王宏志, 陶玉杰, 王貴君
(1. 通化師范學(xué)院 數(shù)學(xué)學(xué)院, 吉林 通化 134002; 2.天津師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院, 天津 300387)
?
基于三角形模糊數(shù)的非線性T-S模糊系統(tǒng)的峰值點(diǎn)和分量半徑優(yōu)化
王宏志1, 陶玉杰1, 王貴君2*
(1. 通化師范學(xué)院 數(shù)學(xué)學(xué)院, 吉林 通化 134002; 2.天津師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院, 天津 300387)
摘要:?jiǎn)沃的:魇菍⒏呔S空間中一個(gè)實(shí)值點(diǎn)映射成該空間上的一個(gè)單值模糊集,在構(gòu)造非線性T-S模糊系統(tǒng)時(shí)不僅可克服輸入變量的噪聲問題,而且能減少模糊推理機(jī)設(shè)計(jì)中的計(jì)算量. 首先,基于分片線性函數(shù)和單值模糊器給出了非線性T-S模糊系統(tǒng)模型;并依據(jù)廣義三角形的重心坐標(biāo)公式,對(duì)等距剖分論域中的峰值點(diǎn)和分量半徑等參數(shù)進(jìn)行了優(yōu)化;最后,通過模擬實(shí)例對(duì)系統(tǒng)進(jìn)行了驗(yàn)證,得到優(yōu)化后的非線性T-S模糊系統(tǒng)確實(shí)有更好的逼近效果.
關(guān)鍵詞:分片線性函數(shù);單值模糊器;非線性T-S模糊系統(tǒng);峰值點(diǎn);分量半徑
WANG Hongzhi1, TAO Yujie1, WANG Guijun2
(1.SchoolofMathematics,TonghuaNormalUniversity,Tonghua134002,JilinProvince,China; 2.SchoolofMathematicsSciences,TianjinNormalUniversity,Tianjin300387,China)
0引言
模糊系統(tǒng)是一種基于知識(shí)或規(guī)則的系統(tǒng),其核心是由若干條IF…THEN模糊規(guī)則所組成的知識(shí)庫(kù),其主要特性是通過多輸入單輸出映射將實(shí)值向量轉(zhuǎn)化為實(shí)值標(biāo)量,并獲得這些映射的精確數(shù)學(xué)公式. 此外,模糊系統(tǒng)的主要貢獻(xiàn)是為從知識(shí)庫(kù)向非線性映射轉(zhuǎn)換提供一套系統(tǒng)程序,使人們可將基于知識(shí)的系統(tǒng)通過傳感器測(cè)量數(shù)據(jù)獲取某些精確數(shù)學(xué)模型,進(jìn)而將其應(yīng)用于自動(dòng)控制、信號(hào)處理、通信工程及空間技術(shù)等新型研究領(lǐng)域.1985年,TAKAGI-SUGENO(T-S)[1]基于非線性系統(tǒng)的輸入輸出數(shù)據(jù)首次提出T-S模糊系統(tǒng)模型.由于該系統(tǒng)的后件線性部分具有諸多隨機(jī)調(diào)節(jié)參數(shù),故T-S模糊系統(tǒng)比一般Mamdani模糊系統(tǒng)具有更好的逼近性能,且具有一定的靈活性和廣泛性.1998年以來(lái),文獻(xiàn)[2-4]等成功將T-S模糊系統(tǒng)應(yīng)用于系統(tǒng)建模和系統(tǒng)控制器設(shè)計(jì)等,并在一定范圍內(nèi)獲得了T-S模糊系統(tǒng)構(gòu)成逼近器的充分必要條件.這些結(jié)果為進(jìn)一步探究模糊系統(tǒng)的逼近性和穩(wěn)定性提供了幫助.
2000年,文獻(xiàn)[5]通過剖分論域空間首次提出分片線性函數(shù)概念,并以此為橋梁證明了T-S模糊系統(tǒng)對(duì)L-可積函數(shù)具有泛逼近性;隨之文獻(xiàn)[6]研究了Mamdani模糊系統(tǒng)對(duì)一類p-可積函數(shù)的逼近問題.2007年,文獻(xiàn)[7]通過選取前件模糊集為三角形模糊數(shù)引入了非線性T-S模糊系統(tǒng)模型,并討論了該系統(tǒng)對(duì)連續(xù)函數(shù)的逼近性.近年來(lái),文獻(xiàn)[8]通過調(diào)節(jié)參數(shù)將Mamdani和T-S模糊系統(tǒng)混合建立了混合模糊系統(tǒng),并基于疊加分層方法降低了混合系統(tǒng)內(nèi)部的模糊規(guī)則總數(shù),證明了分層后該系統(tǒng)仍具有逼近性能;文獻(xiàn)[9]證明了在引入K-積分模下廣義Mamdani模糊系統(tǒng)的泛逼近性.上述文獻(xiàn)雖從理論上給出了模糊系統(tǒng)逼近性的嚴(yán)格證明,但并沒有給出所涉及的分片線性函數(shù)的解析表達(dá)式,這不利于進(jìn)一步研究廣義模糊系統(tǒng)的逼近性或穩(wěn)定性.
文獻(xiàn)[10]首次在超平面下給出分片線性函數(shù)的解析表達(dá)式,并討論了其對(duì)L-可積函數(shù)的逼近性.文獻(xiàn)[11]基于分片線性函數(shù)重新構(gòu)造了非齊次線性T-S模糊系統(tǒng),并證明了規(guī)則后件線性部分所有參數(shù)選取非零常數(shù)時(shí)該系統(tǒng)對(duì)分片線性函數(shù)仍具有逼近性.文獻(xiàn)[12]在Kp-積分模意義下研究了廣義Mamdani模糊系統(tǒng)的逼近性和實(shí)現(xiàn)過程.2015年,文獻(xiàn)[13]基于三角形模糊數(shù)和單值模糊器建立了非線性T-S模糊系統(tǒng)模型,并探究了該系統(tǒng)對(duì)一類p-可積函數(shù)的逼近性.本文在文獻(xiàn)[10-13]基礎(chǔ)上,通過優(yōu)化峰值點(diǎn)和分量半徑等參數(shù)來(lái)提高非線性T-S模糊系統(tǒng)的逼近性能,并通過模擬實(shí)例驗(yàn)證優(yōu)化后的非線性T-S模糊系統(tǒng)的逼近效果.
1預(yù)備知識(shí)
自文獻(xiàn)[5]提出分片線性函數(shù)概念以來(lái),其應(yīng)用范圍日益凸顯.本節(jié)首先給出分片線性函數(shù)、單值模糊器和高維三角形模糊數(shù)的定義.
定義1[5]設(shè)n元連續(xù)函數(shù)S:Rn→R,若滿足如下條件:
①存在a>0,使S在廣義正方體Δ(a)之外恒為0;
②存在若干n維多面體Δj?Δ(a),j=1,2,


(1)
?x=(x1,x2,…,xn)∈Δj,j=1,2,…,Ns,
則稱S為Rn上的分片線性函數(shù),其中λij,βj均為可調(diào)節(jié)參數(shù).
事實(shí)上,分片線性函數(shù)S不僅是一元分段線性函數(shù)在多元情況下的推廣,而且是研究模糊系統(tǒng)逼近性理論的重要工具和手段.此外,它的一些優(yōu)良性質(zhì)(例如:緊集上取非零值,單邊偏導(dǎo)數(shù)存在且有界,一致連續(xù)性等)也為進(jìn)一步研究模糊系統(tǒng)的逼近性提供了便利.然而,文獻(xiàn)[5]沒能給出調(diào)節(jié)參數(shù)λij、βj和S的表達(dá)式,從而限制了分片線性函數(shù)S的廣泛應(yīng)用.
定理1[10-13]設(shè)f是給定緊集U?Rn上的Lebesgue可積函數(shù),則存在a>0或廣義正方體[-a,a]n?U,在[-a,a]n上分片線性函數(shù)S可使其按任意精度逼近f,其中,
S(x)=
(2)
其中線性部分系數(shù)行列式|Dj1|,|Dj2|,…,|Djn|,和|Dj|的含義參見文獻(xiàn)[10-11].



2非線性T-S模糊系統(tǒng)
首先,基于文獻(xiàn)[7,13]和上述三角形模糊數(shù),給出模糊規(guī)則:






(3)


調(diào)控參數(shù)α∈(0,+∞).
文獻(xiàn)[13]曾取非線性T-S模糊系統(tǒng)的系數(shù)為
對(duì)第j個(gè)區(qū)域Δji而言,可將系統(tǒng)(3)簡(jiǎn)化為

(4)
實(shí)際上,文獻(xiàn)[13]僅證明了非線性T-S模糊系統(tǒng)(4)對(duì)所給分片線性函數(shù)乃至可積函數(shù)具有逼近性,并沒有涉及逼近精度問題.
3參數(shù)優(yōu)化

本節(jié)將對(duì)系統(tǒng)(3)的峰值點(diǎn)x*和分量半徑σi重新進(jìn)行選擇和優(yōu)化,使非線性T-S模糊系統(tǒng)Tm達(dá)到較好的逼近效果.

從圖1和2容易看出,頂點(diǎn)分量坐標(biāo)滿足:




圖1 n=2時(shí)PLF的局部平面示意圖Fig.1 The local plane figure of PLF when n=2

圖2 n=2時(shí)平面上剖分三角形Δji示意圖Fig.2 Figure of subdivision triangle when n=2





故有
因而,無(wú)論調(diào)節(jié)參數(shù)θ1與θ2怎樣變化,恒有

類似地,峰值點(diǎn)和動(dòng)點(diǎn)的第2個(gè)分量也滿足:

故無(wú)論哪種情況都有

這意味著可優(yōu)先選取分量參數(shù)σi為

此時(shí),若選取該系統(tǒng)所有調(diào)節(jié)參數(shù)為
(5)
則n=2時(shí),非線性T-S模糊系統(tǒng)(3)可簡(jiǎn)化為

(6)
同理,對(duì)n維輸入變量,若選取調(diào)節(jié)參數(shù)為

(7)
則非線性T-S模糊系統(tǒng)(3)可簡(jiǎn)化為

(8)
至此,獲得了一般情況下非線性T-S模糊系統(tǒng)的解析式(式(8)).實(shí)際上,式(7)也可理解為參數(shù)優(yōu)化的目標(biāo)函數(shù),這里不僅包括峰值點(diǎn)和分量半徑等優(yōu)化參數(shù),而且還包含系統(tǒng)非線性部分的優(yōu)化參數(shù).這些參數(shù)在系統(tǒng)的逼近過程中均扮演重要角色.
4模擬實(shí)例
在低維空間(n=2)中進(jìn)行模擬仿真,按式(6)給出如下實(shí)例:
設(shè)n=2,a=1,α=1,剖分?jǐn)?shù)m=10,交互數(shù)c0=2,Δ(1)=[-1,1]×[-1,1].取二元函數(shù)為

按優(yōu)化公式(5)或(7)選取優(yōu)化分量半徑

為直觀起見,只對(duì)第1象限中單位正方形[0,1]×[0,1]實(shí)施等距剖分.故可將該正方形等分成10×10=100個(gè)邊長(zhǎng)為1/10的小正方形,再將每個(gè)小正方形沿對(duì)角線平分,可得200個(gè)小等腰直角三角形,按順序?qū)⑵溆洖棣i(j=1,2,…10;i=1,2,…,20),如圖3所示.

圖3 [0,1]×[0,1]上等距網(wǎng)格剖分圖Fig.3 Subdivision figure of isometric grids in [0,1]×[0,1]



(9)
類似地,若在y軸閉區(qū)間[-1,1]上令



(10)


(11)
其中|Dj1|和|Dj2|如式(2)所示,其值隨動(dòng)點(diǎn)(x1,x2)的位置而變化[10].

f(0.15,0.08)≈0.158 004 374 8,
S(0.15,0.08)≈0.157 083 285 1.




計(jì)算(頂點(diǎn)處f與S等值).
又因樣本點(diǎn)(0.15,0.08)落在圖3所示區(qū)域的Δ1,4內(nèi),故對(duì)應(yīng)3個(gè)頂點(diǎn)坐標(biāo)分別為
(0.1,0),(0.1,0.1),(0.2,0.1).
此時(shí),按公式(5)可獲得峰值點(diǎn)坐標(biāo)x*和分量半徑σi,分別為

再由文獻(xiàn)[10]及式(2),獲得二元分片線性函數(shù)S的系數(shù)行列式,分別為




將樣本點(diǎn)(0.15,0.08)代入式(11)得
T10(0.15,0.08)=0.157 687 053 9.
進(jìn)而得到誤差值為
|f(0.15,0.08)-S(0.15,0.08)|=
0.000 921 089 7,
|f(0.15,0.08)-T10(0.15,0.08)|=
0.000 317 320 9.
現(xiàn)在,在論域[0,1]×[0,1]內(nèi)隨機(jī)選取4個(gè)樣本點(diǎn)
(0.04,0.06)∈Δ1,2,(0.05,0.12)∈Δ2,1,
(0.15,0.08)∈Δ1,4,(0.12,0.18)∈Δ2,4.
按公式(5)依次計(jì)算得對(duì)應(yīng)峰值點(diǎn),分別為


下面,隨機(jī)選取上述4個(gè)樣本點(diǎn)進(jìn)行誤差度量,通過多次平均值對(duì)比來(lái)分析系統(tǒng)的逼近效果.此外,本文優(yōu)化選取的峰值點(diǎn)和分量半徑更具一般性和系統(tǒng)性,其逼近精度隨參數(shù)的優(yōu)化而提高.表1為文獻(xiàn)[13]和本文方法的輸出值和誤差值.
表1m=10時(shí)樣本的輸出值及誤差

Table 1 Output values of the sample point and its serrors when m=10

5結(jié)論
為提高非線性T-S模糊系統(tǒng)的逼近性能,在等距剖分論域中對(duì)峰值點(diǎn)和分量半徑重新進(jìn)行優(yōu)化選擇,得到基于分片線性函數(shù)的非線性T-S模糊系統(tǒng)模型.結(jié)果表明,優(yōu)化后的非線性T-S模糊系統(tǒng)具有更好的逼近精度.為進(jìn)一步研究廣義模糊系統(tǒng)的逼近性提供了新的方法和思路.當(dāng)然,影響模糊系統(tǒng)逼近能力的調(diào)節(jié)參數(shù)或直接因素可能還有許多,有些影響甚至是潛在或間接的,有待進(jìn)一步探究.
參考文獻(xiàn)(References):
[1]TAKAGI T,SUGENO M. Fuzzy identification of system and its applications to modeling and control[J].IEEE Transactions on Systems,Man and Cybern,1985,15:116-132.
[2]YING H,DING Y S,LI S K, et al. Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximator[J].IEEE Transactions on Systems,Man and Cybernetics:A,1999,29(5):508-514.
[3]ZENG K,ZHANG N R,XU W L. A comparative study on sufficient conditions for Takagi-Sugeno fuzzy system as universal approximator[J].IEEE Transactions on Fuzzy Systems,2000,8(6):773-780.
[4]曾珂,張乃堯,徐文立.線性 T-S模糊系統(tǒng)作為通用逼近器的充分條件[J].自動(dòng)化學(xué)報(bào), 2001, 27(5):606-612.
ZENG Ke, ZHANG Naiyao, XU Wenli.Sufficient condition for linear T-S fuzzy systems universal approximator[J]. Acta Automatica Sinica, 2001,27(5): 606-612.
[5]劉普寅, 李洪興. 廣義模糊系統(tǒng)對(duì)于可積函數(shù)的逼近性[J].中國(guó)科學(xué): E輯, 2000, 30 (5):413-423.
LIU Puyin, LI Hongxing. Approximation of generalized fuzzy systems to integrable functions[J].Science in China: Ser E, 2000, 30(5):413-423.
[6]LIU P Y,LI H X. Analyses forLp(μ)-norm approximation capability of the generalized Mamdani fuzzy systems[J].Information Sciences,2001,138(2): 195-210.
[7]劉福才,馬麗葉,邵靜,等.一類非線性T-S模糊系統(tǒng)的通用逼近性[J].自動(dòng)化與儀器儀表,2007,129(1):8-15.
LIU Fucai,MA Liye,SHAO Jing, et al. Universal approximation of a class of nonlinear T-S fuzzy system [J]. Automation & Instrumentation, 2007,129(1):8-15.
[8]王貴君, 段晨霞. 廣義分層混合模糊系統(tǒng)及其泛逼近性[J]. 控制理論與應(yīng)用, 2012,29 (5):673-680.WANG Guijun,DUAN Chenxia.Generalized hierarchical hybrid fuzzy system and its universal approximation[J]. Control Theory and Application, 2012,29(5):673-680.
[9]王貴君, 李曉萍, 隋曉琳. 廣義Mamdani模糊系統(tǒng)依K-積分模的泛逼近性及其實(shí)現(xiàn)過程[J].自動(dòng)化學(xué)報(bào), 2014, 40(1):143-148.
WANG Guijun, LI Xiaoping,SUI Xiaolin. Universal approximation and its realize process of generalized Mamdani fuzzy system in K-integral norms[J].Acta Automatica Sinica,2014,40(1):143-148.
[10]彭維玲.基于剖分模糊系統(tǒng)輸入空間的多維分片線性函數(shù)的構(gòu)造及逼近[J].系統(tǒng)科學(xué)與數(shù)學(xué),2014,34(3):340-351.
PENG Weiling. Structure and approximation of a multidimensional piecewise linear function based on the input space of subdivision fuzzy systems[J]. System Science and Mathematical Sciences,2014,34(3): 340-351.
[11]王宏志,陶玉杰,王貴君.基于網(wǎng)格分片線性函數(shù)構(gòu)造的非齊次線性T-S模糊系統(tǒng)的逼近性分析[J].系統(tǒng)科學(xué)與數(shù)學(xué),2015,35(11):1276-1290.
WANG Hongzhi,TAO Yujie,WANG Guijun. Approximation analysis of nonhomogeneous linear T-S
fuzzy system based on grid piecewise linear function structure[J].System Science and Mathematical Sciences, 2015,35(11):1276-1290.
[12]陶玉杰,王宏志,王貴君.Kp-積分模意義下廣義Mamdani模糊系統(tǒng)逼近性能及其實(shí)現(xiàn)[J].電子學(xué)報(bào),2015,43(11):2284-2291.
TAO Yujie, WANG Hongzhi, WANG Guijun. Approximation ability and its realization of the generalized Mamdani fuzzy system in the sense ofKp-integral norm[J].Acta Electronica Sinica,2015,43(11):2284-2291.
[13]張國(guó)英,王貴君.基于三角形模糊化的非線性T-S模糊系統(tǒng)對(duì)p-可積函數(shù)的逼近性[J].浙江大學(xué)學(xué)報(bào):理學(xué)版,2015,42(9):537-541.
ZHANG Guoying,WANG Guijun.Approximation capability of nonlinear T-S fuzzy system based on triangular fuzzifier top-integrable functions[J].Journal of Zhejiang University:Science Edition,2015,42(9):537-541.
[14]王立新.模糊系統(tǒng)與模糊控制教程[M].北京:清華大學(xué)出版社,2003.
WANG Lixin. A Course in Fuzzy Systems and Control[M]. Beijing:Tsinghua University Press,2003.
Optimizations of peak points and branch radius of nonlinear T-S fuzzy system based on triangular fuzzy numbers. Journal of Zhejiang University(Science Edition), 2016,43(3):264-270
Abstract:Single value fuzzifier is a mapping from a real value point to higher dimensional triangle fuzzy number in n-European space. It not only can overcome the noise of the input variables in constructing nonlinear T-S fuzzy system, but also can simplify the complicated calculation in the design of fuzzy inference engine. Firstly, a nonlinear T-S fuzzy system model is established based on the piecewise linear function and the single value fuzzifier. Secondly, the peak points and the branch radius in the equidistant subdivision universe are optimized by adopting the formula of barycenter of the generalized triangle. Finally, we verify that the optimized nonlinear T-S fuzzy system has good approximation effect by selecting the sample points.
Key Words:piecewise linear function; single value fuzzifier; nonlinear T-S fuzzy system; peak point; branch radius
中圖分類號(hào):O 174.4; O 159
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1008-9497(2016)03-264-07
作者簡(jiǎn)介:王宏志(1975-),ORCID:http://orcid.org/0000-0002-5417-6859,男,碩士,副教授,主要從事模糊系統(tǒng)分析研究,E-mail:whz-98@126.com.*通信作者,ORCID:http://orcid.org/0000-0002-2337-5951,E-mail:tjwgj@126.com.
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(61374009);吉林省教育廳“十二五”科技項(xiàng)目(吉教科合字[2011]第456號(hào)).
收稿日期:2015-09-09.
DOI:10.3785/j.issn.1008-9497.2016.03.003
浙江大學(xué)學(xué)報(bào)(理學(xué)版)2016年3期