999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

縱向磁場對聚能射流極限拉伸系數(shù)的影響*

2016-04-18 03:08:22黃正祥祖旭東肖強(qiáng)強(qiáng)
爆炸與沖擊 2016年6期
關(guān)鍵詞:磁場理論實(shí)驗(yàn)

馬 彬,黃正祥,祖旭東,肖強(qiáng)強(qiáng),賈 鑫

(南京理工大學(xué)機(jī)械工程學(xué)院,江蘇 南京 210094)

縱向磁場對聚能射流極限拉伸系數(shù)的影響*

馬 彬,黃正祥,祖旭東,肖強(qiáng)強(qiáng),賈 鑫

(南京理工大學(xué)機(jī)械工程學(xué)院,江蘇 南京 210094)

在分析縱向磁場能夠增強(qiáng)聚能射流穩(wěn)定性的基礎(chǔ)上,根據(jù)聚能射流的運(yùn)動(dòng)方程以及聚能射流的塑性失穩(wěn)條件,推導(dǎo)得到了聚能射流在縱向磁場中的極限拉伸系數(shù)計(jì)算公式,并計(jì)算了有、無磁場情況下極限拉伸系數(shù)的比值。通過兩種炸高下的實(shí)驗(yàn)研究對理論模型進(jìn)行了驗(yàn)證。結(jié)果表明:由于磁場的存在而引起的電磁力抑制了聚能射流頸縮的發(fā)展,進(jìn)而延長了射流成型的慣性拉伸階段,最終使聚能射流在磁場中的極限拉伸系數(shù)在一定程度上得到了增加;理論和實(shí)驗(yàn)所得結(jié)果吻合較好。運(yùn)用所建立模型可以較準(zhǔn)確地反映磁場對聚能射流極限拉伸系數(shù)的影響。

流體力學(xué);極限拉伸系數(shù);縱向磁場;聚能射流;穩(wěn)定性

聚能射流穩(wěn)定性是影響其侵徹能力的重要因素之一,聚能射流的失穩(wěn)機(jī)制已經(jīng)引起了廣泛關(guān)注。傳統(tǒng)增加聚能射流穩(wěn)定性的方法主要是,改善藥型罩材料的力學(xué)性能,優(yōu)化藥型罩的結(jié)構(gòu)和尺寸,改進(jìn)藥型罩的加工工藝。在無磁場的自然情況下,聚能射流從頭部到尾部的速度梯度范圍為104~105s-1,開始保持相當(dāng)?shù)耐暾裕罱K將斷裂成許多射流顆粒[1]。不同材料(如銅、鋁、鎳)的聚能射流的斷裂,主要是由材料的塑性失穩(wěn)引起的,其表現(xiàn)是射流表面頸縮的產(chǎn)生和發(fā)展[2]。頸縮發(fā)生之前的階段被稱為慣性拉伸階段,在此階段,聚能射流單元均勻拉伸,呈現(xiàn)近似圓柱形[3]。當(dāng)藥型罩結(jié)構(gòu)以及材料相同時(shí),聚能射流的侵徹能力是由其長度來決定的[4],而射流的長度又主要受到其極限拉伸系數(shù)影響。因此,提高聚能射流侵徹能力的另外方法是,在射流與靶板接觸前,讓聚能射流與縱向磁場進(jìn)行耦合作用,從而提高其穩(wěn)定性,增加極限拉伸系數(shù)。

對自然情況下的聚能射流有一些相關(guān)的研究:E.Hirsch[5-6]和P.C.Chou等[7]推導(dǎo)得到了聚能射流的斷裂時(shí)間計(jì)算公式;J.P.Curtis[8]、E.Hennequin[9]、L.A.Remero[10]和A.V.Babkin等[3,11]從不同的角度發(fā)展了聚能射流的失穩(wěn)模型。隨著現(xiàn)代武器系統(tǒng)的發(fā)展,D.L.Littlefield等[12]、S.V.Fedorov等[13-15]對電磁場與聚能射流的作用機(jī)制進(jìn)行了一定程度的理論研究。

本文中,則采用外加磁場的手段改善聚能射流內(nèi)部的應(yīng)力-應(yīng)變關(guān)系,增加聚能射流的極限拉伸系數(shù)。主要通過建立理論模型,得到與磁場耦合后聚能射流的極限拉伸系數(shù)的計(jì)算公式,計(jì)算有、無磁場情況下聚能射流極限拉伸系數(shù)的比值,并通過實(shí)驗(yàn)驗(yàn)證理論模型的正確與否。

1 理論分析模型

1.1 放電電流特性

圖1為耦合作用示意圖,整個(gè)系統(tǒng)電路為RLC振蕩電路。假設(shè)R、L、C、U0和I(t)分別為整個(gè)電路的電阻、電感、電容、電容器兩端的充電電壓以及回路中的放電電流。根據(jù)電路的特性,放電電流可以表示為:

(1)

加載過程中,由于強(qiáng)電流的作用,整個(gè)回路的溫度會(huì)急劇升高,電路中電阻、電感將會(huì)受到溫度的影響,特別是回路電阻,在強(qiáng)電流加載并發(fā)生電爆炸過程中變化更劇烈。根據(jù)T.J.Tucker等[16]的研究,電路中電阻受溫度的影響在整個(gè)電路加載過程中占主導(dǎo)地位。因此,引入比電阻率β=ρ/ρ0,表達(dá)溫度對整個(gè)系統(tǒng)電阻的影響,其中ρ0、ρ分別是常溫(T=300 K)電阻率和對應(yīng)狀態(tài)下的電阻率。

1.2 磁場進(jìn)化模型

原點(diǎn)選擇在藥型罩的頂部軸線,可以得到強(qiáng)磁體軸線方向上磁感應(yīng)強(qiáng)度的表達(dá)式為:

(2)

1.3 磁場對極限拉伸系數(shù)的影響

根據(jù)聚能射流顆粒的徑向運(yùn)動(dòng)方程,同時(shí)考慮聚能射流與磁場的耦合效應(yīng),軸向應(yīng)力表達(dá)式可重新寫為:

(3)

(4)

假設(shè)感應(yīng)電流的空間密度沿射流單元的徑向方向線性分布,可推導(dǎo)得到射流單元內(nèi)部磁感應(yīng)強(qiáng)度沿徑向方向的分布表達(dá)式[13]:

(5)

式中:Brod是射流單元軸線上的磁感應(yīng)強(qiáng)度值。

結(jié)合式(3)~(5),可得聚能射流橫截面上軸向應(yīng)力的的分布特性為:

(6)

根據(jù)聚能射流的塑性失穩(wěn)條件,可以得到其塑性失穩(wěn)的臨界條件為[17]:

(7)

結(jié)合式(1)~(2),通過積分變換可以得到不同情況下聚能射流的極限拉伸系數(shù)的表達(dá)式:

(8)

根據(jù)上述極限拉伸系數(shù)表達(dá)式,可進(jìn)一步得到存在外加磁場和自然情況下聚能射流極限拉伸系數(shù)的比值:

(9)

2 實(shí) 驗(yàn)

2.1 聚能裝藥

聚能裝藥如圖2所示。實(shí)驗(yàn)中,所使用的聚能裝藥外徑為56 mm,裝藥高度為73 mm,藥型罩壁厚為0.8 mm,錐角為60°;所使用的炸藥為無殼8701,裝藥質(zhì)量為203 g,裝藥密度為1.713 g/cm3,爆速為7 980 m/s。

X射線實(shí)驗(yàn)結(jié)果如圖3所示,主裝藥起爆30 μs后,射流的長度約為167.5 mm,起爆50 μs后,為291.5 mm。其頭部直徑為3 mm,尾部直徑9 mm。射流的頭部速度6510 m/s,尾部速度1180 m/s。根據(jù)F.E.Allison等[18]的虛擬原點(diǎn)理論,基于X射線實(shí)驗(yàn)結(jié)果,計(jì)算可得虛擬原點(diǎn)的坐標(biāo)為:t0=8.8 μs,z0=12.95 mm。

圖2 聚能裝藥Fig.2 Photograph of shaped charge

圖3 起爆后30和50 μs的X射線照片F(xiàn)ig.3 X-rays of shaped charge jet at 30 and 50 μs after initiation

2.2 電路結(jié)構(gòu)

電路結(jié)構(gòu)如圖4所示,根據(jù)此圖可進(jìn)行實(shí)驗(yàn)電路的連接。

根據(jù)理論計(jì)算,設(shè)定合理的延時(shí),使聚能射流通過強(qiáng)磁體時(shí),盡可能充分的與磁場耦合,從而改善射流內(nèi)部的應(yīng)力-應(yīng)變狀態(tài)。使用羅氏線圈測量電流信號,并將所測信號通過外部設(shè)備進(jìn)行記錄存儲(chǔ)。

2.3 負(fù)載

通過強(qiáng)磁體的作用提供縱向磁場,圖5為本次實(shí)驗(yàn)中所使用的強(qiáng)磁體的結(jié)構(gòu)以及實(shí)物圖。實(shí)驗(yàn)前對電路中的相關(guān)電參數(shù)進(jìn)行了測量,測量結(jié)果見表1。圖6為聚能裝藥以及爆炸開關(guān)的實(shí)驗(yàn)布置。

圖5 強(qiáng)磁體結(jié)構(gòu)和實(shí)物Fig.5 High field magnet: structure and actual image

圖6 聚能裝藥和爆炸開關(guān)的設(shè)置Fig.6 Shaped charge and explosive switch

表1 測量參數(shù)Table 1 Measured parameters

圖7 炸高650 mm情況下聚能射流與磁場的耦合時(shí)序圖Fig.7 Sequence diagram of SCJ coupled with a magnetic field with standoff of 650 mm

2.4 時(shí)序分析

設(shè)定實(shí)驗(yàn)炸高分別為490和650 mm。在兩種炸高下,分別進(jìn)行了相應(yīng)的靜態(tài)實(shí)驗(yàn)以及與磁場耦合的實(shí)驗(yàn)。當(dāng)有磁場存在時(shí),兩種炸高下的延時(shí)時(shí)間分別為20和110 μs。以650 mm炸高為例進(jìn)行了相關(guān)分析,時(shí)序圖如圖7所示。由虛擬原點(diǎn)理論以及上述理論模型,可以獲得不同速度的射流單元在任意時(shí)刻的位移以及不同速度單元在強(qiáng)磁體內(nèi)部任意位置處的磁感應(yīng)強(qiáng)度。

3 結(jié)果分析

由于電路強(qiáng)電流作用,假設(shè)電路中導(dǎo)體處于臨界熔化狀態(tài),因此可得β=5.6[16]。結(jié)合式(1)以及相關(guān)電參數(shù),同時(shí)考慮溫度對電導(dǎo)率的影響,得到電容器組充電電壓U0=20.13 kV情況下電路的放電電流理論曲線,并與實(shí)驗(yàn)結(jié)果進(jìn)行對比,如圖8所示。可見,理論計(jì)算與實(shí)驗(yàn)結(jié)果吻合較好。

圖8 動(dòng)態(tài)實(shí)驗(yàn)放電電流信號Fig.8 Discharge current of dynamic experiments

由圖8可知,在前400 μs,通過理論計(jì)算所得放電電流信號與實(shí)驗(yàn)所測信號十分吻合,然而,隨著時(shí)間的推移,理論計(jì)算與實(shí)驗(yàn)信號出現(xiàn)了一定的誤差。誤差產(chǎn)生的原因是,引入的比電阻率參數(shù)β僅考慮強(qiáng)電流工作而產(chǎn)生的熱量用于升高導(dǎo)體的溫度,而忽略了熱量向周圍環(huán)境的散失。溫度的增加,對電感也將產(chǎn)生一定程度的影響,溫度對電感的影響比對電阻率的影響小,因此,未考慮溫度對電感的影響。同時(shí),設(shè)備的測量精度也是引起誤差的原因。通過圖8可以看出,在1 000 μs內(nèi)理論與實(shí)驗(yàn)之間的誤差相對較小,滿足分析490和650 mm兩種炸高情況的精度要求。

結(jié)合式(1)~(2),以及所給的相關(guān)電參數(shù),通過上述理論模型可以得到,聚能射流不同速度單元通過強(qiáng)磁體在不同位置時(shí)的磁感應(yīng)強(qiáng)度,如圖9所示。

圖9 射流單元通過強(qiáng)磁體時(shí)在軸線上的磁感應(yīng)強(qiáng)度Fig.9 Magnetic induction intensities of element of SCJ passing through high field magnet

在炸高490 mm情況下,當(dāng)實(shí)驗(yàn)電路導(dǎo)通時(shí),射流頭部還未進(jìn)入磁體,根據(jù)理論模型可得任意速度的射流單元通過強(qiáng)磁體時(shí)的位移-時(shí)間表達(dá)式,結(jié)合式(2),通過計(jì)算可得到,任意速度的射流單元通過強(qiáng)磁體時(shí),到達(dá)強(qiáng)磁體軸線任意位置時(shí)的磁感應(yīng)強(qiáng)度。通過磁感應(yīng)強(qiáng)度表達(dá)式可以看出,磁感應(yīng)強(qiáng)度是由電流密度以及所處強(qiáng)磁體軸向位置所決定的。

在炸高650 mm情況下,實(shí)驗(yàn)電路閉合時(shí),射流頭部已經(jīng)離開強(qiáng)磁體。這與炸高490 mm情況不同,對于650 mm炸高實(shí)驗(yàn),設(shè)定的延時(shí)時(shí)間為110 μs。實(shí)驗(yàn)電路閉合的瞬間,速度為4.78 mm/μs的射流單元即將進(jìn)入強(qiáng)磁體,速度為6.26 mm/μs的單元已經(jīng)到達(dá)強(qiáng)磁體底部。

對于某個(gè)確定速度的單元,對位移進(jìn)行積分,可以得到該單元通過強(qiáng)磁體時(shí)所經(jīng)歷的磁感應(yīng)強(qiáng)度的平均值;進(jìn)一步對速度積分,即可得到整個(gè)射流通過強(qiáng)磁體的平均磁感應(yīng)強(qiáng)度,計(jì)算結(jié)果見表2。表中,t1是進(jìn)入強(qiáng)磁體的時(shí)刻,t2是離開強(qiáng)磁體的時(shí)刻,Δt是射流單元通過強(qiáng)磁體所用時(shí)間,B是平均磁感應(yīng)強(qiáng)度。

根據(jù)相關(guān)實(shí)驗(yàn)數(shù)據(jù),銅射流的臨界侵徹速度大約為1.0 mm/μs[1]。在研究中,490和650 mm兩種炸高下,所取射流的速度范圍分別是1.0~6.5 mm/μs和1.0~4.78 mm/μs,因此,兩種炸高下,所研究的射流單元從進(jìn)入強(qiáng)磁體到離開強(qiáng)磁體都能受到磁場的作用。計(jì)算結(jié)果見表3。

表2 不同速度的射流單元進(jìn)入和離開強(qiáng)磁體的相關(guān)參數(shù)Table 2 Parameters of jet elements with different velocities entering and leaving high field magnet

表3 理論計(jì)算與實(shí)驗(yàn)對比Table 3 Comparison of theoretical calculation with experiments

圖10 極限拉伸系數(shù)的比值隨磁感應(yīng)強(qiáng)度的變化Fig.10 Change of ratio of coefficient of ultimate elongation with magnetic induction intensity

實(shí)驗(yàn)數(shù)據(jù)表明,自然情況下,射流斷裂時(shí)的截面半徑與初始半徑的比值近似為0.32[19]。有磁場情況下,假設(shè)在起始時(shí)刻聚能射流內(nèi)部與外部的磁感應(yīng)強(qiáng)度相等。基于磁場在介質(zhì)內(nèi)部的“凍結(jié)”效應(yīng),同時(shí)考慮磁場的散失,可得射流斷裂時(shí)刻Brod=10Be。根據(jù)式(9)以及相關(guān)參數(shù),計(jì)算可得存在不同強(qiáng)度的外加磁場與自然情況下聚能射流的極限拉伸系數(shù)的比值,并與實(shí)驗(yàn)結(jié)果進(jìn)行對比,如圖10所示。可見,理論計(jì)算與實(shí)驗(yàn)結(jié)果吻合較好。侵徹后的靶板剖面照片如圖11所示。

理論計(jì)算及相關(guān)的實(shí)驗(yàn)數(shù)據(jù)測量結(jié)果見表3,l是聚能射流的斷裂顆粒長度。對于炸高為490 mm的情況,所施加的磁場的磁感應(yīng)強(qiáng)度為2.02 T,與磁場耦合后的聚能射流的極限拉伸系數(shù)與無磁場耦合的比值為1.28,理論計(jì)算結(jié)果為1.31,相對誤差為2.3%。對于炸高為650 mm的情況,耦合磁場的磁感應(yīng)強(qiáng)度為1.76 T,聚能射流的極限拉伸系數(shù)之比為1.26,理論計(jì)算結(jié)果為1.20,相對誤差為4.8%。炸高為650 mm的聚能射流的斷裂顆粒長度比炸高490 mm的長,主要原因是,炸高490 mm情況下部分聚能射流在侵徹靶板時(shí)尚未完全拉伸,另外,測量誤差也是一個(gè)不可避免的影響因素。

圖11 聚能射流侵徹后的靶板剖面Fig.11 Split targets penetrated by SCJ

4 結(jié) 論

建立并驗(yàn)證了與磁場耦合后聚能射流極限拉伸系數(shù)的計(jì)算模型,理論計(jì)算和實(shí)驗(yàn)結(jié)果吻合較好。

實(shí)驗(yàn)結(jié)果表明,在490和650 mm兩種炸高下,聚能射流所經(jīng)歷的平均磁感應(yīng)強(qiáng)度分別為2.02和1.76 T,兩種炸高下聚能射流與對應(yīng)的磁場耦合后,極限拉伸系數(shù)比自然情況下的相比,分別提高了26%和28%。對于給定的聚能射流,在一定范圍內(nèi),隨著外加磁場的增加,極限拉伸系數(shù)也隨之增加。

[1] Walters W P, Zukas J A. Fundamentals of shaped charges[M]. John Wiley, 1989.

[2] Chou P C, Carleone J. The stability of shaped-charge jets[J]. Journal of Applied Physics, 1977,48(10):4187-4195.

[3] Babkin A V, Ladov S V, Marinin V M, et al. Regularities of the stretching and plastic failure of metal shaped-charge jets[J]. Journal of Applied Mechanics and Technical Physics, 1999,40(4):571-580.

[4] Fedorov S V, Babkin A V, Ladov S V, et al. Possibilities of controlling the shaped-charge effect by electromagnetic actions[J]. Combustion, Explosion and Shock Waves, 2000,36(6):792-808.

[5] Hirsch E. A model explaining the rule for calculating the break-up time of homogeneous ductile metals[J]. Propellants, Explosives, Pyrotechnics, 1981,6(1):11-14.

[6] Hirsch E. A formula for the shaped charge jet breakup-time[J]. Propellants, Explosives, Pyrotechnics, 1979,4(5):89-94.

[7] Chou P C, Flis W J. Recent developments in shaped charge technology[J]. Propellants, Explosives, Pyrotechnics, 1986,11(4):99-114.

[8] Curtis J P. Axisymmetric instability model for shaped charge jets[J]. Journal of Applied Physics, 1987,61(11):4978-4985.

[9] Hennequin E. Modelling of the shaped charge jet break-up[J]. Propellants, Explosives, Pyrotechnics, 1996,21(4):181-185.

[10] Romero L A. The instability of rapidly stretching plastic jets[J]. Journal of Applied Physics, 1989,65(8):3006-3016.

[11] Babkin A V, Ladov S V, Marinin V M, et al. Characteristics of inertially stretching shaped-charge jets in free flight[J]. Journal of Applied Mechanics and Technical Physics, 1997,38(2):171-176.

[12] Littlefield D L, Powell J D. The effect of electromagnetic fields on the stability of a uniformly elongating plastic jet[J]. Physics of Fluids A: Fluid Dynamics, 1990,2(2):2240.

[13] Fedorov S V, Babkin A V, Ladov S V. Salient features of inertial stretching of a high-gradient conducting rod in a longitudinal low-frequency magnetic field[J]. Journal of Engineering Physics and Thermophysics, 2001,74(2):364-374.

[14] Fedorov S V. Magnetic-field amplification in metal shaped-charge jets during their inertial elongation[J]. Combustion,Explosion and Shock Waves, 2005,41(1):106-113.

[15] Fedorov S V, Babkin A V, Ladov S V. Influence of the magnetic field produced in the liner of a shaped charge on its penetrability[J]. Combustion, Explosion and Shock Waves, 1999,35(5):598-599.

[16] Tucker T J, Toth R P. EBW1: A computer code for the prediction of the behavior of electrical circuits containing exploding wire elements[R]. Albuquerque, NM, USA: Sandia Labs, 1975.

[17] Singh M, Bola M S, Prakash S. Determination of dynamic tensile strength of metals from jet break-up studies[C]∥Proceedings of the 19th International Symposium on Ballistics. Interlaken, Switzerland, 2001:7-11.

[18] Allison F E, Bryan G M. Cratering by a train of hypervelocity fragments[C]∥Proceedings of 2nd Hypervelocity Impact Effects Symposium. 1957:81.

[19] Walters W P, Summers R L. An analytical model for the particulation of a jet from a shaped charge liner[J]. Propellants, Explosives, Pyrotechnics, 1995,20(2):58-63.

(責(zé)任編輯 丁 峰)

Influence of longitudinal magnetic field on coefficient of ultimate elongation of shaped charge jet

Ma Bin, Huang Zhengxiang, Zu Xudong, Xiao Qiangqiang, Jia Xin

(SchoolofMechanicalEngineering,NanjingUniversityofScienceandTechnology,Nanjing210094,Jiangsu,China)

The coefficient of the ultimate elongation is one of significant parameters related with theoretical calculations of a shaped charge jet (SCJ). Based on the effect of a longitudinal magnetic field on the stress-strain of SCJ, and following the motion equation and the plastic instability condition, the formula of the coefficient of the ultimate elongation of a shaped charge inside the magnetic field was obtained and, using this formula, the ratio of the coefficient of the ultimate elongation was calculated respectively with and without the existence of a magnetic field. In addition, the theoretical model was verified through the experiments with two different standoffs. The results indicate that the electromagnetic force arising from the deformation of the SCJ due to the magnetic field that has penetrated into its material inhibits the development of the necking, and extends the stretching stage before the SCJ breaks up into particles, thus increasing the coefficient of the ultimate elongation. Predictions from the theoretical calculation are in good agreement with the data obtained from the experiments.

fluid mechanics; coefficient of ultimate elongation; longitudinal magnetic field; shaped charge jet; stability

10.11883/1001-1455(2016)06-0759-08

2015-03-31; < class="emphasis_bold">修回日期:2015-06-11

2015-06-11

國家自然科學(xué)基金項(xiàng)目(11272157);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金項(xiàng)目(20123219120052)

馬 彬(1988— ),男,博士研究生;

黃正祥,huangyu@mail.njust.edu.cn。

O358 <國標(biāo)學(xué)科代碼:1302547 class="emphasis_bold"> 國標(biāo)學(xué)科代碼:1302547 文獻(xiàn)標(biāo)志碼:A國標(biāo)學(xué)科代碼:1302547

A

猜你喜歡
磁場理論實(shí)驗(yàn)
記一次有趣的實(shí)驗(yàn)
西安的“磁場”
堅(jiān)持理論創(chuàng)新
為什么地球有磁場呢
神秘的混沌理論
理論創(chuàng)新 引領(lǐng)百年
相關(guān)于撓理論的Baer模
做個(gè)怪怪長實(shí)驗(yàn)
磁場的性質(zhì)和描述檢測題
NO與NO2相互轉(zhuǎn)化實(shí)驗(yàn)的改進(jìn)
主站蜘蛛池模板: 国产97色在线| 国产成人高清在线精品| 福利片91| 妇女自拍偷自拍亚洲精品| 国产毛片片精品天天看视频| 91久久偷偷做嫩草影院电| 日韩精品毛片人妻AV不卡| 18禁不卡免费网站| 国产伦片中文免费观看| 亚洲侵犯无码网址在线观看| 久久国产香蕉| 国产三级毛片| 园内精品自拍视频在线播放| 亚洲视频黄| 一级毛片免费观看不卡视频| 亚洲一区二区约美女探花| 99视频只有精品| 2020极品精品国产 | 国产一级妓女av网站| 玖玖免费视频在线观看| 欧美97欧美综合色伦图| 久草网视频在线| 免费无码AV片在线观看国产| 三区在线视频| 少妇高潮惨叫久久久久久| 国产福利一区视频| 欧美激情福利| 国产性爱网站| 国产精品久久久精品三级| 精品三级在线| 91精品小视频| 欧美在线综合视频| 欧美性猛交一区二区三区| 一级毛片免费不卡在线 | 欧美区一区二区三| 精品国产香蕉在线播出| 国产一二三区视频| 色网站免费在线观看| 2021天堂在线亚洲精品专区| 亚洲日韩国产精品综合在线观看| 国内精品视频| www.日韩三级| 天天躁夜夜躁狠狠躁图片| 99伊人精品| 人人妻人人澡人人爽欧美一区| 久久亚洲国产视频| 国产成人亚洲欧美激情| 精品无码国产自产野外拍在线| 日韩a级毛片| 国产97公开成人免费视频| 99视频在线免费| 大陆精大陆国产国语精品1024| 精品国产成人av免费| 国产福利一区视频| 91小视频在线观看| 日本道中文字幕久久一区| 伊人久久大香线蕉综合影视| 91精品人妻互换| 美女国产在线| 18禁影院亚洲专区| 91成人在线观看| 国产小视频免费观看| 福利视频一区| 91国内视频在线观看| 国产精品yjizz视频网一二区| 2021国产精品自产拍在线| 亚洲精品视频在线观看视频| 久久久精品无码一区二区三区| 国产欧美日韩91| 国产小视频网站| 97人妻精品专区久久久久| 国产伦精品一区二区三区视频优播 | 美女高潮全身流白浆福利区| 久久国产精品嫖妓| 国产国拍精品视频免费看| 亚洲精品国产成人7777| 欧美一区二区三区国产精品| 欧美日韩精品一区二区在线线| 欧美一级高清片欧美国产欧美| 成人福利在线观看| 国产高清自拍视频| 亚洲福利一区二区三区|