andeciencyofourtracker.

References

[1]ZHANGShengping,YAOHongxun,SUNXin,etal.Sparsecodingbasedvisualtracking:reviewandexperimentalcomparison[J].Patternrecognition, 2013, 46(7): 1772-1788.

[2]YILMAZA,JAVEDO,SHAHM.Objecttracking:asurvey[J].ACMcomputingsurveys(CSUR), 2006, 38(4): 1-45.

[3]KALALZ,MIKOLAJCZYKK,MATASJ.Tracking-learning-detection[J].IEEEtransactionsonpatternanalysisandmachineintelligence, 2012, 34(7): 1409-1422.

[4]AVIDANS.Ensembletracking[J].IEEEtransactionsonpatternanalysisandmachineintelligence, 2007, 29(2): 261-271.

[5]BABENKOB,YANGMH,BELONGIES.Visualtrackingwithonlinemultipleinstancelearning[C]//ProceedingsofIEEEConferenceonComputerVisionandPatternRecognition(CVPR).Miami,USA, 2009: 983-990.

[6]CANDSEJ,WAKINMB.Anintroductiontocompressivesampling[J].IEEE,signalprocessingmagazine, 2008, 25(2): 21-30.

[7]CANDSEJ,ROMBERGJ,TAOJ.Robustuncertaintyprinciples:exactsignalreconstructionfromhighlyincompletefrequencyinformation[J].IEEEtransactionsoninformationtheory, 2006, 52(2): 489-509.

[8]MEIXue,LINGHaibin,WUYi,etal.Minimumerrorboundedefcientl1trackerwithocclusiondetection[C]//ProceedingsofIEEEConferenceonComputerVisionandPatternRecognition(CVPR).Colorado,USA, 2011:1257-1264.

[9]MEIXue,LINGHaibin.Robustvisualtrackingandvehicleclassificationviasparserepresentation[J].IEEEtransactionsonpatternanalysisandmachineintelligence, 2011, 33(11): 2259-2272.

[10]XUHuan,CARAMANISC,MANNORS.Sparsealgorithmsarenotstable:ano-free-lunchtheorem[J].IEEEtransactionsonpatternanalysisandmachineintelligence, 2011, 34(1): 187-193.

[11]LUXiaoqiang,YUANYuan,LUPingkun,etal.Robustvisualtrackingwithdiscriminativesparselearning[J].Patternrecognition, 2013, 46(7): 1762-1771.

[12]YANGJian,ZHANGLei,XUYong,etal.Beyondsparsity:theroleofL1-optimizerinpatternclassification[J].Patternrecognition, 2012, 45(3): 1104-1118.

[13]DAUBECHIESI,DEFRISEM,DEMOLC.Aniterativethresholdingalgorithmforlinearinverseproblemswithasparsityconstraint[J].Communicationsonpureandappliedmathematics, 2004, 57(11): 1413-1457.

[14]ROSSDA,LIMJ,LINRS,etal.Incrementallearningforrobustvisualtracking[J].Internationaljournalofcomputervision, 2008, 77(1-3): 125-141.

[15]PORIKLIF,TUZELO,MEERP.Covariancetrackingusingmodelupdatebasedonliealgebra[C]//ProceedingsofIEEEComputerSocietyConferenceonComputerVisionandPatternRecognition.NewYork,USA, 2006: 728-735.

[16]EVERINGHAMM,VANGOOLL,WILLIAMSCKI,etal.Thepascalvisualobjectclasses(VOC)challenge[J].Internationaljournalofcomputervision, 2010, 88(2): 303-338.

[17]WUYi,LIMJ,YANGMH.Onlineobjecttracking:Abenchmark[C]//ProceedingsofIEEEConferenceonComputerVisionandPatternRecognition(CVPR).Portland,USA, 2013: 2411-2418.

[18]KRISTANM,PUGFELDERR,LEONARDISA,etal.ThevisualobjecttrackingVOT2013challengeresults[C]//ProceedingsofIEEEInternationalConferenceonComputerVisionWorkshops(ICCVW).Sydney,Australia,2013:98-111.

[19]SONGShuran,XIAOJianxiong.TrackingrevisitedusingRGBDcamera:unifiedbenchmarkandbaselines[C]//ProceedingsofIEEEInternationalConferenceonComputerVision(ICCV).Sydney,Australia, 2013: 233-240.

Authorintroduction

HongyuanWANG,male,wasbornin1960,ProfessorofChangzhouUniversity.Hisresearchinterestisimageprocessingandrecognition,artificialintelligence.Hehaspublishedover20papersininternationaljournalsandconferences.

JiZHANG,male,wasbornin1981,LecturerofChangzhouUniversity.Hisresearchinterestisimageprocessingandrecognition.Hehaspublishedfivepapersininternationaljournalsandconferences.

FuhuaCHEN,male,wasbornin1966,AssistantProfessorofWestLibertyUniversity.Hisresearchinterestisvariationimagesegmentationandinverseproblems.Hiscurrentresearchalsoinvolvesobjecttrackingandpersonre-identification.HehaspublishedovertenpapersininternationaljournalscitedbySCIorEI.

DOI:10.11992/tis.201507073

Received Date:2015-07-31. Online Pulication:2015-09-30.

Foundation Item:National Natural Foundation of China under Grant (61572085,61502058).

Corresponding Author:Hongyuan Wang. E-mail: hywang@cczu.edu.cn.

CLC Number:TP18; TP301.6

Document Code:AArticle ID:1673-4785(2016)01-0136-12

網絡出版地址:http://www.cnki.net/kcms/detail/23.1538.tp.201509030.1456.002.html

主站蜘蛛池模板: 日韩无码视频播放| 亚洲一区波多野结衣二区三区| 77777亚洲午夜久久多人| 伦伦影院精品一区| 无码 在线 在线| 六月婷婷精品视频在线观看| 色精品视频| 97超碰精品成人国产| 国产精品太粉嫩高中在线观看| 国产无码精品在线播放| 免费人成视频在线观看网站| 欧美精品导航| 日韩毛片在线视频| 黄色福利在线| 欧美无遮挡国产欧美另类| 91九色视频网| 日韩欧美国产精品| 98精品全国免费观看视频| 免费女人18毛片a级毛片视频| 国产一级毛片高清完整视频版| 极品国产一区二区三区| 国产福利拍拍拍| 亚洲v日韩v欧美在线观看| 亚洲成a∧人片在线观看无码| 久久一色本道亚洲| 四虎精品国产AV二区| 在线视频亚洲色图| 亚洲欧美激情另类| 午夜精品区| 免费可以看的无遮挡av无码 | 国产亚洲精品97在线观看| 久久99国产乱子伦精品免| 91午夜福利在线观看精品| 国产迷奸在线看| 天天躁狠狠躁| 国产av一码二码三码无码| 综合天天色| 欧美高清日韩| 亚洲视频一区在线| 亚洲成人黄色网址| 2022精品国偷自产免费观看| 日韩在线中文| 91在线播放免费不卡无毒| 日本国产精品| 黄色国产在线| 亚洲日韩欧美在线观看| 伊伊人成亚洲综合人网7777| 亚洲无码高清免费视频亚洲| 亚洲视频色图| 97视频免费在线观看| 91亚瑟视频| 一级片一区| 99在线观看精品视频| 夜夜操国产| 国产91熟女高潮一区二区| 蜜桃视频一区| 99久视频| 国产成人综合日韩精品无码不卡| 一本二本三本不卡无码| 亚洲第一黄片大全| 欧美成人综合视频| 国产精品入口麻豆| 日本午夜精品一本在线观看| 亚洲网综合| 国产精品自在在线午夜| 不卡无码网| 国产嫖妓91东北老熟女久久一| 99草精品视频| 18黑白丝水手服自慰喷水网站| 亚洲av无码专区久久蜜芽| 国产精品女在线观看| 国产尹人香蕉综合在线电影 | 又污又黄又无遮挡网站| 国产麻豆精品久久一二三| 国产麻豆va精品视频| 四虎综合网| 四虎精品黑人视频| www.91在线播放| 亚洲欧美综合精品久久成人网| 欧美一级高清免费a| 欧美日韩午夜| 夜夜爽免费视频|