999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A NEW PROOF OF THE DELTA INEQUALITY?

2015-11-21 07:12:20YiQI漆毅FeiSONG宋飛

Yi QI(漆毅)Fei SONG(宋飛)

School of Mathematics and Systems Science,Beihang University,Beijing 100191,China

A NEW PROOF OF THE DELTA INEQUALITY?

Yi QI(漆毅)Fei SONG(宋飛)

School of Mathematics and Systems Science,Beihang University,Beijing 100191,China

E-mail:yiqi@buaa.edu.cn;songfei19860810@163.com

The purpose of this paper is to give a relatively elementary and direct proof of the Delta Inequality,which plays a very important role in the study of the extremal problem of quasiconformal mappings.

Delta Inequality;Teichm¨uller space;quasiconformal mappings

2010 MR Subject Classification 30F60;32G15

1 Introduction

Let X be a Riemann surface whose universal covering surface is conformally equivalent to the unit disc D={z:|z|<1}on the complex plane C.By Bel(X)we denote the Banach space of Beltrami differentialsμ=μ(z)dz/dz on X with L∞-norms.

Let M(X)be the open unit ball in Bel(X).For everyμ∈M(X),there is a quasiconformal mapping fμof X onto fμ(X),such that its Beltrami coefficient isμ.

Two elementsμand ν in M(X)are said to be Teichm¨uller equivalent,denoted byμ~ν,if there is a conformal mapping ? of fμ(X)onto fν(X)such that(fν)-1???fμis homotopic to the identity of X(Mod?X).

The Teichm¨uller space T(X)is defined as the quotient space M(X)/~,or equivalently,T(X)is the space of Teichm¨uller equivalence classes[μ]ofμ∈M(X).

As usual,Q(X)stands for the Banach space of integrable holomorphic quadratic differentials φ=φ(z)dz2on X with L1-norms

In the study of the extremal problem of quasiconformal mappings,the delta inequality plays a very important role([5],[1]and[6],or see[3]also).

Theorem A (Delta inequality)[3]Ifμand ν∈M(X)are in the same Teichm¨uller equivalent class with‖ν‖∞≤‖μ‖∞,then

for all φ∈Q(X)with‖φ‖=1,where M is a constant depends only on‖μ‖∞andμ1and ν1are the Beltrami coefficients of(fμ)-1and(fν)-1,respectively.

The above form of delta inequality was first appeared in[1],which was used to solve the famous uniqueness problem of quasiconformal mappings.Recently,a generalized delta inequality is given in[4]as an application of the generalized main inequality of Reich-Strebel,which implies the delta inequality(1.1)in case of‖μ‖∞=‖ν‖∞.

The goal of this paper is to give a new and simple proof of the delta inequality(1.1)in general case directly from the main inequality of Reich-Strebel[7-9],which is inspired by[4].

Theorem B(the main inequality)[3]Suppose bothμand ν are two elements of M(X)andμ~ν.Then for any φ∈Q(X)with‖φ‖=1,we have

where ν1is the Beltrami coefficient of(fν)-1and

For the main inequality of Reich-Strebel we also refer[2]and[3].

The paper is organized as follows.We give a lemma in§2 first and then we prove the Delta inequality in§3.

2 A Lemma

To prove Theorem A,we need the following lemma.

Lemma 2.1 has been appeared in[4]with constant 16 as the numerator in the right.For the sake of completeness and emphasizing the simplicity of our proof of the delta inequality,we give another proof of Lemma 2.1 here,which is more simple than the proof in[4].

Proof A simple computation shows

which implies(2.1)directly.

3 Proof of the Delta Inequality

Since

it is clear that the delta inequality(1.1)is equivalent to the following inequality

Since‖ν‖∞≤‖μ‖∞,we have

So,in oder to get the delta inequality(1.1),we only need to prove

where C is a constant depending only on‖μ‖∞.

生:第一幅圖旋轉(zhuǎn)后得到圖形是一個底面半徑為6cm、高為12cm的圓柱挖去了一個底面半徑6cm、高4cm的圓錐。

Proof Sinceμ~ν,by Theorem B,the main inequality(1.2)holds.

A simple computation shows

where Kμ=(1+‖μ‖∞)/(1-‖μ‖∞).

Similarly,

where Kν=(1+‖ν‖∞)/(1-‖ν‖∞).

Then it follows from(1.2),(3.4)and(3.5)that

where

and

Noting the fact that both Lμand Λνare non-negative,it follows from(3.6)that

Putting(3.7)and(3.8)into(3.9),we have

and consequently,

Thus,

As‖ν‖∞≤‖μ‖∞,so it is easy to check that the algebraic sum of the first 3 tems in the right hand of(3.11)is nonpositive.Thus,by(3.11),we get

Since

so we have Z

By the definition of ?μ,it is clear that

So

By Lemma 2.1,we have

As‖ν‖∞≤‖μ‖∞,

Therefore,(3.3)can be deduced from(3.13)-(3.16)and(3.12).This completes the proof of the delta inequality.

[1]Boˇzin V,Lakic N,Markovi′c V,et al.Unique extremality.Journal d'Analyse Math′ematique,1998,75(1): 299-338

[2]Gardiner F P.Teichm¨uller Theory and Quadratic Differentials.New York:John Wiley&Sons,1987

[3]Gardiner F P,Lakic N.Quasiconformal Teichm¨uller Theory.Amer Math Soc,2000

[4]Li Z,Qi Y.Fundamental inequalities of Reich-Strebel and triangles in a Teichm¨uller space.Contem Math,2012,575:283-297

[5]Reich E.On criteria for unique extremality of Teichm¨uller mappings.Ann Acad Sci Fenn Series A I Math,1981,(6):289-301

[6]Reich E.The unique extremality counterexample.Journal d'Analyse Math′ematique,1998,75(1):339-347

[7]Reich E,Strebel K.On quasiconformal mappings which keep the boundary points fixed.Trans Amer Math Soc,1969:211-222

[8]Reich E,Strebel K.Extremal plane quasiconformal mappings with given boundary values.Bull Amer Math Soc,1973,79(2):488-490

[9]Strebel K.On quasiconformal mappings of open Riemann surfaces.Commentarii Mathematici Helvetici,1978,53(1):301-321

?Received November 18,2013.The research is partially supported by the National Natural Science Foundation of China(10971008 and 11371045).

主站蜘蛛池模板: 色偷偷一区| 日本尹人综合香蕉在线观看| 亚洲性视频网站| 国产网站黄| 黄色网址手机国内免费在线观看| 91精品专区国产盗摄| 国产乱人伦AV在线A| 国产美女一级毛片| 草草影院国产第一页| 国产精品极品美女自在线网站| 午夜一区二区三区| 久久中文无码精品| 麻豆AV网站免费进入| 久久成人18免费| 欧美精品亚洲日韩a| 九九视频免费在线观看| 国产精品性| 免费精品一区二区h| 亚洲国产日韩欧美在线| 国产一区成人| 亚洲第一黄片大全| 91精品国产综合久久不国产大片| 凹凸国产分类在线观看| 福利在线一区| 无码中文AⅤ在线观看| 日韩区欧美区| 精品99在线观看| 伊在人亚洲香蕉精品播放 | 波多野结衣久久精品| 国产精品区网红主播在线观看| 精品久久777| 亚洲中文精品人人永久免费| 狠狠干综合| 91丝袜乱伦| 亚洲中文精品久久久久久不卡| 亚洲精品另类| 日韩中文无码av超清| 最新亚洲人成无码网站欣赏网| 亚洲第一色视频| 久久96热在精品国产高清| 激情影院内射美女| 国产麻豆永久视频| 欧美第九页| 亚卅精品无码久久毛片乌克兰| 亚洲男人的天堂在线观看| 91青草视频| 自慰高潮喷白浆在线观看| 亚洲国产欧美中日韩成人综合视频| 囯产av无码片毛片一级| 欧美怡红院视频一区二区三区| 中文字幕2区| 亚洲二区视频| 国产午夜福利在线小视频| 国产在线观看精品| 国产乱码精品一区二区三区中文 | 国产Av无码精品色午夜| 精品视频一区二区观看| 97视频在线观看免费视频| 成年网址网站在线观看| 日本成人精品视频| 国产v精品成人免费视频71pao| 99久久精品国产自免费| 欧美日韩另类国产| 久久这里只有精品66| 久久久久免费看成人影片| 国产一区二区三区在线精品专区 | 日本精品αv中文字幕| 69av免费视频| 成人亚洲国产| 亚洲国产系列| 日韩精品成人网页视频在线| 无码AV高清毛片中国一级毛片| 成人综合网址| 伊人久久精品无码麻豆精品| 无码精油按摩潮喷在线播放| 免费在线播放毛片| 在线国产毛片| 伊人激情久久综合中文字幕| 亚洲视频影院| 亚洲美女一级毛片| 欧美午夜网| 国产精品.com|