999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

PHOTON-SUBTRACTED(-ADDED)THERMO VACUUM STATE AND THEIR APPLICATION IN JACOBI POLYNOMIALS

2015-11-14 07:09:48DAChengFANHongyi
巢湖學院學報 2015年3期

DA ChengFAN Hong-yi

(1 College of Mechanical and Electronic Engineering,Chaohu College,Chaohu Anhui 238000)

(2 Department of Material Science and Engineering,University of Science and Technology of China,Hefei Anhui 230026)

PHOTON-SUBTRACTED(-ADDED)THERMO VACUUM STATE AND THEIR APPLICATION IN JACOBI POLYNOMIALS

DA Cheng1FAN Hong-yi2

(1 College of Mechanical and Electronic Engineering,Chaohu College,Chaohu Anhui 238000)

(2 Department of Material Science and Engineering,University of Science and Technology of China,Hefei Anhui 230026)

We construct photon-subtracted(-added)thermo vacuum state by normalizing them. As their application we derive some new generating function formulas of Jacobi polynomials,which may be applied to study other problems in quantum mechanics.This will also stimulate the research of mathematical physics in the future.

photon-subtracted(-added)thermo vacuum state;Jacobi polynomials;generating function

1 Introduction

In nature most systems are immersed in a “thermal reservoir”,de-excitation and excitation processes are influenced by the exchange of energy between the reservoir and the system.The presence of the thermal reservoir maintains a certain number of excited quanta.In order to describe the thermal communication between systems and reservoirs more conveniently and the reservoir effect in a natural way,Takahashi and Umezawa invented Thermal Field Dynamics(TFD)theory[1].

TFD converts the evaluations of ensemble averages at nonzero temperature into equivalent expectation values with a pure state.This worthwhile convenience is at the expense of introducing a fictitious field(or a so-called tilde-conjugate field).Thus every state〉in the original real field space H is accompanied by a corresponding statein.A similar rule holds for operators:every operator b acting onhas an imageacting on,The thermal vacuum,k is the Boltzmann constant)is defined by the requirement.

Takahashi and Umezawa converted the statistical average at nonzero temperature T into equivalent expectation value with

where H is the Hamiltonian.For single-mode free bosons,H=ωb?b(h=1),the thermal vacuum is constructed as

where S(λ)is called the thermal operator(or thermal transformation,since it engenders the zero temperature vacuum to the thermal vacuum),

and can be disentangled as[2]

Under the S(λ)transformation,the operator b andbehave as

In the thermal field sense,the parameter λ is related to the number of thermalised photons by

This is in turn given by the Bose-Einstein distribution

Recently,the single-mode photon-subtracted squeezed state(PSSS)have been paid enough attention by both experimentalists and theoreticians due to its non-classical properties.Usually photo-detection for a squeezed light beam will give rise to such a state.In Ref.[3]the problem of what is the compact form of the normalization factor of PSSS has been solved,and the result shows that the normalization factor of PSSS is an r-order Legendre polynomial of the squeezing parameter,where r is the subtracted photon number.

An interesting question naturally arising,as the natural generalization of PSSS,can we construct photon-subtracted thermo vacuum state(PSTVS)and photon-added thermo vacuum state(PATVS)by normalizing them?The answer is affirmative;in Sec 2 we shall employ TFD to construct PSTVS and PATVS.As their applications,in Secs.3 and 4 of this work we shall derive some new generating functions of Jacobi Polynomials by virtue of the PSTVS and PATVS,respectively,which may be useful in studying other quantum mechanical problems.This approach is easier for physicists to accept and may be generalized to derive other special functions′properties,for example,some new properties of Legendre Polynomials can be obtained with the quantum optics method[4].

2 Construction of PSTVS and PATVS

The thermo vacuum state is given by

In summary,employing TFD we have constructed PSTVS and PATVS,which are the natural generalization of PSSS.In addition,we derive some new generating function formulas of Jacobi Polynomials via an approach in quantum optics theory,i.e.,utilizing PSTVS and PATVS.In turn,these new formulas may be applied to study other problems in quantum mechanics and stimulate the research of mathematical physics in the future.

[1]Takahashi Y.,Umezawa H.Thermo field dynamic[J].Collect.Phenom.,1975,(2):55-80.

[2]Umezawa H.,Matsumoto H.Tachiki M.,Thermo field dynamics and condensed states[M].North-Holland:Amsterdam,1982.

[3]Fan H.Y.,Hu L.Y.,XuX.X.Legendre Polynomials as the Normalization of Photon-Subtracted Squeezed States[J].Mod.Phys. Lett.A.,2009,(20):1597-1603.

[4]Zhang Z.X.,F(xiàn)an H.Y.Some Properties of States Engendered by the Excitations on a 2-Mode Squeezed Vacuum State[J]. Phys.Lett.A.,1993,(3):206-209.

[5]Buzek V.SU(1,1)Squeezing of SU(1,1)Generalized Coherent States[J].J.Mod.Opt.,1990,(3):303-316.

[6]Loudon R.,Knight P.L.Squeezed light[J].J.Mod.Opt.,1987,(34):709-759.

[7]Wolfgang P.S.Quantum Optics in Phase Space[M].Berlin:Wiley-VCH,2001.

[8]Glauber R.J.Coherent and Incoherent States of the Radiation Field[J].Phys.Rev.,1963,(131):2766-2788.

[9]Fan H.Y.Newton-Leibniz integration for ket-bra operators in quantum mechanics(V)-Deriving normally ordered bivariatenormal-distributionformofdensityoperatorsanddevelopingtheirphasespaceformalism[J].Ann.Phys.,2008,(6):1502-1528.

[10]Erdèlyi A.Higher Transcendental Functions,The Bateman Manuscript Project[M].New York:McGraw Hill,1953.

[11]Abramovitz M.Stegun I.Handbook of Mathematical Functions[M].New York:Dover Publications Inc,1965.

[12]Fan H.Y.Antinormal Expansion for Rotation Operators in the Schwinger Representation[J].Phys.Lett.A.,1988,(3):145-150.

陳 侃

O431.2 Document code:A Article ID:1672-2868(2015)03-0033-07

2014-12-10

Fund Project:Doctoral Scientific Research Foundation of Chaohu College(No.KYQD-201407)

Biography:DA Cheng(1974-),male,born in Tongcheng City,Anhui Province,College of Mechanical and Electronic Engineering,Chaohu College,lecturer,doctor,major in theoretical physics,quantum optics.

主站蜘蛛池模板: 狠狠操夜夜爽| 美女一级毛片无遮挡内谢| 亚洲天堂精品在线| 亚洲无码高清一区| 国产人在线成免费视频| 性喷潮久久久久久久久| 再看日本中文字幕在线观看| 精品午夜国产福利观看| 国产精品久久久久久久久久久久| 国产精品xxx| 久久精品欧美一区二区| 9啪在线视频| 日韩 欧美 国产 精品 综合| 97国产在线视频| 亚洲国产欧美目韩成人综合| 国产成人精品高清不卡在线| 亚洲日韩欧美在线观看| 99国产精品一区二区| 久久国产高清视频| 99精品免费欧美成人小视频| 亚洲国产日韩欧美在线| 国产精品九九视频| 欧美激情视频二区| 日韩精品一区二区三区大桥未久| 国产黄色视频综合| 99热这里只有精品免费国产| 午夜小视频在线| 久久黄色视频影| 伊人久综合| 58av国产精品| 片在线无码观看| 欧美精品不卡| 一级做a爰片久久免费| 91小视频在线观看免费版高清| av一区二区无码在线| 欧美亚洲第一页| 国产午夜看片| 人妻免费无码不卡视频| 久久久久中文字幕精品视频| 成人福利视频网| 91热爆在线| 亚洲综合第一区| 国产JIZzJIzz视频全部免费| 亚洲欧美日韩视频一区| 成人a免费α片在线视频网站| 99精品热视频这里只有精品7| 精品国产www| 国产欧美精品午夜在线播放| 国产精品无码AⅤ在线观看播放| 欧美成人精品在线| 亚洲swag精品自拍一区| 91精品专区国产盗摄| 欧美日韩亚洲综合在线观看 | 亚洲AV一二三区无码AV蜜桃| 亚洲av日韩av制服丝袜| 国产精品久久久久鬼色| 国产成人AV男人的天堂| 亚洲欧美成人综合| 国产成人AV男人的天堂| 青青草91视频| 高潮毛片免费观看| 精品国产女同疯狂摩擦2| 福利姬国产精品一区在线| 国产靠逼视频| 99视频在线免费看| 国产精品综合久久久| 欧美区国产区| 欧美成一级| 久久久久久国产精品mv| 国产精品自在自线免费观看| 国产大片黄在线观看| 国产在线一区视频| 日韩在线网址| 91色老久久精品偷偷蜜臀| 国产主播在线一区| 国产精品美女免费视频大全| 国产成人成人一区二区| 日韩国产一区二区三区无码| 蜜桃臀无码内射一区二区三区 | 久久性妇女精品免费| 88av在线看| 99er精品视频|