高崇婧,劉麗艷,馬萬里,劉麗華,李一凡
(哈爾濱工業大學 市政環境工程學院 城市水資源與水環境國家重點實驗室 國際持久性有毒物質聯合研究中心,150090 哈爾濱)
?
哈爾濱市油漆工人尿液中PAEs代謝物污染水平
高崇婧,劉麗艷,馬萬里,劉麗華,李一凡
(哈爾濱工業大學 市政環境工程學院 城市水資源與水環境國家重點實驗室 國際持久性有毒物質聯合研究中心,150090 哈爾濱)
摘要:為了解油漆工人體內鄰苯二甲酸酯(phthalate acid esters,PAEs)的污染特征和暴露水平,2013年在哈爾濱市采集了10個油漆工人和10個普通人群的尿液樣品,分析尿液中14種PAEs代謝物的質量分數水平.結果表明,PAEs代謝物普遍存在于油漆工人和普通人群體內,油漆工人尿液中PAEs代謝物的質量分數普遍高于普通人群,鄰苯二甲酸單甲酯(mMP)、鄰苯二甲酸單丁酯(mBP)和鄰苯二甲酸單異丁酯(miBP)為主要代謝物.不同相對分子質量PAEs代謝物的比較表明,油漆工人體內低相對分子質量代謝物的質量分數顯著高于普通人群,說明油漆工人受到油漆涂料中釋放的PAEs污染.所有尿液中PAEs的日暴露量均低于美國環境保護署給出的人體內PAEs最大參考暴露劑量,說明油漆工人和普通人群PAEs的暴露風險均處于安全水平.
關鍵詞:鄰苯二甲酸酯代謝物;尿液;油漆工人;普通人群;暴露評估
鄰苯二甲酸酯(phthalate esters,PAEs)是一類人工合成的化學物質,廣泛應用于塑料制品、食品包裝、建筑材料、醫療用品、清潔劑以及個人護理用品,易揮發進入環境介質中,是普遍存在的環境激素類污染物[1].PAEs可通過呼吸、飲食和皮膚接觸等途徑進入人體[2],低相對分子質量PAEs進入人體后可轉化為相應的水解單酯[3],高相對分子質量PAEs進入人體后首先轉化為其對應的水解單酯,進而在酶的作用下轉化為更高級的代謝產物[4].PAEs代謝物在人體內可與相應的激素受體相結合,影響人體的發育和健康.環境中很少存在PAEs的代謝物,因此,其是一種較合適的反映PAEs暴露的生物標志物[5-6],人體內PAEs代謝物的含量可間接地反映PAEs的暴露水平.研究表明,PAEs代謝物在人的尿液、乳汁、血液和精液中均有檢出[6-11],其中,由于尿液樣本采集方便,是最為廣泛采用的樣本,用以評估PAEs的暴露水平.
PAEs作為增塑劑已廣泛應用于不同行業,PAEs職業暴露人群的健康問題也逐漸受到關注.近年來,職業暴露人群體內PAEs代謝物的質量分數水平在國內外已有報道[12-16],但主要集中在與聚氯乙烯生產相關的行業,關于油漆涂料等環境中從業者的報道較少.PAEs作為增塑劑添加于油漆涂料中可以增強油漆涂料的延伸性[17],但是,PAEs并不與涂料中的高分子基質形成穩定的化學鍵,容易揮發到環境中并經呼吸或食物進入人體,因此,裝修工人等特殊人群有可能受到PAEs的高質量分數暴露.為了了解長期暴露于油漆涂料等環境中的從業者體內PAEs代謝物的污染水平,2013年1月至4月,在黑龍江省哈爾濱市采集了10個油漆工人的尿液樣品,同時采集10個普通人群的尿液樣品作為對照,分析樣品中14種PAEs代謝物的質量分數水平和污染特征,并對人體內PAEs的暴露風險進行評估,研究成果對于減少和控制PAEs對于特殊暴露人群的危害提供了重要參考依據.
1實驗
1.1尿液樣品的采集與保存
2013年1月至4月,在黑龍江省哈爾濱市采集10個油漆工人尿液樣品,同時采集10個普通人群尿液樣品作為對照,采樣人群的年齡為13~60歲,油漆工人從業年限為5~25 a,尿液樣品詳細信息見表1.每個尿液樣品采集8~10 mL,-20 ℃避光保存于10 mL離心管中.

表1 普通人群和油漆工人尿液樣品信息
1.2尿液樣品的處理和儀器分析方法
結合國內外的研究現狀,共選擇14種PAEs代謝物作為目標物,分別為鄰苯二甲酸單甲酯(mMP)、鄰苯二甲酸單乙酯(mEP)、鄰苯二甲酸單丁酯(mBP)、鄰苯二甲酸單異丁酯(miBP)、鄰苯二甲酸單芐酯(mBzP)、鄰苯二甲酸單環已酯(mCHP)、鄰苯二甲酸單(3-羧基丙基)酯(mCPP)、鄰苯二甲酸(2-乙基-5-羧基戊基)單酯(mECPP)、鄰苯二甲酸(2 -羧基甲基己基)單酯(mCMHP)、鄰苯二甲酸(2-乙基-5羥基己基)單酯(mEHHP)、鄰苯二甲酸(2-乙基-5-氧己基)單酯(mEOHP)、鄰苯二甲酸(2-乙基己基)單酯(mEHP)、鄰苯二甲酸單正辛酯(mOP)和鄰苯二甲酸單正壬酯(mNP)(詳細信息見表2).
尿液樣品的前處理方法見文獻[18-19].概述如下:凍存尿液在室溫下緩慢解凍,渦旋混合30 s,取0.5 mL尿液樣品于15 mL玻璃離心管中,加入100 μL質量濃度為250 μg/L的13C和D4標記的混和內標(13C4-mMP,13C4-mEP,13C4-mBP,13C4-mECPP,13C4-mBzP,13C4-mEHP和D4-miBP),200 μL醋酸氨緩沖溶液,50 μL 200 u/mL的β-葡萄糖醛酸酶,37 ℃水浴過夜.水浴后向離心管中加入1 mL磷酸二氫鈉緩沖溶液(pH = 2.0),混合均勻.加入3 mL乙酸乙酯,震蕩萃取60 min,4 500g離心10 min,取上清液,此過程重復兩次,混合上清液.向收集的上清液中加入1 mL超純水,4 500g離心10 min,取上清液,上清液用高純氮氣緩慢濃縮至幾乎干燥,加入0.5 mL乙腈和超純水的混合溶液(體積比1∶9),渦旋混勻,移入棕色樣品瓶中,密封,低溫保存,待儀器分析.采用安捷倫1100高效液相色譜串聯AB SCIEX API 2000三重四極桿質譜儀對PAEs代謝物進行檢測,具體儀器參數見文獻[18].

表2 PAEs名稱、相對分子質量及其對應的代謝物名稱
1.3質量控制和質量保證
在樣品處理過程中,同時進行2個空白實驗和2個基質加標實驗,處理方法與尿液樣品相同,用以檢測方法回收率和基質干擾.空白實驗中各種PAEs代謝物的檢出結果如下(μg/L):mMP(0.99)、mEP(0.06)、mBP(0.09)、miBP(0.08)、mBzP(0.03)、mCPP(0.43)、mEHP(2.06)、mECPP(0.23)、mCMHP(0.76)、mEHHP(0.14),mCHP、mOP、mNP和mEOHP均未檢出.空白樣品中PAEs代謝物的質量分數遠低于其在真實樣品中的質量分數,數據均已扣除空白值.空白樣品和基質加標樣品中14種PAEs代謝物的平均回收率分別為(102±15)%和(98±23)%.為了檢測樣品處理過程中的基質影響和回收率,所有樣品在處理前均加入7種PAEs代謝物的內標,其回收率為(72±15)%,所有數據均經過回收率校正.14種PAEs代謝物的最低定量限(LOQ)范圍為0.1~0.5 μg/L.
2結果與討論
2.1PAEs代謝物的總質量分數水平
14種PAEs代謝物的檢出率和經肌酐校正后的質量分數水平見表3及圖1.所有油漆工人和普通人群尿液樣品中均有PAEs代謝物檢出,說明PAEs普遍存在于哈爾濱市居民的日常生活中.mMP、mBP、miBP、mEP、mECPP、mCMHP、mEHHP和mEOHP在所有尿液樣品中均有檢出,說明其母體DMP、DBP、DIBP、DEP和DEHP是哈爾濱市居民日常生活中所能接觸的主要PAEs.其他6種PAEs代謝物的檢出率相對較少或僅在個別樣品中檢出.

表3 油漆工人和普通人群尿液樣品中14種PAEs代謝物的質量分數水平 μg·g-1 肌酐
油漆工人尿液中PAEs代謝物的總質量分數(∑14Phthalates)范圍為21.03~182.56 μg/g,普通人群尿液中PAEs代謝物的總質量分數(∑14Phthalate)范圍為16.16~57.27 μg/g.油漆工人尿液中PAEs代謝物的最高質量分數(182.56 μg/g)是普通人群尿液樣品中(57.27 μg/g)的3倍,平均質量分數(53.62 μg/g)是普通人群尿液樣品中(27.28 μg/g)的2倍.此外,由表3和圖1可以看出,油漆工人尿液中14種PAEs代謝物的質量分數均大于普通人群(mCPP除外),說明油漆工人體內PAEs的質量分數高于普通人群.有研究表明[17, 20],油漆涂料添加PAEs以增加其延展性,因此,在使用過程中,油漆涂料中含有的PAEs可揮發遷移到環境中,經呼吸、皮膚接觸或飲食攝入等途徑進入人體.油漆工人長期從事油漆涂料的粉刷工作,其工作環境中PAEs的污染質量分數較高,進而導致其體內PAEs的質量分數水平較高.

圖1油漆工人和普通人群尿液樣品中14種PAEs代謝物的質量分數水平(幾何平均)
2.2不同PAEs代謝物的質量分數特征
在14種PAEs代謝物中,mMP在哈爾濱市油漆工人和普通人群尿液樣品中的質量分數最高,mMP是DMP的主要代謝物,說明DMP的暴露水平較高.油漆工人尿液中mMP的質量分數范圍為3.65~154.05 μg/g,普通人群尿液中為3.25~15.39 μg/g,油漆工人尿液中mMP的平均質量分數(14.67 μg/g)是普通人群的2倍(7.33 μg/g),這一結果與已有研究結果不同.Guo等[21]分析了183個中國普通人群尿液樣品中PAEs代謝物的質量分數水平,結果顯示mBP(64.6 μg/L)和miBP(48.6 μg/L)為中國普通人群尿液中主要的PAEs代謝物,質量分數顯著高于mMP(15.5 μg/L).Wang等[22]分析了259個中國中學生尿液樣品,結果顯示mBP(47.5 μg/L)為主要的PAEs代謝物.油漆工人尿液中,mBP和miBP的質量分數范圍分別為2.99~16.17和1.29~21.8 μg/g,平均質量分數分別為8.00和7.00 μg/g.普通人群尿液中,mBP和miBP的質量分數范圍分別為1.88~13.19和2.30~13.85 μg/g,平均質量分數分別為4.44和3.76 μg/g.油漆工人尿液中mBP和miBP的平均質量分數是普通人群的2倍.油漆工人體內mMP、mBP和miBP的質量分數均高于普通人群,表明油漆工人攝入了更多的DMP、DBP和DIBP.研究表明,PAEs廣泛應用于油漆涂料中,且DMP和DBP為墻體涂料中的主要增塑劑[17].mMP、mBP和miBP均為低相對分子質量PAEs的代謝物,低相對分子質量PAEs的揮發性相對較高,容易從油漆涂料中釋放到環境中,所以,油漆工人體內這3種PAEs代謝物的質量分數水平較高.
mECPP、mCMHP、mEHHP、mEOHP和mEHP為DEHP的主要代謝產物[23].DEHP進入人體后,首先代謝為其水解代謝物mEHP,進而代謝為氧化代謝產物mECPP、mCMHP、mEHHP和mEOHP.油漆工人尿液中DEHP代謝物的總質量分數(∑mEHP)范圍為2.71~87.49 μg/g,其最高質量分數是普通人群的5倍,mECPP、mCMHP、mEHHP和mEOHP的質量分數略高于普通人群,但差異不顯著.同時,與mCMHP和mEHP相比,mECPP、mCMHP和mEHHP質量分數相對較高,是DEHP的主要代謝物.通過對DEHP的5種代謝物的相關性分析可知(表4),普通人群尿液樣品中5種代謝物之間具有顯著相關性(P<0.05),油漆工人尿液樣品中5種代謝物之間的相關性相對較差.普通人群尿液樣品中mEHP與其他4種DEHP代謝物均具有顯著相關性(P<0.05),而油漆工人體內mEHP與其他4種DEHP代謝物均無相關性.這一結果表明,普通人群體內mECPP、mCMHP、mEHHP、mEOHP和mEHP是由單一母體(DEHP)代謝而來,而油漆工人體內mEHP可能不是由單一的DEHP代謝而來.研究表明,mEHP不僅可由DEHP代謝產生,也可單獨存在于環境中[24].由此可知,油漆工人的工作環境中存在mEHP的其他污染源.
表4油漆工人和普通人群尿液樣品中DEHP代謝物的相關性分析

類別mECPPmCMHPmEHHPmEOHPmEHPmECPP1mCMHP.697*1油漆工人mEHHP.733*.3091mEOHP.782**.358.988**1mEHP.527.430.321.4181mECPP1mCMHP.842**1普通人群mEHHP.742*.802**1mEOHP.673*.855**.960**1mEHP.782**.661*.888**.794**1
注:* 顯著差異(P<0.05); **差異極顯著(P<0.01).
mBzP、mCPP、mCHP、mNP和mOP在油漆工人和普通人群尿液樣品中的質量分數均不高,且無顯著差異.mBzP、mCPP和mCHP為低相對分子質量PAEs的代謝產物,其在油漆工人體內質量分數較低,說明其母體BBzP和DCHP不是油漆涂料中主要的PAEs添加物.mNP和mOP在油漆工人體內質量分數較低,可能由于mNP和mOP是高相對分子質量PAEs的代謝產物,揮發性較低,不易從油漆涂料中釋放到環境中,或者mNP和mOP也不是油漆涂料中主要的PAEs添加物.
2.3不同相對分子質量PAEs代謝物的分布特征
PAEs按其相對分子質量大小可分為高相對分子質量PAEs和低相對分子質量PAEs,在14種目標PAEs代謝物中,mMP、mEP、mBP、miBP、mBzP、mCHP和mCPP屬于低相對分子質量PAEs的代謝產物,mEHP、mECPP、mCMHP、mEHHP、 mEOHP、mOP和mNP屬于高相對分子質量PAEs的代謝產物.分別對比油漆工人和普通人群尿液樣品中低相對分子質量和高相對分子質量PAEs代謝物的質量分數,結果如圖2所示.油漆工人和普通人群尿液樣品中低相對分子質量PAEs代謝物的質量分數分別為39.72、20.10 μg/g,高相對分子質量PAEs代謝物的質量分數分別為11.07、6.97 μg/g.油漆工人體內低相對分子質量PAEs代謝物的質量分數顯著高于普通人群(P<0.05),高相對分子質量PAEs代謝物的質量分數在兩類人群中無顯著差異(P>0.05).研究顯示,高相對分子質量PAEs主要應用于建筑材料、服裝和家具中,低相對分子質量PAEs主要應用于油漆、清漆、涂料和個人護理品中[25].油漆、清漆、涂料等經粉刷后,其中添加的低相對分子質量PAEs會釋放到環境中,油漆工人因其工作性質長期暴露于此類環境中,通過呼吸和皮膚接觸等途徑會攝入PAEs.此外,如果油漆工人在工作場所用餐,食物也可能被釋放到環境中的PAEs污染,進而經消化系統進入人體.

圖2油漆工人和普通人群尿液樣品中低相對分子質量和高相對分子質量PAEs代謝物的質量分數比較
2.4暴露評估
哈爾濱市油漆工人和普通人群尿液中PAEs的日暴露量(IED)由下式計算[26],
式中:c為尿液中PAEs代謝物的質量分數(μg/g);RCE為經體重矯正過的肌酐排泄率(mg/(kg·d)),男性為23 mg/(kg·d),女性為18 mg/(kg·d);f為人體攝入PAEs 24 h后尿液中其相應代謝物的摩爾分數,不同PAEs代謝物所對應的f值見表5[24,27-31];M1和M2分別為PAEs及其相應代謝物的相對分子質量(表5),1 000為單位矯正系數.
哈爾濱市油漆工人和普通人群尿液中PAEs代謝物暴露水平見表5.油漆工人體內DMP、DBP和DiBP的平均日暴露量分別為0.48、0.30和0.26 μg/(kg·d),普通人群體內DMP、DBP和DiBP的平均日暴露量分別為0.23、0.16和0.14 μg/(kg·d),油漆工人體內DMP、DBP和DiBP的平均日暴露量是普通人群的2倍,DBP在兩類人群中的日暴露量差異顯著(P<0.05),DMP和DiBP差異不顯著(P=0.089和P=0.069).油漆工人體內DEHP的日暴露量范圍為0.15~154 μg/(kg·d),普通人群為0.10~1.01 μg/(kg·d),無顯著差異(P>0.05).DEP和BBzP在油漆工人和普通人群體內平均日暴露量相對較少,二者無顯著差異(P>0.05).美國環境保護署給出的人體內DEP、DBP、BBzP 和DEHP的最大參考暴露劑量分別為800、100、200和20 μg/(kg·d),哈爾濱市油漆工人和普通人群對PAEs的日暴露量遠低于該參考值,說明哈爾濱市油漆工人和普通人群對PAEs的暴露劑量處于安全水平[32].

表5 哈爾濱市油漆工人和普通人群尿液中PAEs的日暴露量 μg·(kg·d)-1
3結論
1)通過對哈爾濱市油漆工人和普通人群尿液樣品中14種PAEs代謝物的研究發現,哈爾濱市油漆工人和普通人群對于PAEs的暴露非常普遍,mMP、mBP和miBP是主要的PAEs代謝物.
2)油漆工人尿液中PAEs代謝物的質量分數水平高于普通人群.低相對分子質量PAEs是油漆涂料中主要添加的PAEs類物質,哈爾濱市油漆工人體內低相對分子質量PAEs代謝物的質量分數顯著高于普通人群,說明油漆工人可暴露于油漆涂料中釋放出來的PAEs.
3)哈爾濱市油漆工人體內DBP的日暴露量顯著高于普通人群,但油漆工人和普通人群對PAEs的日暴露量均低于美國EPA給出的最大參考暴露劑量,說明其暴露風險均處于安全水平.
參考文獻
[1] HAUSER R, CALAFAT A M. Phthalates and human health[J]. Occupational and Environmental Medicine, 2005, 62(11): 806-818.
[2] WORMUTH M, SCHERINGER M, VOLLENWEIDER M, et al.What are the sources of exposure to eight frequently used phthalic acid esters in Europeans?[J]. Risk Analysis, 2006, 26(3): 803-824.
[3] ALBRO P W, MOORE B. Identification of the metabolites of simple phthalate diesters in rat urine[J]. Journal of Chromatography A, 1974, 94: 209-218.
[4] MCKEE R H, EL-HAWARI M, STOLTA M, et al. Absorption, disposition and metabolism of di-isononyl phthalate (DINP) in F-344 rats[J]. Journal of Applied Toxicology: JAT, 2002, 22 (5): 293-302.
[5] DUTY S M, CALAFAT A M, SILVA M J, et al.The relationship between environmental exposure to phthalates and computer-aided sperm analysis motion parameters[J]. Journal of Andrology, 2004, 25(2): 293-302.
[6] SILVA M J, BARRR D B, REIDY J A, et al. Urinary levels of seven phthalate metabolites in the US population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000[J]. Environmental Health Perspectives, 2004, 112(3): 331.
[7] FREDERIKSEN H, NIELSEN J K S, MORCK T A, et al.Urinary excretion of phthalate metabolites, phenols and parabens in rural and urban Danish mother-child pairs[J]. International Journal of Hygiene and Environmental Health, 2013, 216(6): 772-783.
[8] SARAVANABHAVAN G, GUAY M, LANGLOIS E, et al.Biomonitoring of phthalate metabolites in the Canadian population through the Canadian Health Measures Survey (2007-2009)[J]. International Journal of Hygiene and Environmental Health, 2013, 216(6): 652-661.
[9] MORTENSEN G K, MAIN K M, ANDERSSON A M, et al. Determination of phthalate monoesters in human milk, consumer milk, and infant formula by tandem mass spectrometry (LC-MS-MS)[J]. Analytical and Bioanalytical Chemistry, 2005, 382(4): 1084-1092.
[10]SILVA M J, SAMANDAR E, PREAU J L, et al. Automated solid-phase extraction and quantitative analysis of 14 phthalate metabolites in human serum using isotope dilution-high-performance liquid chromatography-tandem mass spectrometry[J]. Journal of Analytical Toxicology, 2005, 29(8): 819-824.
[11]KATO K, SILVA M J, NEEDHAM L L, et al. Quantifying phthalate metabolites in human meconium and semen using automated off-line solid-phase extraction coupled with on-line SPE and isotope-dilution high-performance liquid chromatography-tandem mass spectrometry[J]. Analytical Chemistry, 2006, 78(18): 6651-6655.
[12]GAUDIN R, MARSAN P, ROBERT A, et al. Biological monitoring of occupational exposure to di (2-ethylhexyl ) phthalate : survey of workers exposed to plastisols[J]. International Archives of Occupational and Environmental Health, 2008, 81(8): 959-966.
[13]GAUDIN R, MARSAN P, NDAW S, et al. Biological monitoring of exposure to di (2-ethylhexyl) phthalate in six French factories: a field study[J]. International Archives of Occupational and Environmental Health, 2011, 84(5): 523-531.
[14]HINES C J, HOPF N B, DEDDENS J A, et al. Occupational exposure to diisononyl phthalate (DiNP) in polyvinyl chloride processing operations[J]. International Archives of Occupational and Environmental Health, 2012, 85(3): 317-325.
[15]FONG J P, LEE F J, LU I, et al.Estimating the contribution of inhalation exposure to di-2-ethylhexyl phthalate (DEHP) for PVC production workers, using personal air sampling and urinary metabolite monitoring[J]. International Journal of Hygiene and Environmental Health, 2014, 217(1): 102-109.
[16]LU J, ZHANG J, WANG Z T, et al. An estimation of the daily intake of di (2-ethlhexyl) phthalate (DEHP) among workers in flavoring factories[J]. Biomedical and Environmental Sciences: BES, 2014(6): 419-425.
[17]劉付建,冼燕萍,郭新東,等. 氣相色譜-質譜聯用法檢測水性墻體涂料中20種鄰苯二甲酸酯[J]. 分析測試學報, 2014, 33(4): 437-441.
[18]GUO Y, ALOMIRAH H, CHO H S, et al. Occurrence of phthalate metabolites in human urine from several Asian countries[J]. Environmental Science & Technology, 2011, 45(7): 3138-3144.
[19]ASIMAKOPOULOS A G, WANG L, THOMAIDIS N S, et al. A multi-class bioanalytical methodology for the determination of bisphenol a diglycidyl ethers,p-hydroxybenzoic acid esters, benzophenone-type ultraviolet filters, triclosan, and triclocarban in human urine by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2014, 1324: 141-148.
[20]WORMUTH M, SCHERINGER M, VOLLENWEIDER M, et al. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans?[J]. Risk Analysis, 2006, 26: 803-824.
[21]GUO Y, WU Q, KANNAN K. Phthalate metabolites in urine from China, and implications for human exposures[J]. Environment International, 2011, 37(5): 893-898.
[22]WANG H X, ZHOU Y, TANG C X, et al. Urinary phthalate metabolites are associated with body mass index and waist circumference in Chinese school children[J]. PloS One, 2013, 8(2): e56800.
[23]SILVA M J, REIDY J A, PREAU J L, et al. Measurement of eight urinary metabolites of di (2-ethylhexyl) phthalate as biomarkers for human exposure assessment[J]. Biomarkers, 2006, 11(1): 1-13.
[24]KOCH H M, BOLT H M, ANGERER J. Di (2-ethylhexyl) phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP[J]. Archives of Toxicology, 2004, 78(3): 123-130.
[25]SCHETTLER T. Human exposure to phthalates via consumer products[J]. International Journal of Andrology, 2006, 29(1): 134-139.
[26]KOHN M C, PARHAM F, MASTEN S A, et al. Human exposure estimates for phthalates[J]. Environmental Health Perspectives, 2000, 108(10): A440-A442.
[27]ITOH H, YOSHIDA K, MASUNAGA S. Quantitative identification of unknown exposure pathways of phthalates based on measuring their metabolites in human urine[J]. Environmental Science & Technology, 2007, 41(13): 4542-4547.
[28]KOCH H M, BOLT H M, PREUSS R, et al.New metabolites of di (2-ethylhexyl) phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP[J]. Archives of Toxicology, 2005, 79(7): 367-376.
[29]ANDERSON W A C, CASTLE L , SCOTTER M J, et al. A biomarker approach to measuring human dietary exposure to certain phthalate diesters[J]. Food Additives & Contaminants, 2001, 18(12): 1068-1074.
[30]FROMME H, GRUBER L, SCHLUMMER M, et al. Intake of phthalates and di (2-ethylhexyl) adipate: results of the integrated exposure assessment survey based on duplicate diet samples and biomonitoring data[J]. Environment International, 2007, 33(8): 1012-1020.
[31]KOCH H M, DREXLER H, ANGERER J. An estimation of the daily intake of di (2-ethylhexyl ) phthalate (DEHP) and other phthalates in the general population[J]. International Journal of Hygiene and Environmental Health, 2003, 206(2): 77-83.
[32]Office of Research, National Center for Environmental Assessment, Environmental Protection Agency.Exposure factors handbook[M]. United States: DIANE Publishing, 1996.
(編輯劉彤)
Levels of phthalate metabolites in urine of house painters in Harbin
GAO Chongjing, LIU Liyan, MA Wanli, LIU Lihua, LI Yifan
(International Joint Research Center for Persistent Toxic Pollutants (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology,150090 Harbin, China)
Abstract:Phthalate acid esters (PAEs) are widely used in building materials, such as paints. In order to determine the pollution characteristics and exposure levels of PAEs to painters, 10 urine samples from painters and other 10 urine samples from general individuals were collected in Harbin, China. 14 phthalate metabolites in the urine samples were comparably analyzed. Urinary concentrations of metabolites with painters were higher than those with general population, in which the mMP, mBP and miBP are major metabolites. Furthermore, the concentrations of low molecular weight metabolites within the urine of the painters were significantly higher than those within the general individuals, indicating that painters exposed to low molecular weight PAEs during their working time. Finally, the daily intakes of PAEs were estimated, which were all lower than the reference dose by U.S. EPA, indicating that the exposure risk with PAEs for both painters and general population were in safe level.
Keywords:phthalate metabolites; urine; painter; general population; human exposure
中圖分類號:X838
文獻標志碼:A
文章編號:0367-6234(2016)02-0044-06
通信作者:李一凡,ijrc_pts_paper@yahoo.com.
作者簡介:高崇婧( 1983—) ,女,博士研究生;
基金項目:國家自然科學基金項目(21277038);城市水資源與水環境國家重點實驗室(哈爾濱工業大學)自主課題(2013DX14).
收稿日期:2015-03-08.
doi:10.11918/j.issn.0367-6234.2016.02.008
李一凡( 1949—) ,男,教授,博士生導師.