999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類利用從屬關(guān)系定義的復(fù)數(shù)階雙單葉函數(shù)類的系數(shù)問題

2016-06-05 14:18:14都俊杰鄒發(fā)偉秦川馮建中
關(guān)鍵詞:定義

都俊杰,鄒發(fā)偉,秦川,馮建中

一類利用從屬關(guān)系定義的復(fù)數(shù)階雙單葉函數(shù)類的系數(shù)問題

都俊杰1,鄒發(fā)偉1,秦川1,馮建中2

(1.長江大學(xué)工程技術(shù)學(xué)院,湖北荊州434020;2.長江大學(xué)信息與數(shù)學(xué)學(xué)院,湖北荊州434000)

利用Salagean算子和從屬關(guān)系定義一類復(fù)數(shù)階雙單葉函數(shù)類MΣ(n,b,β;h),利用從屬定理研究得到它的系數(shù)|a2|和|a3|的上界,并討論一些應(yīng)用廣泛的函數(shù)類,擴(kuò)展了一些已有結(jié)論,在證明方法上有了較大的變化.

解析函數(shù);雙單葉函數(shù);從屬;Salagean算子

本文用C表示復(fù)數(shù)集,N表示正整數(shù)集,N0表示非負(fù)整數(shù)集.記A表示單位圓盤U={z∈C:|z|<1}內(nèi)解析且具有如下展開式的函數(shù)族

對于f(z)∈A,G.S.Salagean[1]定義Salagean微分算子D如下:

容易驗證

記S表示A中滿足(1)式且單葉的子族.設(shè)f(z)和g(z)在U內(nèi)解析,稱f(z)從屬于g(z)[2],記作f(z)

眾所周知,對任意具有(1)式形式的函數(shù)f(z)∈S均存在逆函數(shù)f-1,定義為

其中

函數(shù)f(z)∈A稱為U內(nèi)的雙單葉函數(shù)當(dāng)且僅當(dāng)f(z)和f-1(w)均為U的單葉函數(shù),現(xiàn)記Σ表示U具有(1)式形式的雙單葉函數(shù)族[11].文獻(xiàn)[12-14]引入了雙單葉函數(shù)族Σ中的α階強(qiáng)星形函數(shù)類S*Σ(α)和α階凸函數(shù)類KΣ(α)如下:

其中,0≤α<1,g(w)=f-1(w).自從H.M.Srivastava等[11]研究了雙單葉函數(shù)族的系數(shù)性質(zhì)后,就有越來越多的學(xué)者開始關(guān)注并定義了眾多雙單葉函數(shù)子類,通過研究系數(shù)|a2|和|a3|的非精確上界估計(詳見文獻(xiàn)[15-22]),其結(jié)果已運用于不動點理論、解析函數(shù)邊值問題、逆函數(shù)等進(jìn)行研究,詳見文獻(xiàn)[23-25].

設(shè)h:U→C為滿足下列條件的凸單葉函數(shù)假設(shè)h(z)具有下列展開式

f(z)∈Σ由(1)式給出,稱f(z)∈MΣ(n,b,β;h),若f(z)及其逆函數(shù)g(w)=f-1(w)滿足從屬關(guān)系:

其中,n∈N0,β∈(,b為任意非零復(fù)數(shù).

1)取β=0,f(z)∈MΣ(n,b,0;h)滿足

函數(shù)類MΣ(n,b,0;h)由熊良鵬等[26]引入并研究.

若β=0,f(z)∈MΣ(n,b,0,α),則f(z)滿足

函數(shù)類MΣ(n,b,0,α)由鄧琴[27]引入并研究了它的系數(shù)估計.函數(shù)類MΣ(0,b,0,α)為復(fù)數(shù)階雙單葉解析星象函數(shù),由Q.Deng[28]引入,并由D.Erhan[29]研究.

函數(shù)類MΣ(0,1,β,α)由H.Orhana等[30]引入.若β =0,MΣ(0,1,0,α)=(α)為α階星象函數(shù)類,由X.F.Li等[31]定義并研究.

若β=0,MΣ(1,1,0,α)=CΣ(α)為α階凸函數(shù)類,由D.A.Brannan等[32]定義并研究.

1 主要結(jié)論

為了得到結(jié)論,需要用到下面引理.

引理1.1[33]若p∈P,其中P表示U中的正實部解析函數(shù)族,則|pk|≤2,k=1,2,…,其中

引理1.2[34]設(shè)函數(shù)φ(z)為U內(nèi)由下式定義的凸函數(shù)

設(shè)函數(shù)ψ(z)為U內(nèi)由下式定義的全純(或解析)函數(shù)

若ψ(z)<φ(z),則有

定理1.3若由(1)式定義的函數(shù)f(z)∈MΣ(n,b,β;h),則有:

證明由(2)式,存在2個正實部函數(shù)p(z),q(z)

其中

通過比較(3)和(4)式兩邊z2和z3的系數(shù)得到

由(5)和(7)式容易得到

由(6)式加上(8)式得

由于p(z),q(z)∈h(U),利用引理1.2有

將(10)式運用于(9)式有

為了得到|a3|的系數(shù)估計,將(6)式減去(8)式得

再將(9)式代入(11)式得到

再次對系數(shù)p2和q2利用引理1.2得

2 推論

推論2.1[26]由(1)式定義的f(z)∈MΣ(n,b,0;h),則有:

證明在定理1.3中令β=0即可得到結(jié)論.

推論2.2由(1)式定義的f(z)∈MΣ(n,b,β; A,B),則有:

證明由于

在推論2.1中令B1=A-B即可得到結(jié)論.

推論2.3由(1)式定義的f(z)∈MΣ(n,b,β,α),則有:

證明在推論2.2中令A(yù)=-1,B=1-2α,即可得到結(jié)論.

推論2.4[30]由(1)式定義的f(z)∈MΣ(0,1,β,α),則有:

證明由于

且B1=A-B=2(1-α),在定理1.3中n=0,b=1,B1=2(1-α),即可得到結(jié)論.

推論2.5[28]由(1)式定義的f(z)∈MΣ(0,1,0,α),則有:

證明在推論2.4中令β=0即可得到結(jié)論.

推論2.6由(1)式定義的f(z)∈MΣ(1,1,β,α),則有:

證明由于

且B1=A-B=2(1-α),在定理1.3中令n=1,b=1,B1=2(1-α),即可得到結(jié)論.

推論2.7[32]由(1)式定義的f(z)∈MΣ(1,1,0,α),則有:

證明在推論2.6中令β=0即可得到結(jié)論.

致謝長江大學(xué)科研發(fā)展基金(2013CJY01)和長江大學(xué)工程技術(shù)學(xué)院科技創(chuàng)新基金(15J0802)對本文給予了資助,謹(jǐn)致謝意.

[1]SALAGEAN G S.Subclasses of univalent functions[C]//Lect Notes Math,1013.New York:Springer-Verlag,1983:362-372.

[2]MILLER S S,MOCANU P T.Differential Subordinations[C]//Monographs and Textbooks in Pure and Applied Mathematics.New York:Marcel Dekker,2000.

[3]MILLER S S,MOCANU P T.Differential Subordinations,Theory and Applications[M].New York:Marcel Dekker,2000.

[4]SRIVASTAVA H M,OWA S.Univalent Functions[M].New York:John Wiley&Sons,1989.

[5]SRIVASTAVA H M,OWA S.Current topics in Analytic Function Theory[M].Singapore:World Scientific,1992.

[6]IBRAHIM R W,DARUS M.On subordination theorems for new classes of normalize analytic functions[J].Appl Math Sci,2008,56:2785-2794.

[7]ALI R M,CHO N E,RAVICHANDRAN V,et al.Differential subordination for functions associated with the lemniscate of Bernoulli[J].Taiwanese J Math,2012,16(3):1017-1026.

[8]SRIVASTAVA H M,BANSAL D.Coefficient estimates for a subclass of analytic and bi-univalent functions[J].J Egyptian Math Soc,2015,23(2):242-246.

[9]SINGH S,GUPTA S,SINGH S.Differential subordination and superordination theorems for certain analytic functions[J].General Mathe,2010,18(2):143-159.

[10]IBRAHIM R W,DARUS M,MOMANI S.Subordination and superordination for certain analytic functions containing fractional integral[J].Survey in Math and Its Applications,2009,4:111-117.

[11]SRIVASTAVA H M,MISHRA A K,GOCHHAYAT P.Certain subclasses of analytic and bi-univalent functions[J].Appl Math Lett,2010,23(10):1188-1192.

[12]BRANNAN D A,TAHA T S.On some classes of bi-univalent functions[J].J Math Anal Appl,1985,2:18-21.

[13]XU Q H,XIAO H G,SRIVASTAVA H M.A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems[J].Appl Math Comput,2012,218(23):11461-1465.

[14]ALI R M,LEE S K,RAVICHANDRAN V,et al.Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions[J].Appl Math Lett,2012,25(3):344-351.

[15]李小飛,秦川.一類利用從屬關(guān)系定義的雙單葉函數(shù)類[J].四川師范大學(xué)學(xué)報(自然科學(xué)版),2014,37(4):511-514.

[16]熊良鵬.雙單葉星形和凸函數(shù)的系數(shù)邊界[J].西南師范大學(xué)學(xué)報(自然科學(xué)版),2015,40(6):5-10.

[17]秦川,李小飛.一類利用復(fù)合算子函數(shù)定義的解析函數(shù)類的包含性質(zhì)[J].四川師范大學(xué)學(xué)報(自然科學(xué)版),2015,38(3):376-380.

[18]DENIZ E,CAGLAR M,ORHAN H.Second Hankel determinant for bi-starlike and bi-convex functions of order β[J].Appl Math Comput,2015,271:301-307.

[19]PENG Z G,HAN Q Q.On the coefficients of several classes of bi-univalent functions[J].Acta Math Sci,2014,B34(1):228-240.

[20]AKIN G,EKER S S.Coefficient estimates for a certain class of analytic and bi-univalent functions defined by fractional derivative[J].Comptes Rendus Math,2014,352(12):1005-1010.

[21]SRIVASTAVA H M,BULUT S,CAGLAR S,et al.Coefficient estimates for a general subclass of analytic and bi-univalent functions[J].Filomat,2013,27(5):831-842.

[22]SUN Y,JIANGA Y P,RASILA A.Coefficient estimates for certain subclasses of analytic and bi-univalent functions[J].Filomat,2015,29(2):351-360.

[23]DZIOK J.Classes of multivalent analytic and meromorphic functions with two fixed points[J].Fixed Point Theory and Applications,2013,2013(1):1-18.

[24]KUMAR S.A Short suvery of the development of fixed point theory[J].Survey Math and Its Applications,2013,8:91-101.

[25]NARANG T D.A fixed point theorem for nonexpansive compact self-mapping[J].Annales UMCS Mathematica,2014,68(1):43-47.

[26]熊良鵬,田琳,李小飛.基于Salagean算子的bi-單葉函數(shù)系數(shù)估計[J].數(shù)學(xué)的實踐與認(rèn)識,2015,45(3):219-223.

[27]鄧琴.具有復(fù)數(shù)階的某類解析函數(shù)[J].杭州電子科技大學(xué)學(xué)報,2010,30(3):88-90.

[28]DENG Q.Certain subclass of analytic functions with complex order[J].Appl Math Comput,2009,208:359-362.

[29]ERHAN D.Certain subclasses of bi-univalent functions satisfying subordinate conditions[J].J Classical Anal,2013,2(1):49-60.

[30]ORHANA H,MAGESHB N,BALAJIC V K.Initial coefficient bounds for a general class of bi-univalent functions[J].Filomat,2015,25(6):1259-1267.

[31]LI X F,WANG A P.Two new subclasses of bi-univalent functions[J].Int Math Forum,2012,7:1495-1504.

[32]BRANNAN D A,TAHA T S.On some classes of of bi-univalent functions[J].Studia Univ Babes-Bolyai Math,1986,31(2):70-77.

[33]POMMERENKAE C.Univalent Functions[M].Gottingen:Vandenhoeck Ruprecht,1975.

[34]XU Q H,SRIVASTAVA H M,LI Z.A certain subclass of analytic and close-to-convex functions[J].Appl Math Lett,2011,24 (3):396-401.

Coefficient Problem of a New Subclass of Bi-univalent Functions with Complex Order Defined by Subordinary

DU Junjie1,ZOU Fawei1,QIN Chuan1,F(xiàn)ENG Jianzhong2
(1.College of Engineering and Technology,Yangtze University,Jingzhou 434020,Hubei; 2.School of Information and Mathematic,Yangtze University,Jingzhou 434000,Hubei)

In this paper,the authors introduce a new subclass MΣ(n,b,β;h)of bi-univalent functions with complex order defined by subordinary.The purpose is to obtain the estimates on the coefficients bounds|a2|and|a3|.At the same time,some families with wide application are also discussed.The results extend the recent works.There are few changes in the method of proof.

analytic functions;bi-univalent;subordinary;Salagean operater

O174.51

A

1001-8395(2016)03-0344-05

10.3969/j.issn.1001-8395.2016.03.008

(編輯李德華)

2015-08-26

湖北省自然科學(xué)基金(2013CFAO053)和湖北省教育廳科研項目(B2013281)

都俊杰(1981—),女,講師,主要從事數(shù)理統(tǒng)計和泛函分析的研究,E-mail:dujunjie0420@163.com

2010 MSC:30C45

猜你喜歡
定義
以愛之名,定義成長
活用定義巧解統(tǒng)計概率解答題
例談橢圓的定義及其應(yīng)用
題在書外 根在書中——圓錐曲線第三定義在教材和高考中的滲透
永遠(yuǎn)不要用“起點”定義自己
海峽姐妹(2020年9期)2021-01-04 01:35:44
嚴(yán)昊:不定義終點 一直在路上
華人時刊(2020年13期)2020-09-25 08:21:32
定義“風(fēng)格”
成功的定義
山東青年(2016年1期)2016-02-28 14:25:25
有壹手——重新定義快修連鎖
修辭學(xué)的重大定義
主站蜘蛛池模板: 日本免费一区视频| 成人a免费α片在线视频网站| 欧美在线天堂| 国产清纯在线一区二区WWW| 久久久久人妻一区精品| 日韩精品毛片人妻AV不卡| 国产成人精品三级| 91啦中文字幕| 一级全免费视频播放| 欧美日韩国产成人高清视频| 国产青青草视频| 国国产a国产片免费麻豆| 亚洲高清国产拍精品26u| 国产亚洲精品yxsp| 日韩黄色大片免费看| 毛片在线播放网址| 亚洲精品片911| 精品视频免费在线| 久久精品免费国产大片| 香蕉视频在线观看www| 日本三级精品| 91免费国产高清观看| 欧美成一级| 日本欧美成人免费| 亚洲美女一区| 强奷白丝美女在线观看| 高清乱码精品福利在线视频| 国产女人18水真多毛片18精品| 蜜臀AV在线播放| 麻豆精品在线播放| 国产精品私拍在线爆乳| 欧美一区福利| 99re66精品视频在线观看 | 亚洲一欧洲中文字幕在线| 亚洲αv毛片| 国产精品专区第一页在线观看| 亚洲狼网站狼狼鲁亚洲下载| 国产亚洲视频中文字幕视频| 亚洲αv毛片| 欧美精品aⅴ在线视频| 日韩 欧美 国产 精品 综合| 666精品国产精品亚洲| 国产欧美专区在线观看| 亚洲国产在一区二区三区| 国产熟睡乱子伦视频网站| 免费看的一级毛片| 久久这里只有精品国产99| 久久成人免费| 国产成人精品男人的天堂| 中国黄色一级视频| 一级毛片免费不卡在线| 久久久久青草大香线综合精品| 国产亚洲成AⅤ人片在线观看| 久久人午夜亚洲精品无码区| 午夜a视频| 天天干伊人| 九色最新网址| 国产男女免费完整版视频| 国产美女免费| аv天堂最新中文在线| 国产一区二区在线视频观看| 99热线精品大全在线观看| 国产精品无码AV片在线观看播放| 日韩午夜伦| 色综合久久88色综合天天提莫 | 亚洲成人高清在线观看| 69精品在线观看| 久久精品只有这里有| 国产精品亚洲五月天高清| 亚洲国产亚综合在线区| 国产乱子伦无码精品小说| 国产精品一区二区久久精品无码| 亚洲国产天堂久久综合| 在线观看亚洲国产| 91精品伊人久久大香线蕉| 最新国产你懂的在线网址| 丁香婷婷在线视频| 人妻21p大胆| 亚洲AⅤ无码日韩AV无码网站| 国产精品人人做人人爽人人添| 日韩精品一区二区三区免费| 六月婷婷激情综合|