付旭東 王巖松
(河南大學環境與規劃學院 河南開封 475004)
世界干旱半干旱區約占地球陸地表面的1/3[1],主要分布于副熱帶高壓帶控制下的低緯度地區[2]。中國的干旱半干旱區分布于中緯度的溫帶內陸,它西與中亞干旱區相接,北與蒙古干旱區毗鄰,區域內戈壁、沙漠、黃土呈有規律的空間分異[3],是全球粉塵排放的重要源區之一[4-5]。戈壁、沙漠帶的粉塵在大氣環流的控制下經風力吹揚,被搬運至下風向處的山前盆地、山麓、河谷、平原等地形區堆積,形成沉積連續的黃土和黃土狀沉積物,成為記錄陸地環境變遷的良好信息載體[6-9]。冰期時,氣候冷干,強勁的風力使被搬運的粉塵顆粒變粗、排放通量增大;間冰期時,氣候變得暖濕,風力的減弱使得搬運的粉塵顆粒變細、排放通量減少[10-12]。基于該假說,在過去幾十年里,研究人員利用沉積在黃土高原、天山、昆侖山、盆地邊緣、河谷等地貌單元內的黃土—古土壤沉積序列,結合年代學和各種物理化學生物指標,反演了中國黃土的形成過程與機制、古大氣環流、古全球變化、亞洲內陸干旱化和中國沙漠的形成時間,取得一系列重要的研究進展[6-9,13-30]。然而,相對于成果豐碩的中國黃土研究,作為黃土和亞洲粉塵重要物源地的中國沙漠自身的物源研究則非常有限[3,31-38]。沙漠物源研究不僅在風沙地貌學上有重大理論和實踐意義[39-41],而且對認識大氣粉塵排放、黃土堆積、氣候系統和海洋生物地球化學循環也有重要的理論價值[4,42-47]。
本文的目的是:①總結中國沙漠物源研究的理論、方法和已有成果;②評述目前國際上沉積物物源分析的主要趨向;③指出中國沙漠物源研究存在的問題和未來發展趨勢。
中國沙漠主要分布于 35°~50°N,75°~125°E的范圍內,它呈一條弧形綿亙于中國的西北、內蒙和東北西部,東西長4 000 km,南北寬600 km,面積達80.89×104km2,約占整個國土總面積的 8.4%[31,39,41]。中國主要的沙漠有14個,其中5個分布于沙漠帶東部,分別是呼倫貝爾沙地、松嫩沙地、科爾沁沙地、渾善達克沙地和毛烏素沙地,它們的年降水量介于200~400 mm,干燥度為 1.2~2.0,植被覆蓋度較高,以固定半固定沙丘為主;其余分布在沙漠帶西部,分別是庫布齊、烏蘭布和、騰格里、巴丹吉林、河西走廊的沙漠、柴達木盆地的沙漠、庫姆塔格、古爾班通古特和塔克拉瑪干沙漠,它們的年降水量為100~200 mm,有的甚至不足 50 mm,干燥度為 4.0~60.0,植被覆蓋稀疏,除古爾班通古特沙漠外,主要以流動沙丘占優勢[31,41]。
新中國成立初期,根據局部地區營造防風固沙林帶的需要,開展了一些小規模的沙漠研究,如毛烏素沙地南緣流動沙丘的研究、科爾沁沙地東南緣章古臺和騰格里沙漠東南緣鐵路沿線流沙的固定試驗[48]。1959年中國科學院成立了860多人的治沙隊,采用航空相片判讀與野外考察的方法,對中國沙漠和戈壁進行了大規模綜合考察,基本摸清了中國沙漠的自然條件與資源、沙丘特征與風沙運動規律[49-51],并建立了20多個沙漠試驗站,為此后中國沙漠的研究奠定了堅實的基礎[51-53]。1966—1976年間,中國沙漠研究受到影響,轉入以治理沙害為中心的專題研究,如沙區的鐵路修建、水土資源開發利用等[49,53-54]。1977年聯合國荒漠化會議的召開,引起了全球對土地荒漠化問題的關注,為順應新形勢,中國沙漠研究的重點轉入了以土地沙漠化問題為中心的綜合研究,開展了干旱半干旱區土地沙漠化與半濕潤地帶風沙化問題的成因、過程、預測、整治研究[53-55],進行了土壤風蝕的風洞模擬實驗,加強了風沙物理與風沙工程的理論與實驗研究,同時也開拓了沙漠地區的第四紀研究工作[56]。近10多年以來,隨著國家經濟和科技投入的不斷增加,中國沙漠研究開始以沙區長期野外試驗站為平臺,在不同時空尺度上對沙漠環境與風沙物理、沙漠形成演變與全球變化、沙漠化過程及其防治、沙漠化監測與信息系統等方面進行多學科的交叉集成研究[57-60]。
沙漠地表最基本的特征是堆積了形態各異、大小不同的沙丘,它們是松散沉積物經風力搬運在一定條件下堆積形成的[40,61]。這些沙丘沉積物的粒度、礦物組成、形態、顏色、地球化學、地質年齡等屬性特征記錄了母巖風化剝蝕、搬運和后期改造過程的信息,受區域地質構造、氣候等因素控制。因此,沙漠物源研究的范疇屬于地質學,它的理論基礎是沉積學理論[62-63]。在中國沙漠物源研究中,傳統的方法是沙丘沉積物的粒度分析和重礦物分析,結合野外地貌調查、古地理與地質資料來推斷沙漠的物源[31,40]。近10多年來,為跟蹤國外沉積物物源研究方法,開始嘗試地球化學、環境磁學和單顆粒鋯石定年的方法來探討沙漠物源。如石英的氧同位素[32-33]、電子自旋共振信號強度和結晶度[38]、釋光靈敏度[3],沉積物的磁化 率[64-65]、Pb 同 位 素[66]、Nd-Sr 同 位 素 和REE[36,67-68],單顆粒碎屑鋯石的形態[69]、U-Pb 年齡和Hf同位素[70]的研究。
中國沙漠物源研究一直存在“就地起沙”和“外地來沙”的爭論。20世紀50年代初,嚴欽尚[71]和羅來興[72]對毛烏素沙地南緣陜北榆林、靖邊、定邊一帶流動沙丘的考察和分析,提出了該地區沙源是由于人類不合理使用土地,破壞地表植被,使古沙翻新而成的,屬“就地起沙”。20世紀60年代至80年代,在對中國沙漠大規模野外調查的基礎上,結合地質地貌和古地理資料分析,朱震達等[31]確定中國沙漠物源具有近源性,并按成因將它們的物源歸為4種類型,即河流沖積物、沖積—湖積物、洪積—沖積物和基巖風化的殘積、坡積物,否定了沙漠物源的“外地來沙”。此后,對塔克拉瑪干[73-76]、古爾班通古特[77]、庫姆塔格[78-79]、柴達木[80]、巴丹吉林[81-82]、騰格里[83-84]、庫布齊[85]、烏蘭布和沙漠[86-87]、毛烏素[88-89]、渾善達克[90]、科爾沁[91]、松嫩[92]、呼倫貝爾沙地[93]的粒度或重礦物分析也支持這一觀點。然而,近年來對中國沙漠帶東部4大沙地邊緣多個地層剖面的光釋光(OSL)測年表明:末次冰盛期(LGM)時,這些沙地的東界和南界相對于全新世適宜期(HO)分別向東向南擴張了幾百甚至上千公里[94],而中國沙漠帶西部的沙漠在LGM和HO時一直存在活動沙丘[94-96]。考慮到戈壁、沙漠和黃土的同心圓狀分布格局,可以推測冰期時中國沙漠帶東部沙地有可能是其西部和北部沙漠不斷擴展的產物[34],即這些沙地的沙源有可能是“外地來沙”。但隨后對渾善達克、科爾沁和呼倫貝爾沙地的重礦物分析[34]、碎屑鋯石U-Pb年齡和Hf同位素[70,97]分析顯示,西部沙漠對東部沙地沙源的貢獻很小,從而否定了東部沙地“外地來沙”的推斷。
近10多年來,隨著沉積物和單顆粒礦物的元素地球化學、同位素地球化學和定年分析技術的日臻成熟,同時借鑒國外沉積物物源分析方法,對中國沙漠物源展開了有益的探索。如付旭東等[32-33]利用沙丘沉積物中最常見的輕礦物―石英在表生過程中氧同位素基本保持不變的特性,對中國沙漠2個粗粒級的石英研究顯示,沙漠石英δ18O值存在“粒級依賴”(Grain-size dependence)且區域差異顯著。石英的電子自旋共振(ESR)信號強度和結晶度(CI)也可以用來示蹤物源[98-102],Sun 等[38,101]對中國西部沙漠和蒙古戈壁石英的ESR信號強度和CI研究表明,細顆粒石英比粗顆粒石英更能顯示它們的區域差異。基于石英晶體缺陷與其母巖的成巖條件有關[103],石英的釋光靈敏度被證明可以示蹤物源[104-106]。Lu等[3]對中國沙漠3個粒級的石英研究顯示,沙漠石英釋光靈敏度也存在“粒級依賴”和顯著區域差異,并且沙漠物源與其周圍的造山帶密切相關。盡管沉積物的磁學特征對戈壁、沙漠的物源有一定的指示意義[64-65],但是對中國沙漠沉積物磁化率的系統報道還很少。Pb同位素的物源示蹤研究主要用于風塵沉積物[107-108],李鋒[66]對中國沙漠沉積物的全巖測定顯示,它們的Pb同位素比值區域差異明顯,但值得注意的是Pb同位素容易受沉積循環改造和人類排放Pb的影響[109]。Nd-Sr同位素(143Nd/144Nd 和87Sr/86Sr比值)在風化、搬運、沉積和成巖過程中相對穩定[110],它是近幾年沙漠和黃土沉積物物源示蹤常用的方法[36,67-68,111-112]。中國沙漠表層沉積物 Nd-Sr 同位素測定顯示,它們具有顯著的區域差異且受地質構造背景控制,推斷其沙源主要來自鄰近的山脈和基底巖石[67,111]。盡管稀土元素(REE)也被用于沉積物的物源示蹤[36,68,113],但由于 REE 在陸殼中本身的變異不大,加之測試誤差較大,使REE很難區分地表沉積物之間的細微差別[37]。沉積物物源定量研究是今后主要的發展方向[114-115],重礦物鋯石在表生循環中非常穩定且 U-Pb 同位素體系較為封閉[70,97,116],單顆粒鋯石U-Pb定年技術成為當前定量厘定沉積物源區的熱點[35,117-119]。張瀚之等[69]對單顆粒碎屑鋯石的形態特征研究顯示中國沙漠鋯石形態具有明顯的區域差異,沙漠物源搬運距離較短,具有近源性。最近對中國幾個沙漠單顆粒鋯石U-Pb年齡的測定顯示它們的鋯石年齡譜差異明顯[35,70,97,118-119],其物源來自周圍的造山帶。盡管單顆粒鋯石U-Pb年齡示蹤物源有很大優勢,但在實用上還存在局限性[37]。
總之,目前對中國沙漠的石英氧同位素、電子自旋共振信號強度和結晶度、釋光靈敏度以及沙丘沉積物的磁化率、元素地球化學、同位素地球化學和單顆粒鋯石U-Pb年齡的研究表明,各個沙漠的物源有顯著的區域差異且具有近源性。這與以往傳統的粒度分析、重礦物分析結合地質地貌資料推斷的中國沙漠物源來自近源的觀點基本一致。然而,各種成因的近源物質對各沙漠的供給比例有多大,為大氣粉塵、中國黃土和海洋沉積物提供多少物源,仍缺乏定量的數據。此外,中國各沙漠中細顆粒物質的形成機制,是否具有近源性,是否存在“外地來沙”,以及它們對沙漠物源的貢獻比例仍是一個尚未解答的問題。
沙丘是沙漠地表最顯著的特征,它們是由松散沉積物堆積而成的[40]。這些沉積物與其源區母巖并不是一對一的對應關系[114,120],它們現今的屬性特征反映的是母巖巖性及其被風化、再旋回、搬運、混合、沉積、成巖改造的全部歷史[114]。沉積物與其源區之間復雜的網絡關系很難被完全揭示,因為從“源”到“匯”的過程中,各種各樣的因素都會改變母巖碎屑的成分和結構[121-127],造成源區母巖信息的大量丟失,這也是沉積物物源定量分析一直存在的主要障礙[114]。最近 Weltje[115]提出的沉積物生成與物源定量研究的總體結構框架(圖1),代表了當前沉積物物源定量研究的最高水平和今后的發展方向。“源”與“匯”可通過正演模型和反演模型刻畫,但正反演模型中的化學(C)、礦物(M)和巖石學(P)數據須通過CMP toolbox變換后才能輸入模型中,圖中的每個箭號代表了一系列的方法和過程。

圖1 沉積物生成與物源定量研究的總體結構框架圖[115]Fig.1 Schematic view of the overarching strategy in quantitative sediment-generation and provenance studies[115]
在當前的沉積物物源分析中,絕大多數研究都屬于反演模型(Inverse models),即通過三種主要方法(全巖組份的化學、巖礦分析,重礦物的選擇性分析,單顆粒礦物的形態、化學和同位素分析)獲取沉積物的各種屬性數據,然后統計各種指標并制作圖表,再依據先驗知識推斷物源[114]。這種研究范式在世界沙漠物源研究中得到廣泛應用,如非洲的 Sahara[128-129]、Namib[130-133]、Kalahari desert[134-135],北美洲的 Great basin[136-137]、Mojave[138-139]、Sonoran desert[140-141]、Chihuahua desert[142],南 美 洲 的 Atacama[143-144]、Patagonia desert[145-146],大洋洲的澳大利亞沙 漠[147-149],亞 洲 的 Arabian desert[124]、Thar desert[150-151]和中國沙漠[3,31-38,64-70]。然而,目前這些基于沉積物組份屬性統計的反演模型在數據獲取與統計分析中,仍然存在幾方面明顯的問題:①沉積物取樣與實驗樣品的代表性,如沉積物的隨機取樣是否能代表研究區域的整體水平,用量微少的化學、巖礦和同位素分析測試結果是否能代表每個實驗樣品的整體,單顆粒礦物的統計與分析需計數多少顆粒才能代表一個沉積物樣品的整體[114],仍需要進一步的深入研究;②消除“粒級依賴”對沉積物組份的影響,由于母巖風化后的產物在搬運和沉積過程中的分選作用會造成某些粒級的物質優先富集,沉積物成分與粒級存在一定的函數關系[114]。例如,在細粒物質中SiO2/Al2O3的比值會隨著粒級或結構成熟度的減小而減小;中國北方沙漠石英δ18O值隨著粒級的減小有增大的趨勢[32]。因此,選擇恰當的沉積物粒級進行化學、巖礦和同位素分析對沉積物物源研究至關重要。盡管一些學者對沉積物的成分與粒級之間的關系進行了有益的探討[125-127],但目前仍沒有任何方法能消除粒級效應對成分的影響;③組份數據分析中的對數變換,組份數據常用百分比和含量來表示[115],但是為了消除數據間的“假相關”和“負偏置”問題,應該對組份數據進行等度量的對數變換處理[127];④Dickinson圖解適用的前提和存在的問題[114-115],目前某些沉積物物源研究只是簡單的套用Dickinson圖解,并未考慮其正確使用需滿足的很多前提條件和問題。
基于沉積物生成過程的正演模型(Forward models)可預測屬性明確的源區能生成沉積物的數量、成分和結構,然而這種實用的定量正演模型目前還不存在[115]。構建正演模型的最大障礙是缺乏母巖物理化學風化的機理和速率方面的定量數據,這些問題的解決既需要將母巖定量過程描述和強大的統計技術整合,還需要有充足的高質量數據校正和驗證模型。恰當的數值方法和統計方法是未來定量正演模型發展的堅實基礎[115]。
目前沉積物物源研究的案例主要集中于沉積物成分屬性統計的反演模型,而對基于過程的沉積物生成模型的研究較少。正反演模型都不是完美無缺的,未來沉積物定量物源分析需要改進沉積物數據獲取與處理方法,加快構建沉積物生成的正演模型研究。
中國沙漠物源研究基本上都是基于沉積物組份屬性統計的反演模型,然而此類模型在屬性數據的獲取與處理方面仍然存在缺陷:①沙丘沉積物的取樣設計并沒有嚴格的統計學意義,沉積物組份的粒度、化學、礦物、同位素測試分析僅僅取用了采樣樣品的微小部分,這樣的測試結果能否代表該樣品的整體狀況,其可靠性需要評估,用激光粒度儀分析沙丘沉積物的粒度存在很大誤差,重礦物分析需要多少樣品以及統計多少顆粒才能代表一個樣品;②消除“粒級依賴”對沉積物成分的影響,對沉積物組份的化學、礦物、同位素分析時應該選用恰當的粒級,而不是使用全巖分析;③處理組份數據時,應進行對數變換,而不是直接使用含量或百分比。此外,在解釋組份數據時,未能整合源區已有的地質構造、母巖、氣候、地貌等數據資料,多數研究仍是定性的推斷,缺乏定量物源研究的案例。
沉積物物源的研究需要沉積學、巖石學、礦物學、地球化學、構造地質學、地層學、數學地質和地貌學等學科的交叉研究。今后中國沙漠物源研究應做好以下幾方面的工作:①采用大面積網格隨機取樣法對中國各個沙漠的沙丘沉積物進行系統采樣;用篩析法分析每個沙漠的粒度組成,然后對不同粒級的沉積物顆粒分別進行礦物組成、地球化學、單顆粒鋯石年代學屬性的系統測試分析,建立每個沙漠沉積物組份的屬性數據庫;依據沉積物在搬運、沉積過程中遵守等效沉降原理,使用源巖平均密度指數(SRD)校正不同粒級沉積物組份的粒度、礦物和地球化學數據,消除“粒級依賴”對沉積物成分的影響;基于沉積物組份屬性數據的等級結構(巖石→礦物→化學成分),建立化學成分—礦物—巖石之間定量的數學關系(CMP toolbox),將沉積物組份的巖石、礦物、地球化學屬性間的關系用數學公式表達,從而定量地反演沙漠的物源。②選擇若干典型沙漠,通過全球的地形、巖性、溫度、降水和植被蓋度圖獲取其沉積物源區的屬性特征;通過室內實驗和野外研究解決母巖和礦物的物理化學風化機制及其速率,建立母巖物理風化形成的礦物顆粒粒度分布模型;用CMP toolbox定量表達巖石—礦物—地球化學屬性間的關系,定量模擬源區生成沉積物的數量、成分和結構,構建源區沉積物生成的正演模型,并用建成的沉積物組份屬性數據庫驗證和校正模型;具體方法案例可參考文獻[152-155]。③研究中國各沙漠中細顆粒物質的形成機制,是否具有近源性以及它們對沙漠物源的貢獻比例,對比研究中國沙漠與低緯度沙漠物源的形成機制,定量評估河流沖積物、沖積—湖積物、洪積—沖積物和基巖風化的殘積、坡積物對中國各沙漠物源的貢獻率以及它們的遷移路徑,建立中國沙漠物源區劃圖,應用到防沙治沙的工程實踐中。④基于山地構造抬升—氣候—風化剝蝕的相互作用以及沉積物從陸地—大氣—海洋遷移的內在聯系,定量研究歷史和地質時間尺度沙漠—黃土—深海沉積物物源的傳輸途徑及其驅動因素,建立陸地—大氣—海洋物質循環的機理模型,為深刻理解地球各圈層間物質交換與地表過程提供依據。
References)
1 Reynolds J F,Smith D M S,Lambin E F,et al.Global desertification:building a science for dryland development[J].Science,2007,316(5826):847-851.
2 Goudie A S.Great Warm Deserts of the World:Landscapes and Evolution[M].Oxford:Oxford University Press,2002.
3 Lu T Y,Sun J M.Luminescence sensitivities of quartz grains from eolian deposits in northern China and their implications for provenance[J].Quaternary Research,2011,76(2):181-189.
4 Choobari O A,Zawar-Reza P,Sturman A.The global distribution of mineral dust and its impacts on the climate system:A review[J].Atmospheric Research,2014,138:152-165.
5 Goudie A S.Desert dust and human health disorders[J].Environment International,2014,63:101-113.
6 Liu T S.Loess and the Environment[M].Beijing:China Ocean Press,1985.
7 Sun J M.Source regions and formation of the loess sediments on the high mountain regions of Northwestern China[J].Quaternary Research,2002,58(3):341-351.
8 Song Y G,Chen X L,Qian L B,et al.Distribution and composition of loess sediments in the Ili Basin,Central Asia[J].Quaternary International,2014,334-335:61-73.
9 Vasiljevi c'D A,Markovi c'S B,Hose T A,et al.Loess-palaeosol sequences in China and Europe:Common values and geoconservation issues[J].Catena,2014,117:108-118.
10 Kukla G J.Pleistocene land-sea correlations I.Europe[J].Earth-Science Reviews,1977,13(4):307-374.
11 McGee D,Broecker W S,Winckler G.Gustiness:The driver of glacial dustiness?[J].Quaternary Science Reviews,2010,29(17/18):2340-2350.
12 Muhs D R.The geologic records of dust in the Quaternary[J].Aeolian Research,2013,9:3-48.
13 Heller F,Liu T S.Magnetostratigraphical dating of loess deposits in China[J].Nature,1982,300(5891):431-433.
14 Zhou L P,Oldfield F,Wintle A G,et al.Partly pedogenic origin of magnetic variations in Chinese loess[J].Nature,1990,346(6286):737-739.
15 An Z S,Kukla G J,Porter S C,et al.Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years[J].Quaternary Research,1991,36(1):29-36.
16 An Z S,Kutzbach J E,Prell W L,et al.Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J].Nature,2001,411(6833):62-66.
17 Ding Z L,Derbyshire E,Yang S L,et al.Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record[J].Paleoceanography,2002,17(3):5-1-5-21,doi:10.1029/2001PA000725,2002.
18 Fang X M,Shi Z T,Yang S L,et al.Loess in the Tian Shan and its implications for the development of the Gurbantunggut Desert and drying of northern Xinjiang[J].Chinese Science Bulletin,2002,47(16):1381-1387.
19 Fang X M,Lü L Q,Yang S L,et al.Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in west China[J].Science in China(Series D),2002,45(4):289-299.
20 Guo Z T,Ruddiman W F,Hao Q Z,et al.Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J].Nature,2002,416(6877):159-163.
21 Stevens T,Armitage S J,Lu H Y,et al.Sedimentation and diagenesis of Chinese loess:implications for the preservation of continuous,highresolution climate records[J].Geology,2006,34(10):849-852.
22 Sun J M,Liu T S.The age of the Taklimakan desert[J].Science,2006,312(5780):1621.
23 Sun J M,Zhang Z Q,Zhang L Y.New evidence on the age of the Taklimakan Desert[J].Geology,2009,37(2):159-162.
24 Sun J M,Ye J,Wu W Y,et al.Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior[J].Geology,2010,38(6):515-518.
25 Yang S L,Fang X M,Shi Z T,et al.Timing and provenance of loess in the Sichuan Basin,southwestern China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2010,292(1/2):144-154.
26 Hao Q Z,Wang L,Oldfield F,et al.Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability[J].Na-ture,2012,490(7420):393-396.
27 Zhang H Y,Lu H Y,Jiang S Y,et al.Provenance of loess deposits in the Eastern Qinling Mountains(central China)and their implications for the paleoenvironment[J].Quaternary Science Reviews,2012,43:94-102.
28 Miao Y F,Herrmann M,Wu F L,et al.What controlled Mid-Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift:A review[J].Earth-Science Reviews,2012,112(3/4):155-172.
29 Ge J Y,Dai Y,Zhang Z S,et al.Major changes in East Asian climate in the mid-Pliocene:Triggered by the uplift of the Tibetan Plateau or global cooling?[J].Journal of Asian Earth Sciences,2013,69:48-59.
30 Lehmkuhl F,Schulte P,Zhao H,et al.Timing and spatial distribution of loess and loess-like sediments in the mountain areas of the northeastern Tibetan Plateau[J].Catena,2014,117:23-33.
31 朱震達,吳正,劉恕,等.中國沙漠概論(修訂版)[M].北京:科學出版社,1980.[Zhu Zhenda,Wu Zheng,Liu Shu,et al.An Outline of Chinese Deserts[M].Beijing:Science Press,1980.]
32 付旭東,楊小平.中國北方沙漠石英δ18O值的初步測定與分析[J].第四紀研究,2004,24(2):243-243.[Fu Xudong,Yang Xiaoping.δ18O in the quartz grains of desert sand in northern China[J].Quaternary Sciences,2004,24(2):243-243.]
33 Yang X P,Zhang F,Fu X D,et al.Oxygen isotopic compositions of quartz in the sand seas and sandy lands of northern China and their implications for understanding the provenances of aeolian sands[J].Geomorphology,2008,102(2):278-285.
34 Xie J,Ding Z L.Compositions of heavy minerals in Northeastern China sandlands and provenance analysis[J].Science China Earth Sciences,2007,50(11):1715-1723.
35 Stevens T,Palk C,Carter A,et al.Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons[J].Geological Society of America Bulletin,2010,122(7/8):1331-1344.
36 Rao W B,Chen J,Tan H B,et al.Sr-Nd isotopic and REE geochemical constraints on the provenance of fine-grained sands in the Ordos deserts,north-central China[J].Geomorphology,2011,132(3/4):123-138.
37 Chen J,Li G J.Geochemical studies on the source region of Asian dust[J].Science China Earth Sciences,2011,54(9):1279-1301.
38 Sun Y B,Chen H Y,Tada R,et al.ESR signal intensity and crystallinity of quartz from Gobi and sandy deserts in East Asia and implication for tracing Asian dust provenance[J].Geochemistry Geophysics Geosystems,2013,14(8):2615-2627.
39 王濤.中國沙漠與沙漠化[M].石家莊:河北科學技術出版社,2003.[Wang Tao.Desert and Desertification in China[M].Shijiazhuang:Hebei Science and Technology Press,2003.]
40 吳正.風沙地貌與治沙工程學[M].北京:科學出版社,2003.[Wu Zheng.Geomorphology of Wind-drift Sands and Their Controlled Engineering[M].Beijing:Science Press,2003.]
41 吳正.中國沙漠及其治理[M].北京:科學出版社,2009.[Wu Zheng.Sandy Deserts and Its Control in China[M].Beijing:Science Press,2009.]
42 Chase B.Evaluating the use of dune sediments as a proxy for palaeoaridity:A southern African case study[J].Earth-Science Reviews,2009,93(1/2):31-45.
43 Maher B A,Prospero J M,Mackie D,et al.Global connections between Aeolian dust,climate and ocean biogeochemistry at the present day and at the last glacial maximum[J].Earth-Science Reviews,2010,99(1/2):61-97.
44 Crouvi O,Amit R,Enzel Y,et al.Active sand seas and the formation of desert loess[J].Quaternary Science Reviews,2010,29(18):2087-2098.
45 Shao Y P,Wyrwoll K-H,Chappell A,et al.Dust cycle:An emerging core theme in Earth system science[J].Aeolian Research,2011,2(4):181-204.
46 Vandenberghe J.Grain size of fine-grained windblown sediment:A powerful proxy for process identification[J].Earth-Science Reviews,2013,121:18-30.
47 Serno S,Winckler G,Anderson R F,et al.Eolian dust input to the Subarctic North Pacific[J].Earth and Planetary Science Letters,2014,387:252-263.
48 朱震達.三十年來中國沙漠研究的進展[J].地理學報,1979,34(4):305-314.[Zhu Zhenda.Thirty years in research works on Chinese sandy deserts[J].Acta Geographica Sinica,1979,34(4):305-314.]
49 朱震達.中國沙漠化研究的進展[J].中國沙漠,1989,9(1):1-13.[Zhu Zhenda.Advance in desertification research in China[J].Journal of Desert Research,1989,9(1):1-13.]
50 吳正.中國風沙地貌學研究的新進展——慶賀黃秉維教授80華誕[J].地理研究,1993,12(l):10-17.[Wu Zheng.New progresses in the geomorphological research of sand desert in China——Presented for the celebration of Professor Huang Bingwei’s 80-year-old birthday[J].Geographical Research,1993,12(l):10-17.]
51 夏訓誠,樊勝岳.中國沙漠科學研究進展[J].科學通報,2000,45(18):1908-1912.[Xia Xuncheng,Fan Shengyue.Research progress of desert science in China[J].Chinese Science Bulletin,2000,45(18):1908-1912.]
52 董治寶,王濤,屈建軍.100 a來沙漠科學的發展[J].中國沙漠,2003,23(1):1-5.[Dong Zhibao,Wang Tao,Qu Jianjun.The history of desert science over the last 100 years[J].Journal of Desert Research,2003,23(1):1-5.]
53 王濤,趙哈林.中國沙漠科學的五十年[J].中國沙漠,2005,25(2):145-165.[Wang Tao,Zhao Halin.Fifty-year history of China desert science[J].Journal of Desert Research,2005,25(2):145-165.]
54 王濤.我國沙漠與沙漠化科學發展的戰略思考[J].中國沙漠,2008,28(1):1-7.[Wang Tao.Strategic consideration on desert and desertification sciences development in China[J].Journal of Desert Research,2008,28(1):1-7.]
55 吳正.中國沙漠與治理研究50年[J].干旱區研究,2009,26(l):1-7.[Wu Zheng.Deserts in China and their management over the last 50 years[J].Arid Zone Research,2009,26(1):1-7.]
56 董光榮.中國沙漠形成演化氣候變化與沙漠化研究[M].北京:海洋出版社,2002.[Dong Guangrong.Study on the Formation and Evolution,Climate Change and Desertification in Deserts of China[M].Beijing:China Ocean Press,2002.]
57 慈龍駿.中國的荒漠化及其防治[M].北京:高等教育出版社,2005.[Ci Longjun.Desertification and Its Control in China[M].Beijing:Higher Education Press,2005.]
58 王濤,陳廣庭,趙哈林,等.中國北方沙漠化過程及其防治研究的新進展[J].中國沙漠,2006,26(4):507-516.[Wang Tao,Chen Guangting,Zhao Halin,et al.Research progress on aeolian desertification process and controlling in north of China[J].Journal of Desert Research,2006,26(4):507-516.]
59 王濤.干旱區綠洲化、荒漠化研究的進展與趨勢[J].中國沙漠,2009,29(1):1-9.[Wang Tao.Review and prospect of research on oasification and desertification in arid regions[J].Journal of Desert Research,2009,29(1):1-9.]
60 王濤,宋翔,顏長珍,等.近35a來中國北方土地沙漠化趨勢的遙感分析[J].中國沙漠,2011,31(6):1351-1356.[Wang Tao,Song Xiang,Yan Changzhen,et al.Remote sensing analysis on Aeolian desertification trends in Northern China during 1975-2010[J].Journal of Desert Research,2011,31(6):1351-1356.]
61 McKee E D.A Study of Global Sand Seas[M].Washington:United States Government Printing Office,1979.
62 Friedman G M,Sanders J E.Principles of Sedimentology[M].New York:Wiley,1978.
63 Pettijohn F J,Potter P E,Siever R.Sand and Sandstone.2nd ed[M].New York:Springer-Verlag,1987.
64 Maher B A,Mutch T J,Cunningham D.Magnetic and geochemical characteristics of Gobi Desert surface sediments:Implications for provenance of the Chinese Loess Plateau[J].Geology,2009,37(3):279-282.
65 Li C,Yang S Y,Zhang W G.Magnetic properties of sediments from major rivers,aeolian dust,loess soil and desert in China[J].Journal of Asian Earth Sciences,2012,45:190-200.
66 李鋒.中國北方沙塵源區鉛同位素分布特征及其示蹤意義的初步研究[J].中國沙漠,2007,27(5):738-744.[Li Feng.Distribution characteristics of lead isotope in dust source areas and its trace significance in the north of China[J].Journal of Desert Research,2007,27(5):738-744.]
67 Chen J,Li G J,Yang J D,et al.Nd and Sr isotopic characteristics of Chinese deserts:Implications for the provenances of Asian dust[J].Geochimica et Cosmochimica Acta,2007,71(15):3904-3914.
68 Rao W B,Chen J,Tan H B,et al.Nd-Sr isotopic and REE geochemical compositions of Late Quaternary deposits in the desert-loess transition,north-central China:Implications for their provenance and past wind systems[J].Quaternary International,2014,334-335:197-212.
69 張瀚之,鹿化煜,弋雙文,等.中國北方沙漠/沙地鋯石形態特征及其對物源的指示[J].第四紀研究,2013,33(2):334-344.[Zhang Hanzhi,Lu Huayu,Yi Shuangwen,et al.Zircon typological analysis of the major deserts/sand fields in northern China and its implication for identifying sediment source[J].Quaternary Sciences,2013,33(2):334-344.]
70 謝靜,吳福元,丁仲禮.渾善達克沙地的碎屑鋯石U-Pb年齡和Hf同位素組成及其源區意義[J].巖石學報,2007,23(2):523-528.[Xie Jing,Wu Fuyuan,Ding Zhongli.Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance[J].Acta Petrologica Sinica,2007,23(2):523-528.]
71 嚴欽尚.陜北榆林定邊間流動沙丘及其改造[J].科學通報,1954(11):28-34.[Yan Qinshang.Mobile sand dune and its control along Yuling and Dingbian,Shanbei[J].Chinese Science Bulletin,1954(11]:28-34.]
72 羅來興.陜北榆林靖邊間的風沙問題[J].科學通報,1954,11:40-46.[Luo Laixing.Aeolian sand dune along Yuling and Jingbian,Shanbei[J].Chinese Science Bulletin,1954,11:40-46.]
73 朱震達,陳治平,吳正,等.塔克拉瑪干沙漠風沙地貌研究[M].北京:科學出版社,1981.[Zhu Zhenda,Chen Zhiping,Wu Zheng,et al.A Study on the Sand Dune Geomorphology of Taklimakan Desert[M].Beijing:Science Press,1981.]
74 錢亦兵,吳兆寧,石井武政,等.塔克拉瑪干沙漠沙物質成分特征及其來源[J].中國沙漠,1993,13(4):32-38.[Qian Yibing,Wu Zhaoning,Ishii T,et al.The constituent cheracteristics of sand materials and sand sources of the Taklamakan desert[J].Journal of Desert Research,1993,13(4):32-38.]
75 Honda M,Shimizu H.Geochemical,mineralogical and sedimentological studies on the Taklimakan Desert sands[J].Sedimentology,1998,45(6):1125-1143.
76 Wang X M,Dong Z B,Zhang J W,et al.Grain size characteristics of dune sands in the central Taklimakan Sand Sea[J].Sedimentary Geology,2003,161(1/2):1-14.
77 Qian Y B,Zhou X J,Wu Z N,et al.Multi-sources of desert sands for the Junggar Basin[J].Journal of Arid Environments,2003,53(2):241-256.
78 Xu Z W,Lu H Y,Zhao C F,et al.Composition,origin and weathering process of surface sediment in Kumtagh Desert,Northwest China[J].Journal of Geographical Sciences,2011,21(6):1062-1076.
79 Liu B L,Qu J J,Ning D H,et al.Grain-size study of aeolian sediments found east of Kumtagh Desert[J].Aeolian Research,2014,13:1-6.
80 Fang X M,Zhang W L,Meng Q Q,et al.High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau,Qinghai province,China and its implication on tectonic uplift of the NE Tibetan Plateau[J].Earth and Planetary Science Letters,2007,258(1/2):293-306.
81 Yang X P.Landscape evolution and precipitation changes in the Badain Jaran Desert during the last 30,000 years[J].Chinese Science Bulletin,2000,45(11):1042-1047.
82 Dong Z B,Qian G Q,Lv P,et al.Investigation of the sand sea with the tallest dunes on Earth:China’s Badain Jaran Sand Sea[J].Earth-Science Reviews,2013,120:20-39.
83 哈斯.騰格里沙漠東南緣格狀沙丘粒度特征與成因探討[J].地理研究,1998,17(2):178-184.[Hasi.Grain-size characteritics and mechanism of network dune in the southeastern Tengger desert[J].Geographical Research,1998,17(2):178-184.]
84 Li Z J,Sun D H,Chen F H,et al.Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China[J].Quaternary Science Reviews,2014,85:85-98.
85 Fan Y X,Chen X L,Fan T L,et al.Sedimentary and OSL dating evidence for the development of the present Hobq desert landscape,northern China[J].Science China Earth Sciences,2013,56(12):2037-2044.
86 Fan Y X,Chen F H,Fan T L,et al.Sedimentary documents and Optically Stimulated Luminescence(OSL)dating for formation of the present landform of the northern Ulan Buh Desert,northern China[J].Science China Earth Sciences,2010,53(11):1675-1682.
87 Chen F H,Li G Q,Zhao H,et al.Landscape evolution of the Ulan Buh Desert in northern China during the Late Quaternary[J].Quaternary Research,2014,81(3):476-487.
88 Sun J M.Origin of eolian sand mobilization during the past 2300 years in the Mu Us desert,China[J].Quaternary Research,2000,53(1):78-88.
89 Stevens T,Carter A,Watson T P,et al.Genetic linkage between the Yellow River,the Mu Us desert and the Chinese Loess Plateau[J].Quaternary Science Reviews,2013,78:355-368.
90 李孝澤,董光榮.渾善達克沙地的形成時代與成因初步研究[J].中國沙漠,1998,18(1):16-21.[Li Xiaoze,Dong Guangrong.Preliminary studies on formative age and causes of Otindag sandy land in China[J].Journal of Desert Research,1998,18(1):16-21.]
91 裘善文.試論科爾沁沙地的形成與演變[J].地理科學,1989,9(4):317-328.[Qiu Shanwen.Study on the formation and evolution of Horqin sandy land[J].Scientia Geographica Sinica,1989,9(4):317-328.]
92 李取生.松嫩沙地的形成與環境變遷[J].中國沙漠,1991,11(3):36-43.[Li Qusheng.The formation of Songnen sandy land and the changes of the environment[J].Journal of Desert Research,1991,11(3):36-43.]
93 韓廣,張桂芳,楊文斌.呼倫貝爾沙地沙丘砂來源的定量分析——逐步判別分析(SDA)在粒度分析方面的應用[J].地理學報,2004,59(2):189-196.[Han Guang,Zhang Guifang,Yang Wenbin.A quantitative analysis for the provenance of dune sand in the Hulun Buir sandy land:Application of stepwise discriminant analysis to granulometric data[J].Acta Geographica Sinica,2004,59(2):189-196.]
94 Sun J M,Ding Z L,Li T S.Desert distributions during the glacial maximum and climatic optimum:Example of China[J].Episodes,1998,21(1):28-31.
95 Li S H,Sun J M,Zhao H.Optical dating of dune sands in the northeastern deserts of China[J].Palaeogeography Palaeoclimatology Palaeoecology,2002,181(4):419-429.
96 Lu H Y,Yi S W,Xu Z W,et al.Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum[J].Chinese Science Bulletin,2013,58(23):2775-2783.
97 Xie J,Yang S L,Ding Z L.Methods and application of using detrital zircons to trace the provenance of loess[J].Science China Earth Sciences,2012,55(11):1837-1846.
98 Ono Y,Naruse T,Ikeya M,et al.Origin and derived courses of eolian dust quartz deposited during marine isotope stage 2 in East Asia,suggested by ESR signal intensity[J].Global Planetary Change,1998,18(3/4):129-135.
99 Murata K J,Norman M B.An index of crystallinity for quartz[J].A-merican Journal of Science,1976,276(9):1120-1130.
100 Nagashima K,Tada R,Tani A,et al.Contribution of aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz[J].Geochemistry Geophysics Geosystems,2007,8(2):Q02Q04.doi:10.1029/2006GC001364.
101 Sun Y B,Tada R,Chen J,et al.Distinguishing the sources of Asian dust based on electron spin resonance signal intensity and crystallinity of quartz[J].Atmospheric Environment,2007,41(38):8537-8548.
102 Sun Y B,Tada R,Chen J,et al.Tracing the provenance of finegrained dust deposited on the central Chinese loess plateau[J].Geophysical Research Letters,2008,35(1):L01804,doi:10.1029/2007GL031672.
103 Fitzsimmons K.An assessment of the luminescence sensitivity of Australian quartz with respect to sediment history[J].Geochronometria,2011,38(3):199-208.
104 Li S H,Chen Y Y,Li B,et al.OSL dating of sediments from deserts in northern China[J].Quaternary Geochronology,2007,2(1-4):23-28.
105 Zheng C X,Zhou L P,Qin J T.Difference in luminescence sensitivity of coarse-grained quartz from deserts of northern China[J].Radiation Measurements,2009,44(5/6):534-537.
106 Tsukamoto S,Nagashima K,Murray A S,et al.Variations in OSL components from quartz from Japan sea sediments and the possibility of reconstructing provenance[J].Quaternary International,2011,234(1/2):182-189.
107 Pettke T,Halliday A N,Rea D K.Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3[J].Paleoceanography,2002,17:1031.doi:1010.1029/2001PA000673.
108 Sun J M,Zhu X K.Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma:Implications for provenance change[J].Earth and Planetary Science Letters,2010,290(3/4):438-447.
109 Grousset F E,Biscaye P E.Tracing dust sources and transport patterns using Sr,Nd and Pb isotopes[J].Chemical Geology,2005,222(3/4):149-167.
110 Rao W B,Yang J D,Chen J,et al.Sr-Nd isotope geochemistry of eolian dust of the arid-semiarid areas in China:implications for loess provenance and monsoon evolution[J].Chinese Science Bulletin,2006,51(12):1401-1412.
111 Yang J D,Li G J,Rao W B,et al.Isotopic evidence for provenance of East Asian dust[J].Atmospheric Environment,2009,43(29):4481-4490.
112 Chen Z,Li G J.Evolving sources of eolian detritus on the Chinese Loess Plateau since Early Miocene:Tectonic and climatic controls[J].Earth and Planetary Science Letters,2013,371-372:220-225.
113 Ferrat M,Weiss D J,Strekopytov S,et al.Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau[J].Geochimica et Cosmochimica Acta,2011,75(21):6374-6399.
114 Weltje G J,von Eynatten H.Quantitative provenance analysis of sediments:review and outlook[J].Sedimentary Geology,2004,171(1/2/3/4):1-11.
115 Weltje G J.Quantitative models of sediment generation and provenance:State of the art and future developments[J].Sedimentary Geology,2012,280:4-20.
116 Fedo C M,Sircombe K N,Rainbird R H.Detrital zircon analysis of the sedimentary reord[J].Reviews in Mineralogy and Geochemistry,2003,53(1):277-303.
117 Xiao G,Zong K,Li G,et al.Spatial and glacial-interglacial variations in provenance of the Chinese Loess Plateau[J].Geophysical Research Letters,2012,139(20):L20715, doi:10.1029/2012GL053304.
118 Pullen A,Kapp P,McCallister A T,et al.Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications[J].Geology,2011,39(11):1031-1034.
119 Che X D,Li G J.Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon[J].Quaternary Research,2013,80(3):545-551.
120 Cox R,Lowe D R.A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover[J].Journal of Sedimentary Research,1995,65(1A):1-12.
121 Morton A C,Hallsworth C R.Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J].Sedimentary Geology,1994,90(3/4):241-256.
122 Morton A C,Hallsworth C R.Processes controlling the composition of heavy mineral assemblages in sandstones[J].Sedimentary Geology,1999,124(1/2/3/4):3-29.
123 Amorosi A,Zuffa G G.Sand composition changes across key boundaries of siliciclastic and hybrid depositional sequences[J].Sedimentary Geology,2011,236(1/2):153-163.
124 Garzanti E,Vermeesch P,Andò S,et al.Provenance and recycling of Arabian desert sand[J].Earth-Science Reviews,2013,120:1-19.
125 Garzanti E,Andò S,Vezzoli G.Settling equivalence of detrital minerals and grain-size dependence of sediment composition[J].Earth and Planetary Science Letters,2008,273(1/2):138-151.
126 Garzanti E,Andò S,Vezzoli G.Grain-size dependence of sediment composition and environmental bias in provenance studies[J].Earth and Planetary Science Letters,2009,277(3/4):422-432.
127 Tolosana-Delgado R.Uses and misuses of compositional data in sedimentology[J].Sedimentary Geology,2012,280:60-79.
128 Schuster M,Duringer P,Ghienne J-F,et al.The age of the Sahara desert[J].Science,2006,311(5762):821.
129 Muhs D R,Roskin J,Tsoar H,et al.Origin of the Sinai-Negeverg,Egypt and Israel:mineralogical and geochemical evidence for the importance of the Nile and sea level history[J].Quaternary Science Reviews,2013,69:28-48.
130 Lancaster N.Grain size characteristics of Namib Desert linear dunes[J].Sedimentology,1981,28(1):115-122.
131 White K,Walden J,Gurney S D.Spectral properties,iron oxide content and provenance of Namib dune sands[J].Geomorphology,2007,86(3/4):219-229.
132 Vermeesch P,Fenton C R,Kober F F,et al.Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides[J].Nature Geoscience,2010,3:862-865.
133 Garzanti E,Andò S,Vezzoli G,et al.Petrology of the Namib Sand Sea:Long-distance transport and compositional variability in the wind-displaced Orange Delta[J].Earth-Science Reviews,2012,112(3/4):173-189.
134 Lancaster N.Grain-size characteristics of linear dunes in the southwestern Kalahari[J].Journal of Sedimentary Research,1986,56(3):395-400.
135 Thomas D S G,Knight M,Wiggs G F S.Remobilization of southern African desert dune systems by twenty-first century global warming[J].Nature,2005,435(7046):1218-1221.
136 Muhs D R.Mineralogical maturity in dunefields of North America,Africa and Australia[J].Geomorphology,2004,59(1/2/3/4):247-269.
137 Hanson P R,Arbogast A F,Johnson W C,et al.Megadroughts and Late Holocene dune activation at the eastern margin of the Great Plains,north-central Kansas,USA[J].Aeolian Research,2010,1(3/4):101-110.
138 Kocurek G,Lancaster N.Aeolian system sediment state:theory and Mojave Desert Kelso dune field example[J].Sedimentology,1999,46(3):505-515.
139 Bateman M D,Bryant R G,Foster I D L,et al.On the formation of sand ramps:A case study from the Mojave Desert[J].Geomorphology,2012,161-162:93-109.
140 Roy P D,Caballero M,Lozano S,et al.Provenance of sediments deposited at paleolake San Felipe,western Sonora Desert:Implications to regimes of summer and winter precipitation during last 50 cal kyr BP[J].Journal of Arid Environments,2012,81:47-58.
141 Ortega B,Schaaf P,Murray A,et al.Eolian deposition cycles since AD 500 in Playa San Bartolo lunette dune,Sonora,Mexico:Paleoclimatic implications[J].Aeolian Research,2013,11:1-13.
142 Castiglia P J,Fawcett P J.Large Holocene lakes and climate change in the Chihuahuan Desert[J].Geology,2006,34(2):113-116.
143 Dunai T J,González López G A,Juez-Larré J.Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of e-rosion-sensitive landforms[J].Geology,2005,33(4):321-324.
144 Garreaud R D,Molina A,Farias M.Andean uplift,ocean cooling and Atacama hyperaridity:A climate modeling perspective[J].Earth and Planetary Science Letters,2010,292(1/2):39-50.
145 Potter P E.Modern sands of South America:composition,provenance and global significance[J].Geologische Rundschau,1994,83(1):212-232.
146 Tripaldi A,Ciccioli P L,Alonso M S,et al.Petrography and geochemistry of Late Quaternary dune fields of western Argentina:Provenance of aeolian materials in southern South America[J].Aeolian Research,2010,2(1):33-48.
147 Pell S D,Chivas A R,Williams I S.The Great Victoria Desert:development and sand provenance[J].Australian Journal of Earth Sciences,1999,46(2):289-299.
148 Pell S D,Chivas A R,Williams I S.The Simpson,Strzelecki and Tirari Deserts:development and sand provenance[J].Sedimentary Geology,2000,130(1/2):107-130.
149 Fitzsimmons K E,Magee J W,Amos K J.Characterisation of aeolian sediments from the Strzelecki and Tirari Deserts,Australia:Implications for reconstructing palaeoenvironmental conditions[J].Sedimentary Geology,2009,218(1/2/3/4):61-73.
150 Singhvi A K,Williams M A J,Rajaguru S N,et al.A ~200 ka record of climatic change and dune activity in the Thar Desert,India[J].Quaternary Science Reviews,2010,29(23/24):3095-3105.
151 Padmakumar G P,Srinivas K,Uday K V,et al.Characterization of aeolian sands from Indian desert[J].Engineering Geology,2012,139-140:38-49.
152 Garzanti E,Resentini A,Vezzoli G,et al.Forward compositional modelling of Alpine orogenic sediments[J].Sedimentary Geology,2012,280:149-164.
153 Bloemsma M R,Zabel M,Stuut J B W,et al.Modelling the joint variability of grain size and chemical composition in sediments[J].Sedimentary Geology,2012,280:135-148.
154 Caracciolo L,Tolosana-Delgado R,Le Pera E,et al.Influence of granitoid textural parameters on sediment composition:implications for sediment generation[J].Sedimentary Geology,2012,280:93-107.
155 von Eynatten H,Tolosana-Delgado R,Karius V.Sediment generation in modern glacial settings:Grain-size and source-rock control on sediment composition[J].Sedimentary Geology,2012,280:80-92.