999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

SEVERAL UNIQUENESS THEOREMS OF ALGEBROID FUNCTIONS ON ANNULI?

2016-04-18 05:44:46YangTAN譚洋SchoolofAppliedMathematicsBeijingNormalUniversityZhuhai519087China
關鍵詞:公路工程施工

Yang TAN(譚洋)School of Applied Mathematics,Beijing Normal University,Zhuhai 519087,China

?

SEVERAL UNIQUENESS THEOREMS OF ALGEBROID FUNCTIONS ON ANNULI?

Yang TAN(譚洋)
School of Applied Mathematics,Beijing Normal University,Zhuhai 519087,China

E-mail:shutongtan@sina.com

AbstractIn this paper,we discuss the uniqueness problem of algebroid functions on annuli,we get several uniqueness theorems of algebroid functions on annuli,which extend the Nevanlinna value distribution theory for algebroid functions on annuli.

Key wordsthe Nevanlinna theory;multiple values;the uniqueness of algebroid functions on annuli

2010 MR Subject Classi fi cation34M10;30D35

?Received September 9,2014;revised June 16,2015.Project Supported by the Natural Science Foundation of China(11171013).

1 Introduction

In 1926,Nevanlinna[1]proved the following famous fi ve-value theorem:

For two nonconstant meromorphic functions f(z)and g(z)on the complex plane C,

if they have the same inverse images(ignoring multiplicities)for fi ve distinct values,

then f(z)≡g(z).

After this wonderful work,the uniqueness theory of meromorphic functions in C attracted many investigations[2-5].As the extension of meromorphic functions,the uniqueness of algebroid functions in the complex plane C is an important subject in the value distribution theory.The uniqueness problem of algebroid functions was firstly considered by Valiron,afterwards some scholars got several uniqueness theorems of algebroid functions in the complex plane C[6-13].In 2005,Khrystiyanyn and Kondratyuk proposed the Nevanlinna theory for meromorphic functions in multiply connected domains[14,15].In 2009,Cao and Yi[16]investigated the uniqueness of meromorphic functions sharing some values and some sets on annuli.Thus it is interesting to consider the uniqueness problem of algebroid functions in multiply connected domains.In this paper,we mainly study doubly connected domain.We assume that the readers are familiar with the Nevanlinna theory of meromorphic functions and algebroid functions[17-27].By the doubly connected mapping theorem[28]each doubly connected domain is conformally equivalent to the annulus A(R1,R2)={z:R1<|z|<R2},0≤R1<R2≤+∞.We only consider two cases:

In the latter case the homothetyreduces the given domain to the annulusThus,in two cases every annulus is invariant with respect to the inversion

2 Basic Notions and De finitions

Let Av(z),Av?1(z),···,A0(z)be a group of holomorphic functions which have no common zeros and de fi ne on the annulus

Then irreducible equation(2.1)de fines a v-valued algebroid function on the annulus(1<R0≤+∞).

Let W(z)be a v-valued algebroid function on the annulususe the notations:

where wj(z)(j=1,2,···,v)is a one-valued branch of W(z),n1(t,W)is the counting function of poles of the function W(z)in{z:t<|z|≤1}and n2(t,W)is its counting function of poles in{z:1<|z|≤t}(both counting multiplicity);is the counting function of poles of the functionis its counting function of poles in{z:1<|z|≤t}(both ignoring multiplicity);is the countingfunction of poles of the functionwith multiplicity≤k(or>k)in{z:t<|z|≤1},each point counts only once;is the counting function of poles of the functionwith multiplicity≤k(or>k)in{z:1<|z|≤t},each point counts only once.nx1(t,W)and nx2(t,W)are the counting function of branch points of the function W(z)in {z:t<|z|≤1}and{z:1<|z|≤t},respectively.Nx(r,W)is the density index of branch point of W(z)on the annulus

Let W(z)be an algebroid function on the annulusif there are λ branches of W(z)which take a(∞)as the value in z0point,then we have the fractional power series

n0(r,a)=where n0(r,a)is the counting function of zeros of W(z)?a on the annulus(counting multiplicity).If there are λ branches of W(z)which take∞as the value in z0point,then we have the fractional power series

n0(r,∞)=n0(r,W)=where n0(r,∞)is the counting function of poles of W(z)on the annulus(counting multiplicity).z=z0is a branch point of λ?1 degree of W(z)on its Riemann Surfacedenotes the branch points of W(z)on its Riemann Surface on the annulus

Let W(z)be a v-valued algebroid function which be determined by(2.1)on the annulusWhen a =∞,N0(r,W)=are the counting function of zeros of W(z)?a and ψ(z,a)on the annulus

De finition 2.1Let W(z)be an algebroid function on the annulus+∞),the function

is called the Nevanlinna characteristic of W(z).

De finition 2.2Let W(z)be an algebroid function on the annulus+∞),we denote the de fi ciency of a∈C=C∪{∞}by

and denote the reduced de fi ciency by

3 Some Lemmas

Lemma 3.1(see[14])Let f be a nonconstant meromorphic function on the annulus

where 1≤r<R0.

Lemma 3.2([14],Jensen theorem for meromorphic function on annuli)Let f be a nonconstant meromorphic function on the annulus

where 1≤r<R0.

Lemma 3.3Let W(z)be a v-valued algebroid function which is determined by(2.1)on the annulus

ProofFirst,we have

So,from above determinant we know that J(z)is a holomorphic function on the annulus.In fact,by(2.2),if there are λ branches of W(z)which take a∈C as the value in z0point,then there areitems including the factorin J(z)(τ is the multiplicity of zero),that is:z0is a zero of J(z),the multiplicity of z0isat least.That is to say,the branch points of λ?1 degree of W(z)are zeros of λ?1 degree of J(z)atleast.So(3.1)is true.By substitutinginto J(z),using Lemma 3.2,we get

So we have

Lemma 3.4(the first fundamental theorem for algebroid function on annuli)Let W(z)be a v-valued algebroid function which is determined by(2.1)on the annulusR0≤+∞),a∈C,

ProofBy Viete theorem,we have

Using Lemma 3.2,we get

Among them

because

So

Lemma 3.5(the second fundamental theorem for algebroid function on annuli)Let W(z)be a v-valued algebroid function which is determined by(2.1)on the annulusR0≤+∞),ak(k=1,2,···,p)are p distinct complex numbers(finite or in finite),then we have

N1(r,W)is the density index of all multiple values including finite or in finite,every τ multiple value counts τ?1,and

ProofLet ak∈C(k=1,2,···,p),wj=wj(z)(j=1,2,···,v)are v branches of W(z),by the following identity

Ck=[(a1?ak)(a2?ak)···(ak?1?ak)(ak+1?ak)···(ap?ak)]?1,w′(z)is the derivative of w(z)and satisfies the following equation

By(3.4),

Among them,

So we have

Let

So we get

其次,在施工前期,管理人員對公路工程的具體施工設計和人員安排無法做到合理調配,導致在施工現場工作人員崗位不定,現場混亂,工序復雜,工期拖延,最終出現延工、誤工的現象[3]。而且部分施工隊的進度控制意識薄弱,無法按照施工計劃在規定時間內完成施工任務。個別施工隊為加快工程進度,隨意增加施工人員,而部分施工人員由于沒有接受專業崗位培訓,匆忙上崗,造成部分已經完工的工程質量不合格,因無法通過質量驗收而必須返工,不僅拖延工期更增加了施工成本。

By(3.9),(3.10),(3.11)

Combining(3.6),(3.7),(3.8),(3.12)and using Lemma 3.4 we have

And because

Then

By(3.13)and above formula

Because N0(r,W)≤T0(r,W)+O(1),so(3.14)can be rewritten as the following

So we get(3.16).By substituting(3.16)into(3.15)we have

By(3.17)and Lemma 3.3,we get(3.3).

The remainder of the Second Fundamental Theorem is the following formula,

outside a set of finite linear measure,if r?→R0=+∞;while

outside a set E of r such that

We notice that the following formula is true,

Lemma 3.6(the Cartan theorem for algebroid function on annuli)Let W(z)be a v-valued algebroid function which is determined by(2.1)on the annulusthen we get

ProofLet a be a finite complex number,then we have[2,22]

By(2.1)

We integrate(3.21)on α from 0 to 2π and by(3.20),

By(3.23),(3.24)and(3.25),

By(3.26)and(3.27),(3.19)is true.

Lemma 3.7Let W(z)be a v-valued algebroid function which be determinated by(2.1)on the annulusif the following conditions are satis fied

then W(z)is an algebraic function.

So we have

Because therefore

So we get

On the other hand,there is the following formula by Viete theorem of algebraic equation

where(α1,α2,···,αv?j)is the combination of taking v?j numbers from(1,2,···,v),(?1)αis 1 or-1,which depends onbeing even permutation or odd permutation.Now everyby(3.34),

The right hand side of(3.35)has nothing to do with number j,so any(1<R0≤+∞)

Then we get

So according to(3.33)and(3.37),we have

According to(3.38)and(3.39),we have

By the conditions of Lemma 3.7 and above formula,all meromorphic functions fjk(z)(0≤j,k≤v)which satisfy the following conditions

By references[14,15]and[22],all functions fjk(z)are rational functions,because A0(z),A1(z),···,Av(z)can’t have nonconstant common factor,so all Aj(z)(j=1,2···v)must be polynomials.Then W(z)degenerates an algebraic function.

Remark 3.8Let W(z)be an algebroid function on the annulus+∞)and let a be a complex number.We useto denote the set of zeros of W(z)?a with multiplicity no greater than k,in which each zero is counted only once.

Remark 3.9Now let W(z)be a v-valued algebroid function which is determined by(2.1)on the annulusbe aμ-valued algebroid function which is determined by the following equation on the annulus

Without loss of generality,letdenotes the counting function of the common values of=a with multiplicity≤k on the annulus+∞),each point counts o︿nly once.And let

4 Main Results

Furthermore let

and

where m and n are positive integers in(1,2,···q)and b is an arbitrary complex number.If

By De finition 2.2

Because

By De finition 2.2 we have

From(4.6)and(4.7)

From(4.4),(4.5)and(4.8)we get

From(4.1)

So we can deduce that

Thus we have

where

By similar discussion we get

where

By(4.9),(4.10)and Remark 3.9

R(?,ψ)denotes the resultant of ?(z,W)and ψ(z,W),it can be written as the following

It can be written in another form

So we know that R(?,ψ)is a holomorphic function,using Lemma 3.2,

Then we get

By the conditions of Theorem 4.1,we know that W(z)andtake the same values with multiplicity≤kjabout q distinct aj,each point counts only once,at the same time we getFrom(4.11),(4.12)and Remark 3.9

Hence

From Lemma 3.7 we know that this is not true.Therefore we complete the proof of Theorem 4.1.

Set

where m and n are positive integers in(1,2,···,q).If

ProofSince δ0(aj,W)≥the assertion follows from Theorem 4.1.

If

where m is positive integer in(1,2,···q),then we have

ProofLetting m=n,Corollary 4.3 immediately follows from Corollary 4.2.

If

ProofLetting m=4v+1,Corollary 4.4 immediately follows from Corollary 4.3.

(ii)If q=8v and kj>1 then

(iii)If q=7v and kj>2 then

ProofWe note that

Corollary 4.5 immediately follows from Corollary 4.4.

Thus from Corollary 4.5 we obtain the theorem as following.

References

[1]Nevanlinna R.Einige eindeutigkeitss?tze in der theorie der meromorphen funktionen.Acta Math,1926,48(3/4):367-391

[2]Yi H X,Yang C C.Uniqueness Theory of Meromorphic Function.Beijing:Science Press,1995

[3]Ueda H.Unicity theorems for meromorphic or entire functions.Kodai Math,1980,3(3):457-471

[4]Zhang Q C.The uniqueness of meromorphic functions with their derivatives.Kodai Math,1998,21(2):179-184

[5]Bhoosnurmath S S,Dyavanal R S.Uniqueness and value-sharing of meromorphic functions.Comput Math Appl,2007,53(8):1191-1205

[6]Sun D C,Gao Z S.On the operations of algebroid functions.Acta Math Sci,2010,30B(1):247-256

[7]Sun D C,Gao Z S.Uniqueness theorem for algebroid functions.Journal of South China Normal University,2005,(3):80-85

[8]Yi H X.On the multiple values and uniqueness of algebroid functions.Engineering Math,1991,8(4):1-8

[9]Cao T B,Yi H X.On the uniqueness theory of algebroid functions.Southeast Asian Bull Math,2009,33(1):25-39

[10]He Y Z.On the algebroid functions and their derivatives(I).Acta Mathematica Sinica,1965,15(2):281-295

[11]He Y Z.On the algebroid functions and their derivatives(II).Acta Mathematica Sinica,1965,15(4):500-510

[12]He Y Z.On the multiple values of algebroid functions.Acta Mathematica Sinica,1979,22(6):733-742

[13]Xuan Z X,Gao Z S.Uniqueness theorems for algebroid functions.Complex Var Elliptic Equ,2006,51(7):701-712

[14]Khrystiyanyn A Ya,Kondratyuk A A.On the Nevanlinna theory for meromorphic functions on annuli(I).Matematychni Studii,2005,23(1):19-30

[15]Khrystiyanyn A Ya,Kondratyuk A A.On the Nevanlinna theory for meromorphic functions on annuli(II).Matematychni Studii,2005,24(2):57-68

[16]Cao T B,Yi H X,Xu H Y,et al.On the multiple values and uniqueness of meromorphic function on annuli.Comput Math Appl,2009,58(7):1457-1465.

[17]Sun D C,Gao Z S.Value Distribution Theory of Algebroid Functions.Beijing:Science Press,2014

[18]Hayman W K.Meromorphic Functions.Oxford:Oxford University Press,1964

[19]Yang L.Value Distribution Theory.Beijing:Science Press,1982

[20]Tsuji M.Potential Theory in Modern Function Theory.Tokyo:Maruzen,1959

[21]He Y Z,Gao S A.On algebroid functions taking the same values at the same points.Kodai Math,1986,9(2):256-265

[22]He Y Z,Xiao X Z.Algebroid Functions and Ordinary Di ff erential Equations in the Complex Domain.Beijing:Science Press,1988

[23]He Y Z,Li Y Z.Some results on algebroid functions.Complex Variables Theory Appl,2001,43(3/4):299-313

[24]Sun D C,Gao Z S.On the operations of algebroid functions.Acta Math Sci,2010,30B(1):247-256

[25]Liu H F.On the uniqueness of algebroid functions and their derivatives.Acta Math Sci,2014,34A(5):1296-1303

[26]Wang S M.On the fundamental theorems for reducible algebroid functions.Acta Math Sci,2014,34A(5):1219-1227

[27]Jiang Y B,Gao Z S.Uniqueness of algebroid functions concerning CM shared values.Acta Math Sci,2014,34A(4):796-801

[28]Axler S.Harmonic functions from a complex analysis viewpoint.Amer Math Monthly,1986,93(4):246-258

猜你喜歡
公路工程施工
后澆帶施工技術在房建施工中的踐行探索
公路工程創新管理思路探索
后澆帶施工技術在房建施工中的應用
土木工程施工技術創新探討
公路工程CBR試驗檢測探討
各階段造價控制在公路工程中的應用
江西建材(2018年2期)2018-04-14 08:00:41
公路工程中的水泥比對試驗
中國公路(2017年5期)2017-06-01 12:10:10
土木工程施工實習的探討與實踐
工程量清單在公路工程招投標中的應用
扶貧村里施工忙
河南電力(2016年5期)2016-02-06 02:11:34
主站蜘蛛池模板: 国产高清免费午夜在线视频| 99九九成人免费视频精品| 欧美三级视频网站| 黄色在线网| 伊人久久大香线蕉成人综合网| 色婷婷视频在线| 精品人妻一区二区三区蜜桃AⅤ| 色婷婷色丁香| 国内嫩模私拍精品视频| 大学生久久香蕉国产线观看| 午夜国产小视频| 国产人碰人摸人爱免费视频| 99视频国产精品| AV熟女乱| 国产剧情无码视频在线观看| 高清久久精品亚洲日韩Av| 国产亚洲精品无码专| 国产一区二区三区日韩精品| 69av免费视频| 日韩天堂在线观看| 18禁黄无遮挡网站| 亚洲成a∧人片在线观看无码| 高清免费毛片| 无码综合天天久久综合网| 91久久国产综合精品| 91综合色区亚洲熟妇p| 国产导航在线| 波多野结衣无码视频在线观看| 丁香六月综合网| 99色亚洲国产精品11p| 免费人成又黄又爽的视频网站| 91精品福利自产拍在线观看| 亚洲天堂首页| 日韩国产黄色网站| 57pao国产成视频免费播放| 久久久无码人妻精品无码| 怡红院美国分院一区二区| 日本成人精品视频| 黄片一区二区三区| 免费全部高H视频无码无遮掩| 精品超清无码视频在线观看| 精品91在线| 中文字幕人成人乱码亚洲电影| 国产一区二区精品福利| 5388国产亚洲欧美在线观看| 人妖无码第一页| 日本久久久久久免费网络| 一本大道香蕉久中文在线播放| 精品黑人一区二区三区| 国产免费好大好硬视频| 久久久久亚洲AV成人网站软件| 国产在线一区视频| 搞黄网站免费观看| 高清色本在线www| 欧美、日韩、国产综合一区| 啊嗯不日本网站| 九色在线观看视频| 播五月综合| 日韩毛片在线播放| 亚洲第一区欧美国产综合| 欧美精品在线观看视频| 在线精品亚洲一区二区古装| 日韩无码黄色网站| 免费可以看的无遮挡av无码 | 日韩东京热无码人妻| 国产日本视频91| 国产va在线观看| aaa国产一级毛片| av手机版在线播放| 亚洲国产精品成人久久综合影院| 亚洲日韩精品综合在线一区二区| 国产va在线观看免费| 色丁丁毛片在线观看| 最新精品久久精品| 超清无码一区二区三区| 欧美在线伊人| 91网址在线播放| 国产美女一级毛片| 欧美激情第一欧美在线| 婷婷激情亚洲| 91小视频版在线观看www| 久久人人妻人人爽人人卡片av|