黃海波,黃桂雄*,陳毓秀,李大創,孫熙勇,管俊,覃明
?
腎臟磁共振梯度多回波-R2*成像可行性研究
黃海波1,黃桂雄1*,陳毓秀2,李大創1,孫熙勇3,管俊1,覃明1
[摘要]目的 探討磁共振腎臟梯度多回波R2*成像可行性。材料與方法 應用3.0 T MR系統梯度多回波序列,分別掃描專用水模(含氯化錳鹽酸混合液小瓶15只)、原位正常腎51例(A組)和移植正常腎22例(B組)志愿者,次月重復掃描專用水模、原位正常腎組,原始DICOM數據導入CMRtools軟件測算獲得水模各小瓶及腎皮髓質R2*值。結果 水模R2*與其濃度直線相關(r=0.999,P=0.000),通過直線回歸分析,得到R2*與PhC擬合直線斜率為0.008,截距為–0.050。實際與預測水模濃度組內相關系數(ICC)為0.999,重復掃描水模R2*ICC為1,重復掃描水模R2*差值與總體0比較無統計學意義(P>0.05)。原位和移植腎組間性別與年齡無統計學意義(P>0.05);原位腎雙側R2*無統計學差異(P>0.05);原位腎皮髓質重復測量R2*ICC分別為0.847和0.915,差值與總體0無統計學意義(P>0.05)。移植與原位正常腎R2*無統計學差異(P>0.05),腎髓質R2*顯著高于皮質,差異有統計學意義(P<0.05)。結論 磁共振梯度多回波R2*成像評價腎氧合狀態具有可行性,可為更多腎臟R2*成像推廣應用提供依據。
[關鍵詞]腎臟;磁共振成像;診斷技術和方法
廣西科學研究與技術開發計劃項目(編號:桂科攻1298003-8-6)
作者單位:
1.解放軍第303醫院影像科,南寧,530021
2.武警陜西總隊醫院MR室,西安,710054
3.解放軍第303醫院移植科,南寧,530021
黃桂雄,E-mail: 303hgx@163.com
接受日期:2015-11-09
黃海波, 黃桂雄, 陳毓秀, 等.腎臟磁共振梯度多回波-R2*成像可行性研究.磁共振成像, 2016, 7(1): 62–67.
Feasibility of multiple-echo GRE-R2*to renals at 3.0 T MRI
Huang Hai-bo1, Huang Gui-xiong1*, Chen Yu-xiou2, Li Da-chuang1, Sun Xi-yong3, Guan Jun1, Qin Ming1
1Department of Medical Imaging, 303rd Hospital of PLA, Nanning 530021, China
2MR Room of Shanxi CAPF Hospital, Nanning 530003, China
3Department of Transplantation, 303rd Hospital of PLA, Nanning 530021, China
*Correspondence to: Huang GX, E-mail: 303hgx@163.com
Received 28 Sep 2015, Accepted 9 Nov 2015
ACKNOWLEDGMENTS Guangxi Scientific and Technological Plan (No.GUIKEGONG1298003-8-6).
Abstract Objective: To explore the feasibility of multiple-echo GRE- R2*to renals at 3.0 T MRI.Materials and Methods: A MR phantom which includes fifteen vials containing 0.2—3.2 mmol/L manganese chloride in hydrochloric acid solution, 51 healthy vonlunteers (Group A) with kidneys in-situ and 22 normal renals (Group B) transplanted were scanned by 3.0 T MRI, repeated protocols to the phantom and group A with kidneys in-situ one month later.Both phantom and in-vivo renals R2*were quantified by a well-trained physician using a CMR tools after MRI.Results: Phantom R2*was linearly correlated with its concentration in vials (r=0.999, P=0.000).Through the regressions procedure,a slope of 0.008 and an intercept of –0.050 were found.No statistic differences were found for R2*value between the first and second scanning on phantom (P>0.05), The real and predicted concentration of phantom, R2*repeated scanning on phantom have a highly reliability respectively (ICCconcentration=1, ICCR2*=0.999).No statistic differences were found for gender and age between group A and B(P>0.05).No statistic differences were found for the cortical and medullary R2*between left and right renal (P>0.05).No statistic differences were found for kidneys R2*in group A between the first and second scanning (P>0.05), It showed a well reliability respectively (ICCcortex=0.847, ICCmedullation=0.915).No statistic differences were found for renal R2*between group A and B (P>0.05).However, renal R2*was dramatically higher in medullation than in cortex and there was statistic difference (P<0.05).Conclusions: With CMRtools, multiple-echo GRE protocol is feasible for evaluating oxygenation in kidneys at 3.0 T MRI, it could provide a reliable evidence for clinic application to renals.
Key words Kidney; Magnetic resonance imaging; Diagnostic techniques and procedures
腎實質氧合狀態在腎疾病發生、發展中具有重要作用,Pedersen等[1]和Neugarten等[2]運用微電極的方法證實R2*與腎內氧分壓具有良好一致性即R2*增高代表脫氧血紅蛋白或脫氧/含氧血紅蛋白比例增加,是直接測量腎臟氧分壓的方法,但因創傷較大不適用于活體腎。而血氧水平依賴磁共振功能成像(blood oxygenation level-dependent magnetic resonance functional imaging,BOLD-fMRI)是利用內源性脫氧血紅蛋白引起局部微觀磁場不均勻、改變質子自旋去相位而導致表觀自旋-自旋弛豫率(R2*=1000/T2*)變化的一種無創性氧代謝評價的MR技術[3],1996年Prasad等[4]首先將其應用于腎臟以來,BOLD fMRI信號強度與腎組織氧合關系通過氧敏感光纖探針直接測量組織氧分壓已得到證實[2],目前不斷進展的缺血性腎損傷、腫瘤、糖尿病、腎移植等研究[5-9]認為BOLDMRI評價氧代謝具有重要作用。然而BOLDMRI因需專用序列與特殊軟件僅限于少數科研機構才能實施,筆者擬通過調整梯度多回波序列掃描水模與人活體腎臟,應用軟件CMRtools測算R2*,探索弛豫率成像評價腎氧合狀態可行性。
1.1資料
專用的標準水模(澳大利亞Ferriscan公司提供)一個,內含有濃度(0.2~3.2) mmol/L氯化錳鹽酸溶液小瓶15只。
選取我院2012年3月至2014年5月申請腎掃描原位正常腎51例(A組,男35例、女16例,年齡18~55歲,平均34.9±10.9歲)和移植正常腎22例(B組,男16例、女6例,年齡16~57歲,平均35.9±11.4歲)為志愿者入組研究。分組標準:禁水12 h,排除已知可改變腎氧合狀態藥物(襟利尿劑、乙酰唑胺、碘對比劑、一氧化氮合成酶抑制劑等)近期使用及原繼發性血色病外,原位腎尚滿足無相關臨床癥狀,血肌酐、尿素氮及超聲無陽性指征;髂窩移植正常腎滿足術后2周至6個月,余標準同原位腎。研究實驗獲我院倫理委員會批準,志愿者知情并簽署同意書。
1.2設備與方法
Philips Achieva 3.0 T TX MR掃描儀,掃描前水模靜置磁體室2 h以上。水模掃描應用SENSE HEAD 8 coils,腎掃描使用SENSE XL TORSO 16 coils配合呼吸門控,掃描前嚴格勻場和(或)參考掃描,梯度多回波_R2*成像參數設置:TR 200 ms,FA=20°,層數=1,水模序列為TE (ms)=1.2/2.1/3.1/4.0/5.0/5.9/6.9/8.6/9.7/10.6/11.6,腎序列為TE(ms)=9.2/13.2/17.2/21.2/25.2/29.2/33.2/37.2/41.2/45.2/49.2/53.2,腎R2*成像(呼氣末屏氣)掃描冠狀及橫斷位,掃描前常規橫斷與冠狀位T1WI、T2WI成像并以此參考確定腎門區,詳細序列設置見表1,完成掃描保存原始數據。
1.3數據處理
水模、腎掃描DICOM數據由受過良好培訓醫師使用CMRtools軟件處理獲得R2*值。水模ROI位于小瓶內,腎臟測量選擇冠狀位皮髓質對比良好梯度回波像,取5~10個ROI (10~20 mm2)且避開偽影,取三次測量平均值,軟件自動計算T2*或R2*值(=1000/)。
1.4統計學

表1 腎臟掃描序列參數設置(冠狀面+ 橫軸面)Tab.1 Protocol parameters for renal coronal&transverse scanning

表2 水模及原位右腎皮髓質R2*重復測量表(Hz)Tab.2 R2*values repeated of phantom and right renal cortex & medullation (Hz)

圖1 為水模首次和重復掃描CMRtools測量圖。首次(A)與1個月后(B) R2*(1000/T2*)分別為146.4 Hz與144.7 Hz,波動小于4%,說明重復性高 圖2 為水模小瓶R2*與PhC間散點圖。實線為兩者間擬合直線,虛線為95% CI 圖3,4 為原位腎首次與重復掃描、移植腎CMRtools處理圖與R2*(Hz)值。原位腎首次掃描(圖3A~D) 左右皮髓質分別為17.43、27.78、17.66、26.23;重復掃描右腎結果(圖3E,F)分別為18.88、27.59;移植腎皮髓質(圖4A,B)分別為17.75、26.90。原位腎雙側、重復掃描、移植腎與原位腎間比較均無明顯差異,腎重復掃描波動小于7%,由此可見,掃描序列具有很好重復性Fig.1 Model R2*(1000/T2*) of the first and repeated measured by CMRtools were 146.8 Hz (A) and 158.4 Hz (B) respectively, it follows that model R2*fluctuation was below 2% and has a dramatically highly reliability.Fig.2 Scatter plots of R2*against PhC with the linear fit (solid line) and the 95% CI (dashed line).Fig.3, 4 Measured by CMRtools, the cortical and medullary R2*(Hz) on left and right kidney in-situ were 17.43 (Fig.3A), 27.78 (Fig.3B), 17.66 (Fig.3C), 26.23 (Fig.3D) for the first quantitative respectively, the repeated after one month were 18.88 (Fig.3E), 27.59 (Fig.3F) respectively.while the transplanted were 17.75 (Fig.4A), 26.90 (Fig.4B) respectively.No statistic differences were found for R2*not only between both side kidneys in-situ, the repeated scanning, but the transplanted and in-situ renals as well.It follows that renal R2*fluctuation was below 7% and therefore with CMRtools, the protocol has a high reliability.
水模小瓶Mncl2濃度為1.41±0.95 (0.20~3.20) mmol/L,兩次掃描測量見表2,水模與其濃度呈直線相關(r=0.999,P=0.000),擬合直線斜率為0.008,截距為–0.05,建議回歸方程PhC=0.008–0.05,R2=0.998 (F=4899.247,P=0.000),預測濃度為1.41±0.95 (0.21~3.15) mmol/L,與實際濃度高度一致(ICC=0.999),重復掃描高度一致(ICC=1),差值均數與總體0比較無統計學意義(P>0.05),如圖1,2。
原位腎和移植腎組間性別與年齡無統計學意義(χ2性別=0.123,t年齡=0.342,P性別/年齡=0.726/0.734);原位左腎皮髓質分別為17.70±0.66 (16.26~19.26) Hz、29.88±2.42 (25.77~38.59) Hz,原位右腎兩次掃描見表2,雙側比較無統計學差異(t皮質/髓質=–0.539/–0.786,P皮質/髓質=0.591/0.434),髓質明顯高于皮質,皮髓質差值(11.82± 3.21) Hz與總體0差異有統計學意義(t=26.275,P=0.000);右腎兩次掃描差值均數與總體0無統計學意義(P>0.05)并具有高度一致性(ICC皮質/髓質=0.847/0.915;移植腎皮髓質分別為17.85±0.99 (16.08~19.43) Hz、29.75±3.35 (25.77~41.19) Hz,與原位右腎無統計學差異(t皮質/髓質=–0.972/–0.370,P皮質/髓質=0.334/0.712)(圖3,4)。
腎臟血流量約占心輸出量1/4,約90%供應分布于皮質,僅約10%供應髓質[10],皮質氧分壓約50 mm Hg (1 mm Hg=0.133 kPa),而髓質僅為10~20 mm Hg,腎髓質低氧合、高負荷特點使BOLD MRI評價腎氧合狀態成為理想手段并已經實驗研究肯定[11-12]。梯度多回波_與BOLD_成像具有相同原理,為多回波穩態自由進動(SSFP)采集信號,反映脫氧血紅蛋白、含鐵血黃素、Mn元素等順磁性物質周圍局部磁場不均勻性增加、質子加速失相而產生自旋-自旋弛豫()或弛豫率()變化的MRI序列[3]。CMRtools是一種開源軟件,可通過網絡下載或少量付費獲得,主要應用于原發血色病、地中海貧血、鐮狀細胞病等鐵沉積MR定量檢測,軟件實用與有效性已在肝臟、心肌等鐵沉積臨床與動物實驗中證實且在一定范圍內有替代活檢趨勢[13-15]。
研究按順磁性物質特點設置標準水模與活體腎臟掃描兩種梯度多回波序列(回波數=12):水模Mncl2濃度較高應用TEmin/max=1.2 ms/11.7 ms,回波間隙0.9 ms,而腎臟脫氧血紅蛋白含量相對很小使用TEmin/max=9.2 ms/53.2 ms,回波間隙為4.0 ms,掃描(1000/)數據全部應用CMRtools測算。實驗結果顯示:水模與腎掃描原始圖像基本滿足定量評價,擬合曲線R2均大于0.99(圖1,3,4),證明數據結果具有很高可信度。水模與其小瓶內Mncl2濃度(PhC)直線相關(r=0.999),這與龍莉玲等[16]的研究高度一致(圖2)。直線回歸方程斜率與截距分別為0.008和–0.050,決定系數R2=0.998,方程預測與實際Mncl2濃度(ICC=0.999)、重復掃描(ICC=1.0)均具有高度一致性。雙側原位腎皮質-皮質、髓質-髓質間無顯著性差異,這是重復掃描僅評價右腎重復性和移植腎只與右腎比較的基礎與依據,腎重復掃描皮髓質具有良好一致性(ICC皮質/髓質=0.847/0.915),同時原位與正常移植腎亦未見明顯差異,但腎髓質明顯高于皮質,這與多數BOLD-研究報道[17-20]基本一致且高于1.5 T MR 報道定量數據[21-22],文獻[23]認為,髓質PaO2<40 mm Hg,其氧含量輕微變動即會引起脫氧血紅蛋白濃度或脫氧/氧合血紅蛋白比例很大變化,而皮質(PaO2>50 mm Hg)血紅蛋白處于解離曲線上段,氧含量輕微變化不會以髓質相似程度影響脫氧血紅蛋白濃度,本研究實驗足于反映腎皮髓質脫氧血紅蛋白的分布特點。說明通過CMRtools數據處理,梯度多回波-成像可滿足原位腎、髂窩移植腎臨床應用要求,具備腎臟氧含量評價科學性、可行性與創新性,筆者推薦可在未裝備高級掃描序列與專業軟件的高場強磁共振上推廣應用。
筆者分析原始圖像及軟件發現,正常腎圖像質量良好、皮髓質分界(Cortico-medullary differentiation,CMD)隨回波延長逐漸對比清晰,第八個回波37.2 ms時可獲得良好CMD以定位腎皮髓質區放置ROI,這正好與正常髓質橫向弛豫T2*值接近。部分原位左腎、髂窩移植腎出現的輕微磁敏感偽影在一定程度上影響整體腎臟評價,原因可能為與右腎相比,左腎、移植腎更毗鄰腸道,而腸道氣體與腎臟磁敏感性差異增大所致,通過軸位成像以及減少腸道氣體可減輕或抑制該偽影。此外,筆者還發現CMRtools只能依賴灰階對比而無法提供偽彩圖輔助定位皮髓質,同時軟件不能拆分不同層面多回波圖像導致序列每次屏氣僅采集一層,多層掃描則需多次定位、重復序列執行,這必然延長掃描時間、降低嚴重患者依從性,此外單層掃描可能會導致雙側評估一致性降低,因為通過一側腎門的定位可能會在對側前后偏離、重疊部分皮質導致部分容積效應,這有可能引起左右腎測量誤差加大。
志謝 廣西醫科大學統計教研室主任黃高明教授、解放軍第303醫院信息中心藍華分別對本研究給予的統計學指導和圖像后處理
參考文獻[References]
[1]Pedersen M, Dissing TH, Morkenborg J, et al.Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction.Kidney Int, 2005, 67(6): 2305-2312.
[2]Neugarten J.Renal BOLD-MRI and assessment for renal hypoxia.Kidney Int, 2012, 81(7): 613-614.
[3]Yang ZH, Feng F, Wang XY.A guide to technique of magnetic resonance imaging.Beijing: People’s Military Medical Press, 2014: 11.
楊正漢, 馮逢, 王霄英, 主編.磁共振成像技術指南.北京: 人民軍醫出版社, 2014: 11.
[4]Prasad PV, Edelman RR, Epstein FH.Noninvasive evaluation of intrarenal oxygenation with BOLD MRI.Circulation, 1996, 94(12): 3271-3275.
[5]Gloviczki ML, Saad A, Textor SC.Blood oxygen leveldependent (BOLD) MRI analysis in atherosclerotic renalartery stenosis.Curr Opin Nephrol Hypertens, 2013, 22(5): 519-524.
[6]Zhang XD, Mi R, Wang J, et al.Feasibility of non-invasively quantitative measurements of intrarenal oxygen extraction fraction (OEF) in rabbit with unilateral renal artery stenosis using MRI.Radiol Pract, 2015, 30(5): 519-524.
張曉東, 米悅, 王晶, 等.基于MRI技術定量測量單側腎動脈狹窄動物模型腎臟氧攝取分數的初步研究.放射學實踐, 2015, 30(5): 519-524.
[7]Zhang YY, Xu RT, Liu Y, et al.BOLD MRI in the evaluation of oxygenation level in renal cell carcinoma and adjacent renal tissue.Chin J Med Imaging Technol, 2012, 28(4): 756-759.
張瑩瑩, 徐榮天, 劉屹, 等.BOLD MRI分析腎癌及癌旁腎組織氧合狀況.中國醫學影像技術, 2012, 28(4): 756-759.
[8]Jiang ZX, Wang Y, Ding JL, et al.Assessment of renal injury in diabetic nephropathy using blood oxygenation level-depentent MRI.Chin J Magn Reson Imaging, 2015, 6 (7): 524-528.
蔣振興, 王毓, 丁玖樂, 等.血氧水平依賴MRI評估糖尿病腎病腎功能損傷的研究.磁共振成像, 2015, 6(7): 524-528.
[9]Djamali A, Sadowski EA, Samaniego-Picota M, et al.Noninvasive assessment of early kidney allograft dysfunction by blood oxygen level-dependent magnetic resonance imaging.Transplantation, 2006, 82(5): 621-628.
[10]Chou SY, Porush JG, Faubert PF.Renal medullary circulation: hormonal control.Kidney Int, 1990, 37(1): 1-13.
[11]Prasad PV.Evaluation of intra-renal oxygenation by BOLD MRI.Nephron Clin Pract, 2006, 103(2): C58-C65.
[12]Farman N, Corthesy-Theulaz I, Bonvalet JP, et al.Localization of alpha-isoforms of Na+-K+-ATP ase in rat kidney by in situ hybridization.Am J Physiol, 1991, 260(3 Pt 1): C468-C474.
[13]Wu XD, Jing YF, Pei FY, et al.Value of magnetic resonance imagingtests in detecting heart and liver iron overload in patients with β-thalassemia major.J South Med Univ, 2013, 33(2): 249-252.
吳學東, 井遠方, 裴夫瑜, 等.磁共振成像()檢測重型地中海貧血患者心臟、肝臟鐵負荷及其臨床意義.南方醫科大學學報, 2013, 33(2): 249-252.
[14]Huang L, Han R, Li ZW, et al.Quantitative assessment of iron load in myocardial overload rabbit model: preliminary study of MRI T2*map.Chin J Radiol, 2014, 48(3): 236-240.
黃璐, 韓瑞, 李志偉, 等.MRI有效馳豫時間圖對兔心肌鐵超負荷模型鐵負荷定量的初步研究.中華放射學雜志, 2014, 48(3): 236-240.
[15]Huang HB, Zhou YL, Li ZZ, et al.Feasibility of multiple-echo GRE with parameters optimized protocol at 3.0 T MRI.Chin J Magn Reson Imaging, 2015, 6(7): 529-534.
黃海波, 周亞麗, 李致忠, 等.前瞻性3.0 T MRI梯度多回波序列參數優化可行性研究.磁共振成像, 2015, 6(7): 529-534.
[16]Long LL, Peng P, Huang ZK, et al.Liver iron quantification by 3.0 T MRI: calibration on a rabbit model.Chin J Magn Reson Imaging, 2012, 3(6): 451-455.
龍莉玲, 彭鵬, 黃仲奎, 等.鐵超負荷兔模型3.0 T MRI定量肝鐵沉積可行性研究.磁共振成像, 2012, 3(6): 451-455.
[17]Wang DL, Zhou J, Li HQ, et al.Assessment of BOLD MRI to renal oxygenation.Zhejiang Clin Med J, 2014, 16(10): 1565-1568.
王大麗, 周健, 李清海.腎臟缺氧的血氧水平依賴性磁共振成像評估.浙江臨床醫學, 2014, 16(10): 1565-1568.
[18]Shi HL, Zheng ZF, Ma H, et al.Blood oxygen level dependent MRI of normal kidney and its correlation with physiological indexes.Tianjin Med J, 2014, 42(6): 619-621.
石會蘭, 鄭振峰, 馬慧, 等.正常腎臟血氧依賴磁共振成像特點及與生理指標相關性研究.天津醫藥, 2014, 42(6): 619-621.
[19]Liu JH, Liu AL, Ning DX, et al.Blood oxygen level dependent MRI in kidney of healthy volunteers: comparison between 1.5 T and 3.0 T MRI.Biom Engin Clin Med, 2011, 15(3): 251-253.
劉靜紅, 劉愛連, 寧殿秀, 等.正常志愿者腎臟血氧水平依賴MRI-1.5 T與3.0 T MRI 對比.生物醫學工程與臨床, 2011,15(3): 251-253.
[20]Tumkur S, Vu A, Li L, et al.Evaluation of intrarenal oxygenation at 3.0 T using 3-dimensional multiple gradientrecalled echo sequence.Invest Radiol, 2006, 41(2): 81-184.
[21]Xu XQ, Li X, Lin XZ, et al.Clinical application of blood oxygenation level-dependent MR imaging of kidney: a preliminary Study.J Diagn Concepts Pract, 2012, 11(2): 136-140.
徐學勤, 李曉, 林曉珠, 等.腎臟血氧水平依賴MRI的初步應用.診斷學理論與實踐, 2012, 11(2):136-140.
[22]Xin LP, Xie JX, Liu JY, et al.A preliminary study of blood oxygen-level dependent MRI in patients with chronic kidney disease.Magn Reson Imaging, 2012, 30(3): 330-335.
[23]Wu G, Yu YQ, Qing YF.Principle and research progress of BOLD functional magnetic resonance imaging of kidney.Int Med Radiol, 2010, 33(4): 336-339.
吳剛, 余永強, 錢銀鋒.腎臟BOLD功能磁共振成像基本原理與研究進展.國際醫學放射學雜志, 2010, 33(4): 336-339.
DOI:10.12015/issn.1674-8034.2016.01.012
文獻標識碼:A
中圖分類號:R445.2;R692
收稿日期:2015-09-28
通訊作者:
基金項目: