孟天竹,朱同彬,張金波,2,3,蔡祖聰,2,3*
(1 南京師范大學地理科學學院,南京 210023;2 江蘇省物質循環與污染控制重點實驗室,南京 210023;3 江蘇省地理信息資源開發與利用協同創新中心,南京 210023)
?
強還原處理中pH對硫酸根去除效果及產物的影響①
孟天竹1,朱同彬1,張金波1,2,3,蔡祖聰1,2,3*
(1 南京師范大學地理科學學院,南京 210023;2 江蘇省物質循環與污染控制重點實驗室,南京 210023;3 江蘇省地理信息資源開發與利用協同創新中心,南京 210023)
摘 要:強還原滅菌法(reductive soil disinfestation,RSD),即淹水加有機物料創造強還原條件,可以有效修復退化土壤,但對硫酸根去除效率低。為探索RSD處理時pH對去除效果的影響,本試驗選取積累嚴重的退化蔬菜地土壤設置5個處理:淹水(CK);淹水+紫花苜蓿(RSD0);淹水+紫花苜蓿+石灰,調節土壤至不同pH(分別標記為RSD1、RSD2和RSD3)。培養結束后CK處理中含量仍高達S 691 mg/kg,顯著高于RSD處理中含量。在RSD處理中,含量隨著pH的提高而下降,但其他形態硫含量顯著升高,且施加石灰處理的土壤中總硫含量高于不加石灰的處理。由此說明,在強還原處理時施用石灰生成硫酸鈣沉淀,可有效降低含量,但不利于降低總硫含量。
關鍵詞:退化土壤;RSD;石灰;
因復種指數高、受季節影響小等優點,近30年來,我國的設施蔬菜栽培種植面積持續增長,至2013年已達到165萬hm2,占農田面積的14.5%[1]。值得注意的是,設施蔬菜種植過程中施用大量化肥,易引起土壤酸化、鹽漬化、硝態氮及硫酸根大量積累和土傳病害的發生[2-5],導致土壤退化,影響設施蔬菜種植的可持續發展。
近年來,強還原土壤滅菌法(reductive soil disinfestation,RSD)作為一種環境友好型修復退化土壤的方法在美國、荷蘭和日本被廣泛采用[4,6-7],該方法包括以下步驟:①向土壤中添加易降解有機物料,如:植物秸稈和綠肥等;②淹水或灌溉至土壤水分飽和;③覆膜以隔絕土壤與大氣的氣體交換。RSD方法創造的強還原條件可以殺滅土壤中的土傳病原菌和根結線蟲[7-8],并可有效改善土壤結構[9-10],去除土壤中累積的硝態氮(NO3-),降低土壤電導率(EC),提高酸化土壤的pH[5],因而不僅是有效的土壤滅菌方法,而且也是有效地改良退化土壤理化性質的方法[11-12]。

但是,有研究指出硫酸還原菌在pH為中性(pH = 6~8)的條件下生長速度最快且濃度顯著下降[16-19],而在酸性條件下硫酸還原菌生長幾乎可以忽略不計[20-21]。一般情況下,退化設施蔬菜地土壤酸化嚴重(pH = 4~5),因此,調節土壤pH至中性,可能會促進硫酸還原菌的活性,提高的去除效率。工業廢水(如礦業、食品加工業和造紙業等)處理過程中,為提高硫酸根還原菌對的去除效率,通常會施加NaOH、Ca(OH)2或CaO提高酸性廢水pH[16,22]。施撒石灰是一種常見的提高土壤pH的農業措施,本研究選取累積的退化設施蔬菜地土壤,采用RSD處理,同時添加石灰調節土壤至不同pH,研究pH對去除效率及其產物的影響。
1.1 試驗材料
供試土壤采自安徽省烏江鎮和縣郊區(31°51′N,118°45′E)退化嚴重的設施蔬菜地。該地已種植大棚作物近10年,每年種植2~3茬(辣椒、西紅柿、茄子、甜瓜和四季豆)。土壤類型為普通簡育水耕人為土。在大棚內隨機選取10個樣地采集土樣,采樣深度為0~20 cm。剔除土壤石塊和植物根系后,將新鮮土壤混合均勻,過2 mm篩,用塑封袋密封,于4℃下保存。供試土壤pH 4.4,電導率0.74 mS/cm,總碳15.9 g/kg,總氮2.08 g/kg,總硫1.02 g/kg,28.9 mg/kg,147 mg/kg939 mg/kg,土壤體積質量 1.07 g/cm3。
RSD處理以紫花苜蓿為有機物料。供試紫花苜蓿購于山東省濱州市無棣縣,60oC 烘干后粉碎,過0.25 mm篩。紫花苜蓿總碳含量為549 g/kg,總氮20.3 g/kg,總硫1.63 g/kg。
1.2 試驗設計
試驗設置5個處理:對照(淹水,CK);淹水+紫花苜蓿(RSD0);淹水+紫花苜蓿+石灰,石灰添加量分別為1.88、3.58和5.28 g/kg干土,調節土壤pH至6.7、7.7和8.4,分別標記為RSD1、RSD2和RSD3。紫花苜蓿添加量為4.67 g/kg干土,折合大田施用量為9.8 t/hm2,隨紫花苜蓿添加到土壤的硫為10.9 mg/kg。
稱取相當于210 g干土重的新鮮土壤與紫花苜蓿和不同用量的石灰充分混勻后裝入PVC柱中(直徑5 cm,高15 cm)。土層厚度為10 cm,體積質量1.07 g/cm3。按水土比1︰1(質量比)加入蒸餾水,形成厚約為1 cm的水層。35℃ 恒溫培養箱中培養360 h。分別在第24、48、72、120、240和360 h測定土壤氧化還原電位和pH,培養360 h后破壞性采樣。采樣時先打開PVC柱底的閥門將柱中的自由水排出,待水排干后(約10 min)關上閥門,將柱中土壤充分混勻。其中,一部分土樣用于土壤含水量測定,剩下的土樣測pH,EC,和總硫含量。定量淋溶液的體積后,過濾,分析和濃度。
1.3 測定方法
土壤pH(水土比2.5︰1)采用pH計(Mettler S220,瑞士)測定,土壤Eh用ORP檢測器(Mettler S220,瑞士)測定,土壤EC值(水土比5︰1)采用電導率儀(KangYi Corp.,中國)測定,土壤總碳和總氮采用SerCon 20-22同位素質譜儀(SerCon Ltd,Crewe,美國)測定。土壤用2 mol/L KCl(水土比5︰1)浸提,25℃、300 r/min下震蕩1 h,定量濾紙過濾,采用流動分析儀測定浸提液中的含量(Skalar,Breda,荷蘭)。土壤用0.016 mol/L KH2PO4(水土比5︰1)浸提,25℃、300 r/min下震蕩1 h,8 000 r/min離心10 min,取上清液過0.45 μm 濾膜后用液相色譜測定濾液中濃度(Thermo Dionex ICS- 1100,美國)。土壤在60℃下烘干研磨過100目篩,采用元素分析儀(Elementar,Vario MAX CNS,德國)測定總硫含量。
1.4 數據處理
C(N)= V × L(N)/ w + C(N)R
采用SPSS 17.0軟件中Pearson相關系數進行相關性分析,采用方差分析和Duncan法進行處理間差異顯著性檢驗(α = 0.05)。
2.1 土壤pH、EC 和Eh變化
培養結束后,各處理土壤的pH均顯著高于土壤初始pH(4.38)(P<0.05,表1)。不同處理的土壤pH在處理過程中的變化趨勢不同(圖1)。CK和RSD0處理的土壤pH分別升高至4.91和5.85,但RSD1、RSD2和RSD3處理pH分別降至6.55、7.07和7.43,各處理間pH差異顯著(P<0.05)。同時,各處理土壤EC值顯著下降,CK、RSD0、RSD1、RSD2和RSD3處理EC值由初始的0.74 mS/cm分別降至0.53、0.39、0.31、0.29和0.27 mS/cm。
在培養過程中各處理的土壤Eh均下降,但下降模式和速率不同(圖2),表現為pH越高,Eh下降速率越快。CK處理的土壤Eh緩慢下降,培養結束時僅從初期的412 mV下降到340 mV,RSD0處理的土壤Eh下降到 -100 mV以下需要240 h,而RSD+石灰處理僅需48 h,而后基本維持在 -100 mV以下(圖 2)。培養結束時的土壤Eh與土壤pH呈顯著負相關關系(r = -0.85,P<0.01),與EC呈顯著正相關關系(r = 0.93,P<0.01,表 2)。

表1 培養結束后不同處理的土壤理化性質Table 1 Soil properties under different treatments at the end of incubation

圖1 淹水條件下不同處理土壤pH的變化Fig.1 Changes in soil pH values under different treatments during 360 h incubation period

圖2 淹水條件下不同處理土壤Eh的變化Fig.2 Changes in soil Eh values under different treatments during 360 h incubation period

表2 培養結束時不同土壤理化性質之間的相關系數Table 2 Correlation coefficients between different soil properties at the end of incubation
2.2 土壤氮、硫含量的變化
淹水添加紫花苜蓿可以有效去除土壤中累積的硝態氮。培養360 h后,CK處理中含量從初始的147 mg/kg下降至30.3 mg/kg,而RSD處理均降至1 mg/kg以下(表1)。含量變化與相反,培養結束后CK、RSD0、RSD1、RSD2和RSD3處理中含量分別升至56.5、50.4、55.9、72.4和81.0 mg/kg,比初始值28.9 mg/kg均有顯著提高(P<0.05,表1)。
與過去的研究結果相一致[5],本試驗中RSD處理快速降低土壤Eh且完全消除了土壤中累積的單獨淹水處理(CK)土壤Eh下降非常緩慢(圖1),硝態氮也未能完全去除(表1),可能與供試土壤易降解有機碳不足有關,因而不能有效還原硝態氮及其他氧化物質。淹水條件下添加苜蓿,提供了大量的易降解有機物,刺激了土壤微生物活性,造成了Eh的快速下降和有效去除。由于和其他氧化物質還原消耗大量H+,使土壤pH顯著上升(表1),因此RSD可以有效地提高酸化土壤的pH。在RSD處理過程中,由于有機氮的礦化和硝態氮異化還原為銨[23-24],土壤中含量顯著升高(表1)。文獻資料表明,導致設施蔬菜地土壤次生鹽漬化的鹽主要為硫酸鹽和硝酸鹽[3]。RSD處理幾乎全部去除了硝酸根,大幅度降低了硫酸根含量,所以,經RSD處理后土壤的次生鹽漬化程度下降,表現為EC值的降低(表1)。
RSD處理后,土壤回復到落干狀態,厭氧條件下轉化生成的有機硫和硫化物可能會再次礦化或氧化生成土壤再次酸化后硫酸鈣會解離成所以,RSD處理時,添加石灰對的轉化產物的長期影響還需要進一步試驗驗證。添加石灰有利于增加和提高微生物的數量和活性,從而消耗更多的氧氣,促進了RSD處理土壤Eh的下降(圖2)。快速強還原條件可以有效殺滅病原菌菌絲及孢子,有利于增強RSD的殺菌效果[34-36]。此外,RSD處理時添加石灰提高了處理后的pH,為有益微生物的生長提供了更好的環境條件,不利于偏好酸性環境的病原菌的生長。然而,有機物料厭氧降解產生有機酸是RSD方法殺滅病原菌的一個重要機制[37-39],只有未電離狀態的有機酸可穿透細胞膜,具有殺菌作用,而未電離狀態的有機酸含量和土壤pH呈負相關關系[40],施加石灰會降低未電離狀態的有機酸。因此,施加石灰是否可以增強RSD方法的滅菌效果需要進一步研究。由于添加石灰的正反效應可能同時發生,RSD處理時添加石灰的實際效果需要田間試驗的驗證。
RSD處理時施加石灰進一步地改善土壤酸化和鹽漬化。同時,施加石灰可以有效降低土壤濃度,但減少的大部分并未從土壤中脫除而是轉化為其他硫形態繼續殘留在土壤中。施加石灰對強還原方法修復退化土壤的實際效果需要田間試驗的驗證。
參考文獻:
[1]Food and Agriculture Organization(FAO).United Nations(2013)FAO statistical databases[R].2013.http://faostat.fao.org/default.aspx.
[2]Blok W J,Lamers J G,Termorshuizen A J,et al.Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping[J].The American Phytopathological Society,1999,90:253-259
[3]Cao Z H,Huang J F,Zhang C S,et al.Soil quality evolution after land use change from paddy soil to vegetable land[J].Environmental Geochemistry and Health,2004,26:97-103
[4]Messiha N A S,Diepeningen A D,Wenneker M,et al.Biological soil disinfestation(RSD),a new control method for potato brown rot,caused by Ralstonia solanacearum race 3 biovar 2[J].European Journal of Plant Pathology,2007,117:403-415
[5]朱同彬,張金波,蔡祖聰.淹水條件下添加有機物料對蔬菜地土壤硝態氮及氮素氣體排放的影響[J].應用生態學報,2012,23:109-114
[6]Momma N.Biological soil disinfestation(BSD)of soilborne pathogens and its possible mechanisms[J].Japan International Research Center for Agricultural Sciences,2008,42:7-12
[7]Butler D M,Rosskopf E N,Kokalis-Burelle N,et al.Exploring warm-season cover crops as carbon sources for anaerobic soil disinfestation(ASD)[J].Plant and Soil,2011,355:149-165
[8]Lamers J G,Wanten P J,Blok W J,et al.Biological soil disinfestation:A safe and effective approach for controlling soilborne pests and diseases[J].Agroindustria,2004,3:289-291
[9]Akhtara M,Malik A.Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes:A review[J].Bioresource Technology,2000,74:35-47
[10]Oka Y.Mechanisms of nematode suppression by organic soil amendments—A review[J].Applied Soil Ecology,2010,44:101-115
[11]蔡祖聰,張金波,黃新琦,等.強還原土壤滅菌防控作物土傳病的應用研究[J].土壤學報,2015,52(3):469-476
[12]黃新琦,溫騰,孟磊,等.土壤厭氧還原消毒對尖孢鐮刀菌的抑制研究[J].土壤,2014,46(5):851-855
[13]Koike S,Subbarao K,Davis R M,et al.Vegetable Diseases Caused by Soilborne Pathogens[M].Oakland,California:Univeristy of California Publication,2003
[14]Yoda M,Kitagawa M,Miyaji Y.Long term competition between sulfate-reducing and methane-producing bacteria for acetate in anaerobic biofilm[J].Water Research,1987,21:1 547-1 556.
[15]Herlihy A T,Mills A L,Hornberger G M,et al.The importance of sediment sulfate reduction to the sulfate budget of an impoundment receiving acid mine drainage[J].Water Resources Research,1987,23(2):287-292
[16]Elliott P,Ragusa S,Catcheside D.Growth of sulfatereducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage[J].Water Reasearch,1998,32(12):3 724-3 730
[17]Liang F,Xiao Y,Zhao F.Effect of pH on sulfate removal from wasterwater using a bioelectrochemical system[J].Chemical Engineering Journal,2013,218:147-153
[18]Widdel F.Microbiology and Ecology of Sulfate- and Sulfur-reducing Bacteria[M]// Zehnder A J B.Boilogy of anaeraboc microorganisms.New York:Wiley & Sons Interscience,1988:469-585
[19]Zhao C,Yang Q,Chen W,et al.Isolation of a sulfate reducing bacterium and its application in sulfate removal from tannery wasterwater[J].African Journal of Biotechnol,2010,10:11 966-11 971
[20]Fortin D,Davis B,Beveridge T J.Role of Thiobacillus and sulfate-reducing bacteria in iron bicycling in oxic and acidic mine tailings[J].Microbiology Ecology,1996,21:11-24
[21]O’Flaherty V,Mahony T S,O'Kennedy R,et al.Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic,syntrophic and sulphate-reducing bacteria[J].Process Biochemistry,1998,33:555-569
[22]Lens P,Hulshoff Pol L.Environmental Technologies to Treat Sulfur Pollution:Principles and Engineering[M].London:International Association on Water Quality,2000[23]Burgin A J,Hamilton S K.Have we overemphasized the role of denitrification in aquatic ecosystems:A review of nitrate removal pathways[J].Frontiers in Ecology and the Environment,2005,5:89-96
[24]Meng T Z,Zhu T B,Zhang J B,et al.Liming accelerates theremoval and reduces N2O emission in degraded vegetable soil treated by reductive soil disinfestation(RSD)[J].Journal of Soils and Sediments,2015,15(9):1 968-1 976
[25]Goh,K,Gregg,P.Field studies on the fate of radioactive sulphur fertilizer applied to pastures[J].Fertilizer Research,1982,3(4):337-351
[26]Wu J,O'Donnell A G,Syers J K.Influences of glucose,nitrogen and plant residues on the immobilization of sulphate-S in soil[J].Soil Biology and Biochemistry,1995,27(11):1 363-1 370
[27]Curtin D,Campbell C A,Jalil A.Effects of acidity on mineralization:426 pH-dependence of organic matter mineralization in weakly acidic soils[J].Soil Biology and Biochemistry,1998,30:57-64
[28]Nyborg M,Hoyt P B.Effects of soil acidity and liming on minerazation of soil nitrogen[J].Canadian Journal of Soil Science,1978,58:331-338
[29]Al-Zuhair S,El-Naas M H,Al-Hassani H.Sulfate inhibition effect on sulfate reducing bacteria[J].Journal of Biochemical Technology,2008,1:39-44
[30]Perry R H,Green D W,Maloney J O.Perry’s Chemical Engineer’S Handbook[M].Singapore:McGraw-Hill,1984[31]McLaren R G,Cameron K C,Fraser P M.A comparison of the effects of subsoiling on plant uptake and leaching losses of sulphur and nitrogen from a simulated urine patch[J].Developments in Plant and Soil Sciences,1993,54:495-498
[32]Eriksen J,Murphy M D,Schnug E.The soil sulphur cycle[J].Nutrients in Ecosystems,1998,2:39-73
[33]Devai I,DeLaune R D.Formation of volatile sulfur compounds in salt marsh sediment as influenced by soil redox condition[J].Organic Geochemistry,1995,23(4):283-287
[34]Huang X,Wen T,Zhang J,et al.Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f.sp.cubense[J].Biocontrol,2015,60(1):113-124
[35]Lamers J G,Wanten P J,Blok W J.Biological soil disinfestation:A safe and effective approach for controlling soilborne pests and diseases[J].Agroindustria,2004,3:289-291
[36]Butler D M,Rosskopf E N,Kokalis-Burelle N,et al.Exploring warm-season cover crops as carbon sources for anaerobic soil disinfestation(ASD)[J].Plant and Soil,2012,355:149-165
[37]Oka Y.Mechanisms of nematode suppression by organic soil amendments—A review[J].Applied Soil Ecology,2010,44:101-115
[38]Momma N,Kobara Y,Uematsu S,et al.Development of biological soil disinfestations in Japan[J].Applied Microbiology and Biotechnology,2013,97(9):3 801-3 809
[39]Mowlick S,Inoue T,Takehara T,et al.Changes and recovery of soil bacterial communities influenced by biological soil disinfestation as compared with chloropicrintreatment[J].AMB Express,2013,3:46-58
[40]McElderry C F,Browning M,Amador J A.Effect of shortchain fatty acids and soil atmosphere on Tylenchorhynchus[J].Journal of Nematology,2005,37:71-77
Effects of Liming on Sulfate Removal and Transformation in Degraded Vegetable Soil Treated by Reductive Soil Disinfestation(RSD)
MENG Tianzhu1,ZHU Tongbin1,ZHANG Jinbo1,2,3,CAI Zucong1,2,3*
(1 School of Geography Sciences,Nanjing Normal University,Nanjing 210023,China; 2 Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control,Nanjing 210023,China; 3 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China)
Abstract:Reductive soil disinfestations(RSD),namely amending organic materials and mulching or flooding to create strong reductive status,has been widely applied to improve degraded soils,but the removal efficiency of sulfatein RSD is low.To investigate the effect of liming onremoval during RSD treatment,aaccumulated(939 mg/kg)vegetable soil was treated by five treatments:control(flooding only,noted as CK),flooding + alfalfa(RSD0)and RSD0+ lime at three application rates,which adjusted soil pH to 6.7,7.7 and 8.4,noted as RSD1,RSD2and RSD3,respectively.The results showed thatcontent in CK treatment was as high as 691 mg/kg,and was significant higher than those in RSD treatments after the incubation.In RSD treatments,contents decreased with the increase of pH.But,other sulfur(S)forms increased significantly,which indicated that disappearedwas mainly transformed into other S forms.Total S contents in RSD+liming treatments were higher than that in RSD0treatment.The results indicates that liming stimulates the conversion ofinto calcium sulfate,which effectively decreasescontent but cannot decrease total S content.
Key words:Degraded soil; RSD; Lime;
作者簡介:孟天竹(1988—),女,江蘇南京人,博士研究生,主要從事修復退化土壤方面的研究。E-mail:zmeng09@163.com
* 通訊作者(zccai@njnu.edu.cn)
基金項目:①江蘇省自然科學基金項目(BK20140062)、國家自然科學基金項目(41301313,41330744)和江蘇高校優勢學科建設工程項目(PAPD,164320H116)資助。
DOI:10.13758/j.cnki.tr.2016.01.018
中圖分類號:S156