999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

多孔有機(jī)骨架:基于傅氏烷基化反應(yīng)的合成與氣體吸附性質(zhì)

2015-12-01 02:36:55崔鵬景曉飛任浩元野朱廣山
關(guān)鍵詞:實(shí)驗(yàn)室化學(xué)

崔鵬 景曉飛 任浩 元野 朱廣山*,

(1吉林大學(xué)化學(xué)學(xué)院,無機(jī)合成與制備化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,長春130012)

(2東北師范大學(xué)化學(xué)學(xué)院,多酸科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,長春130024)

多孔有機(jī)骨架:基于傅氏烷基化反應(yīng)的合成與氣體吸附性質(zhì)

崔鵬1景曉飛2任浩1元野2朱廣山*,1

(1吉林大學(xué)化學(xué)學(xué)院,無機(jī)合成與制備化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,長春130012)

(2東北師范大學(xué)化學(xué)學(xué)院,多酸科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,長春130024)

通過傅氏烷基化反應(yīng)成功地合成了基于四苯鍺烷構(gòu)筑單元的多孔有機(jī)骨架材料PAF-9。用紅外光譜,粉末X射線衍射,固體核磁共振,熱重分析和低溫氮?dú)馕?脫附表征了PAF-9材料的微結(jié)構(gòu)與孔道性質(zhì)。表征數(shù)據(jù)表明PAF-9具有非常高的熱穩(wěn)定性和化學(xué)穩(wěn)定性,同時(shí)具有較高的比表面積。該P(yáng)AF材料的BET比表面積為334 m2·g-1。此外,得到的PAF材料對二氧化碳具有較好的吸附能力。

傅氏烷基化;多孔有機(jī)骨架材料;氣體吸附

0 Introduction

Nowadays,one of the major causes of the global warming is the excessive CO2emission.CO2capture and storage(CCS)technologies are urgently needed in twenty-first century[1-3].So it is important to synthetize novel porous materials as alternative candidates for CO2capture.Porousorganicframeworks(POFs)possess many advantage,including high surface area,low skeleton density,high chemical and thermal stability and have attracted considerable attention as a kind of sorption materials in CCS technologies.Various POFs materials,such as covalent organic frameworks (COFs)[4-7],polymers of intrinsic microporosity(PIMs)[8-9], conjugated microporous polymers(CMPs)[10-11],crystalline triazine-based organic frameworks(CTFs)[12-13],and porous aromatic frameworks(PAFs)[14-16],have been created and synthesized.In particular,POF networks derived from diamond-like building units such as tetaphenylmethane were obtained,and most of them presented ultra-high surface area and excellent gas sorption ability[17].Several pioneering and effective strategies have been employed to construct POFs, including condensation reaction of boronic acids,the dibenzodioxane-forming reaction,palladium catalyzed Sonogashira-Hagihara cross-coupling reaction,palladium-catalyzed Suzuki cross-coupling reaction and trimerization reaction of aromatic nitrile compounds etc[18].However,these cross-couple reactions are usually catalyzed by expensive noble metals or transition metalcatalystswhichlimitthedevelopmentfor extensive application of POFs in CCS technologies.It is worth to find a synthesis route with cheap catalysts to synthesize high surface area POFs.Under the circumstances,we explored to construct polymers with diamond-like structure which have high surface area via cost-effective cross-coupling reaction.Tan and Cooper group[19-22]have reported a series of polymers with heterocyclic(pyrrole,thiofuran,furan,benzene, and biphenyl etc.)as monomers and formaldehyde dimethylacetal as an external cross-linker via Friedel-Crafts alkylation reaction.This kind of reaction is catalyzed by inexpensive FeCl3or AlCl3[23-24].In the presence of Lewis acid,aromatic nuclei of monomers become active to achieve polymerization to produce polymers.Being inspired by this idea,we chose tetraphenylgermane as tetrahedral building unit and FeCl3as catalyst via Friedel-Crafts alkylation reaction under mild condition to produce the cost-effective porousaromaticframeworks(PAF-9).Afterthe synthesis of PAF-9,we carried out characterizations and discovered that PAF-9 has high surface area(334 m2·g-1).So we further studied CO2sorption ability of PAF-9 and found out that PAF-9 had good sorption ability of CO2.

1 Experimental

1.1Materials and measurements

Tetraphenylgermane(5 g,98%)and formaldehyde dimethyl acetal(FDA,500 mL,98%)were purchased from Alfa Aesar.CaH2(100 g,95%)was purchased from Aladdin.Other chemicals and reagents were purchased from commercial suppliers without further purificationunlessotherwisestated.Methylene dichloride(CH2Cl2,500 mL,99%,Beijing Chemical Works)was dehydrated with CaH2.

TheFouriertransforminfraredspectroscopy (FTIR)spectra(film)were recorded using IFS 66V/S Fourier transform infrared spectroscopy.Solid-state13C CP/MAS NMR measurements were performed on a Bruker Avance III model 400 MHz spectrometer at a MAS rate of 5 kHz.The powder X-ray diffraction (PXRD)was performed by a Riguku D/MAX2550 diffractometer using Cu Kα radiation(λ=0.154 18 nm), 50 kV,200 mA with scanning rate of 4°·min-1(2θ). Scanning electron microscopy(SEM)analysis was performed on a JEOS JSM 6700.Transmission electron microscopy(TEM)was recorded using a JEOL JEM 3010 with an acceleration voltage of 300 kV.Thermogravimetric analysis(TGA)was performed using a Netzch Sta449c thermal analyzer system at a heating rate of 10℃·min-1in air.The gas adsorption-sorption isotherms data were obtained from a Quantachrome Autosorb-iQ2 analyzer.

1.2Synthesis

Tetraphenylgermane(1 mmol,0.38 g)and FeCl3(4 mmol,0.65 g)were added into a 100 mL roundbottom-flask,and the system of mixture was degassed to vacuum and aerated with Ar and sealed by three freeze-pump-thaw cycles.Then FDA(4 mmol 0.36 mL)and CH2Cl2(10 mL)were injected into the system through a syringe.The polymerization fused aromatic monomers with 4 equivalents of FDA(depending on the number of aromatic reaction sites available).Themixture was heated at 45℃for 3 d to produce the polymer.After cooling down to room temperature,the product was washed by 1 mol·L-1hydrochloric acid solution,methanol and acetone until the filtrate liquor was nearly colorless.Then the product was Soxhlet extracted for 24 h with methanol,tetrahydrofuran and dichloromethane separately to remove monomers and catalyst residues thoroughly,and dried under vacuum to give PAF-9 as brown powder(95%yield).

Fig.1 Synthetic pathway of PAF-9

2 Results and discussion

2.1FTIR spectra

Comparisons of the FTIR spectra of monomers and products were performed to confirm the reaction degree of the polymerization.As shown in Fig.2,the appearance of intense saturated C-H bands(at 2 904 cm-1)of PAF-9 reveal that the networks are linked by methylene groups as desired.The peaks at 1 600~1 450 cm-1belong to aromatic C=C stretching vibrations and the peaks at 900~650 cm-1belong to aromatic C-H deformation vibrations.These indicate the phenyl rings in the PAF-9 network.

Fig.2 FTIR spectra of PAF-9(red)and tetraphenygermane(black)

2.2Solid State13C CP/MAS NMR spectra

Further investigation of the local structures of the PAF-9 was performed by solid-state13C CP/MAS NMR studies.Three different types of resonance peaks are clearly observed in the13C CP/MAS NMR spectra of PAF-9(Fig.3).The strong signals in the range of 140~125 ppm are attributed to the aromatic carbon atoms. The peak at 127 belongs to the aromatic C(C2,C3) connected to H and the peak at 138 belongs to the aromatic C(C1,C4)connected with other atom or perssad.Moreover,the signal near 37 is related to the methylene carbon atoms(C5),thus further indicating the FDA participation in the reaction.

Fig.3 13C CP/MAS NMR spectrum of PAF-9

2.3Powder X-ray diffraction

PXRD was carried out to identify the crystallinity of PAF-9 materials.No intense peaks but only a broad peak in Fig.4 indicate that the texture of the polymerisamorphouswhichiscausedbythe irreversibility of Friedel-Crafts alkylation reaction and the introduction of flexible perssad(methylene).

Fig.4 PXRD pattern of PAF-9

2.4SEM and TEM

The morphology and particle size of PAF-9 wereinvestigated by SEM measurement.SEM image(Fig. 5a)shows that PAF-9 is amorphous and most particles are micro-sized irregular blocks.TEM analyses(Fig. 5b)shows that PAF-9 is clearly porous textures, although the arrangement of the pores was random.

Fig.5 SEM(a)and TEM(b)images of PAF-9

2.5Thermogravimetric analysis

TGA analysis under air conditions was used to investigate the structure stability of the polymers.Fig. 6 exhibits that PAF-9 displays high thermal stability. The decomposition temperature of PAF-9 is above 400℃.In addition,PAF-9 materials cannot be dissolved and decomposed in common organic solvents,such as DMF,THF,CHCl3and so on,indicating high thermal and chemical stability.

Fig.6 TGA plots of PAF-9

2.6N2sorption measurements

The pore character of PAF-9 was studied by N2sorption isotherm measured at 77 K under 1 013 kPa. As indicated in Fig.7,a sharp uptake at low relative pressuresandadistincthysteresisloopinthe desorption branch are observed indicating that PAF-9 possesses both microporous and mesoporous texture. The adsorption isotherm of PAF-9 increases rapidly at P/P0≈1.0 which might be attributed to the surface adsorption of assembled small particles.The apparent surface area of PAF-9 calculated from the Brunauer-Emmett-Teller(BET)model is 334 m2·g-1.Meanwhile, the pore size distribution calculated via nonlocal density functional theory(NLDFT)gives two narrow peaks at 1.68 and 3.80 nm,further proving the micromesoporous network of PAF-9.

Fig.7 N2sorption isotherms and pore size distribution (inset)of PAF-9

2.7CO2adsorption measurements

The high surface area and permanent porosity make PAF-9 an outstanding candidate for gas sorption such as CO2.Herein,CO2sorption isotherms are collected at 273 and 298 K.As shown in Fig.8a, under STP condition,the CO2uptakes of PAF-9 at 273 and 298 K are 28 cm3·g-1and 17 cm3·g-1respectively.The heat of adsorption(Qst)for CO2calculated from adsorption data from 273 and 298 K, using the Clausius-Clapeyron equation,is 32 kJ·mol-1(Fig.8b).The results indicate that PAF-9 has comparative CO2sorption capacity with other reported POF materials[25-26]and is possible to be a cost-effective material in CCS technologies.

Fig.8  CO2sorption isotherms measured at 273 and 298 K(a)and Qstfor CO2(b)of PAF-9

3 Conclusions

In summary,the PAF materials(PAF-9)based on tetrahedral building blocks was synthesized by simple one-stepFriedel-Craftsalkylationreactioninthe presence of inexpensive catalyst FeCl3.The properties of PAF-9 materials were investigated and discussed. Characterizations indicate that the PAF-9 materials display high thermal and chemical stability as well as high surface area.In addition the PAF-9 materials exhibit potential application in CO2capture.

Acknowledgments:We are grateful for the financial support of National Basic Research Program of China(973 Program,GrantNo.2012CB821700andGrantNo.2014CB931804), Major International(Regional)Joint Research Project of NSFC (Grant No.21120102034).

References:

[1]YUAN Ye(元野),REN Hao(任浩),SUN Fu-Xing(孫福興). Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2013,29(8):1645-1648

[2]Dawson R,Cooper A I,Admas D J,et al.Polym.Int.,2013, 62:345-352

[3]LI Jin-Li(李錦麗),FU Ning(付寧),Lü Gong-Xuan(呂功煊). Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2010,26(12):2175-2181

[4]Cote A P,Benin A I,Ockwig N W,et al.Science,2005,310: 1166-1170

[5]Zeng Y F,Zou R Y,Luo Z,et al.J.Am.Chem.Soc.,2015, 137:1020-1023

[6]Ding S Y,Gao J,Wang Q,et al.J.Am.Chem.Soc.,2011, 133:19816-19822

[7]Medina D D,Rotter J M,Hu Y H,et al.J.Am.Chem.Soc., 2015,137:1016-1019

[8]Budd P M.Science,2007,316:210-211

[9]Carta M,Croad M,Malpass-Evans R,et al.Adv.Mater., 2014,26:3526-3531

[10]Ding X S,Han B H.Angew.Chem.Int.Edit.,2015,54:6536 -6539

[11]Du R,Zhang N,Xu H,et al Adv.Mater.,2014,26:8053-8058

[12]Hao L,Zhang S S,Liu R J,et al.Adv.Mater.,2015,27: 3190-3195

[13]Zhu X,Tian C C,Mahurin S M,et al.J.Am.Chem.Soc., 2012,134:10478-10484

[14]Ben T,Ren H,Ma S Q,et al.Angew.Chem.Int.Edit., 2009,48:9457-9460

[15]Yuan Y,Sun F X,Zhang F,et al.Adv.Mater.,2013,25: 6619-6624

[16]Yuan Y,Sun F X,Li L N,et al.Nat.Commun.,2014,5: 5260-5264

[17]Ben T,Ren H,Ma S Q,et al.Angew.Chem.Int.Edit., 2009,48:9457-9460

[18]Zou X Q,Ren H,Zhu G S,et al.Chem.Commun.,2013,49: 3925-3936

[19]Luo Y,Li B,Wang W,et al.Adv.Mater.,2012,24:5703-5707

[20]Li B,Gong R,Wang W,et al.Macromolecules,2011,44: 2410-2414

[21]Dawson R,Stevens L A,Drage T C,et al.J.Am.Chem. Soc.,2012,134:10741-10744

[22]YUAN Ye(元野),YAN Zhuo-Jun(閆卓君),REN Hao(任浩), et al.Acta Chim.Sinica(化學(xué)學(xué)報(bào)),2012,70(13):1446-1450

[23]Jing X F,Zou D L,Cui P,et al.J.Mater.Chem.A,2013,1: 13926-13931

[24]LI L N,Ren H,Yuan Y,et al.J.Mater.Chem.A,2014,2: 11091-11098

[25]Dawson R,Stockel E,Holst J R,et al.Energy Environ.Sci., 2011,4:4239-4245

[26]Jiang J X,Cooper A I.Top.Curr.Chem.,2010,293:1-33

Porous Aromatic Frameworks:Synthesis via Friedel-Crafts Alkylation Reaction and Gas Sorption Property

CUI Peng1JING Xiao-Fei2REN Hao1YUAN Ye2ZHU Guang-Shan*,1
(1State Key Laboratory of Inorganic Synthesis&Preparative Chemistry,College of Chemistry,
Jilin University,Changchun 130012,China)
(2Key Laboratory of Polyoxometalate Science of Ministry of Education,Department of Chemistry, Northeast Normal University,Changchun 130024,China)

A porous aromatic framework,PAF-9 derived from tetraphenylgermane as basic building unit,was synthesized via Friedel-Crafts alkylation reaction.The microstructure and pore property were investigated by FTIR spectroscopy,powder X-ray diffraction,solid state NMR,thermogravimetric analysis and low temperature N2adsorption-desorption measurements.The characterizations reveal that PAF-9 possess high thermal and chemical stability as well as high BET surface area of 334 m2·g-1.Additionally,the resulting PAF materials exhibit high CO2adsorption ability.

Friedel-Crafts alkylation reaction;porous aromatic framework;gas sorption

O621.25

A

1001-4861(2015)09-1855-05

10.11862/CJIC.2015.256

2015-05-31。收修改稿日期:2015-08-03。

國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃,No.2012CB821700,No.2014CB931804)、國家自然科學(xué)基金委重大國際(地區(qū))合作研究項(xiàng)目(No.21120102034)資助項(xiàng)目。

*通訊聯(lián)系人。E-mail:zhugs@jlu.edu.cn

猜你喜歡
實(shí)驗(yàn)室化學(xué)
電競實(shí)驗(yàn)室
電子競技(2020年4期)2020-07-13 09:18:06
電競實(shí)驗(yàn)室
電子競技(2020年2期)2020-04-14 04:40:38
電競實(shí)驗(yàn)室
電子競技(2019年22期)2019-03-07 05:17:26
電競實(shí)驗(yàn)室
電子競技(2019年21期)2019-02-24 06:55:52
電競實(shí)驗(yàn)室
電子競技(2019年20期)2019-02-24 06:55:35
電競實(shí)驗(yàn)室
電子競技(2019年19期)2019-01-16 05:36:09
奇妙的化學(xué)
奇妙的化學(xué)
奇妙的化學(xué)
奇妙的化學(xué)
主站蜘蛛池模板: 亚洲无卡视频| 9久久伊人精品综合| 四虎永久在线精品影院| 在线网站18禁| 亚洲精选无码久久久| 成年女人a毛片免费视频| 欧美综合中文字幕久久| 久热99这里只有精品视频6| 亚洲成年网站在线观看| 中文字幕久久精品波多野结| 亚洲色图在线观看| 伊人久久久久久久| 69国产精品视频免费| 亚洲天堂伊人| 在线观看91精品国产剧情免费| 日韩高清一区 | 欧美影院久久| 国产美女丝袜高潮| 91福利免费视频| 特级欧美视频aaaaaa| 黄色福利在线| 国产h视频免费观看| 国内a级毛片| 精品一区二区三区自慰喷水| 亚洲性网站| 91娇喘视频| 四虎影视库国产精品一区| 国产一区二区福利| 精品色综合| 亚洲国产午夜精华无码福利| 日本成人在线不卡视频| 亚洲午夜天堂| 亚洲最大福利视频网| 欧美成人看片一区二区三区| 婷婷色婷婷| 91视频精品| 麻豆精品在线视频| 亚洲国产成人精品无码区性色| 婷婷伊人五月| 亚洲成人免费在线| 国产欧美视频在线观看| 亚洲精品波多野结衣| 中文字幕调教一区二区视频| 亚洲精品无码AV电影在线播放| 啪啪啪亚洲无码| 亚洲精品动漫| 91无码人妻精品一区| 久热99这里只有精品视频6| 白丝美女办公室高潮喷水视频| 国产精选小视频在线观看| 亚洲娇小与黑人巨大交| 黄色一及毛片| 国产成人禁片在线观看| 国产一区二区三区免费观看| 综合色亚洲| 自拍欧美亚洲| 91精品久久久无码中文字幕vr| 999精品在线视频| 国产白浆视频| 成人精品在线观看| 亚洲综合国产一区二区三区| 欧美无遮挡国产欧美另类| 久热这里只有精品6| 亚洲日本精品一区二区| 亚洲中文无码h在线观看 | 亚洲天堂视频在线观看| 国产鲁鲁视频在线观看| 高清无码一本到东京热| 欧美一级夜夜爽www| 四虎永久免费网站| 久久精品电影| 日韩精品成人网页视频在线| 国产97色在线| 久青草免费视频| 伊人91在线| 日韩成人在线视频| 欧美天堂在线| 久久综合九九亚洲一区| 香蕉在线视频网站| 欧美日韩国产一级| 亚洲全网成人资源在线观看| a级毛片免费网站|