999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

STRONG LAW OF LARGE NUMBERS AND GROWTH RATE FOR NOD SEQUENCES

2015-11-14 07:09:42MASonglinWANGXuejun
巢湖學(xué)院學(xué)報 2015年3期

MA Song-linWANG Xue-jun

(1 College of Applied Mathematics,Chaohu College,Chaohu Anhui 238000)

(2 School of Mathematical Sciences,Anhui University,Hefei Anhui 230039)

STRONG LAW OF LARGE NUMBERS AND GROWTH RATE FOR NOD SEQUENCES

MA Song-lin1WANG Xue-jun2

(1 College of Applied Mathematics,Chaohu College,Chaohu Anhui 238000)

(2 School of Mathematical Sciences,Anhui University,Hefei Anhui 230039)

In the paper,we get the precise results of Hájek-Rényi type inequalities for the partial sums of negatively orthant dependent sequences,which improve the results of Theorem 3.1 and Corollary 3.2 in Kim(2006)and the strong law of large numbers and strong growth rate for negatively orthant dependent sequences.

negatively orthant dependent sequences;strong law of large numbers growth rate

I Introduction

We use the following notations.Letbe a sequence of random variables defined on a fixed probability space.Denote

Hájek-Rényi(1955)proved the following important inequality.Ifis a sequence of independent random variables with mean zero,andis a nondecreasing sequence of positive real numbers, then for any ε>0 and any positive integer m<n,

In the paper,we will further study Hájek-Rényi type inequality for negatively orthant dependent sequences and give the better coefficient(4ε-2(log3n+2)2)than that(8ε-2(log3n+2)2)in Kim(2006)and the condition<∞in Kim(2006)can be removed.In addition we obtain the the strong law of large numbers and strong growth rate for negatively orthant dependent sequences.

Definition 1.1

A finite collection of random variables X1,X2,…,Xnis said to be negatively upper orthant dependent(NUOD),if for all real numbers x1,x2,…,xn,

and negatively lower orthant dependent(NLOD)if for all real numbers x1,x2,…,xn,

A finite collection of random variables X1,X2,…,Xnis said to be negatively orthant dependent(NOD)if they are both NUOD and NLOD.

Lemma 1.1 (cf.Bozorgnia et al.,1996).Letbe a sequence of NOD random variables, f1,f2… be all nondecreasing(or all nonincreasing)functions,thenis still a sequence of NOD.

Lemma 1.2 (cf.Kim,2006).Let X1,X2,…,Xnbe NOD random variables with EXn=0 and EX2n<∞for all n≥1.Then we have

for all integers m,p≥1,m+p≤n.Moreover,we have

By Lemma 1.1 and Lemma 1.2,we can get the following corollary.

Lemma 1.3(cf.Hu,et al.,2008,Lemma 1.5).Letbe a random variables.Letbe a nondecreasing unbounded sequence of positive numbers and α1,α2,… be nonnegative numbers.Let r and C be fixed positive numbers.Assume that for each n≥1

Lemma 1.4 (cf. Fazekas and Klesov,2001,Corollary 2.1).Letbe a nondecreasing unbounded sequence of positive numbers and α1,α2,…be nonnegative numbers.Denote.Let r be a fixed positive number Satisfying(1.7).If

then(1.9)-(1.14)hold.

II Hájek-Rényi type inequalities for NOD

In this section,we will give Hájek-Rényi type inequalities for NOD sequences,which improve the results of Kim(2006).

III SLLN AND GROWTH RATE FOR NOD

Assume that

That is to say(1.15)holds.By Remark 2.1 in Fazekas and Klesov(2001),(1.15)implies(1.16).By Lemma 1.4,we can obtain(3.12)-(3.17)immediately.

Remark 3.1. In this section,not only the strong laws of large numbers are obtained,but also the strong growth rate are given.So our results improve some corresponding results for NOD sequences in Kim(2006).

[1]Bozorgnia,A.,Patterson,R.F.,Taylor,R.L..Limit theorems for dependent random variables[C].World Congress Nonlinear Analysts’92,1996:1639-1650.

[2]Christofides,T.C..Maximal inequalities for demimartingales and a strong law of large numbers[J].Statist.Probab.Lett.,2000,(50):357-363.

[3]Fazekas,I.,Klesov,O..A general approach to the strong law of large numbers[J].Theory Probab.Appl.,2001,(45):436-449.

[4]Gan,S.X..The Hájek-Rényi inequality for Banach space valued martingales and the p smoothness of Banach space[J].Statist. Probab.Lett.,1997,(32):245-248.

[5]Hájek-Rényi,A..A generalization of an inequality of Kolmogorov[J].Acta Math.Acad.Sci.Hungar.,1955,(6):281-284.

[6]Hu,S.H.,Chen,G.J.,Wang,X.J..On extending the Brunk-Prokhorov strong law of large numbers for martingale differences[J]. Statist.Probab.Lett.,2008,(78):3187-3194.

[7]Hu,S.H.,Wang,X.J.,Yang,W.Z.,Zhao,T..The Hájek-Rényi type inequality for associated random variables[J].Statist. Probab.Lett.,2009,(79):884-888.

[8]Joag-Dev,K.,Proschan,F(xiàn)..Negative association of random variables with applications[J].Ann.Statist.,1983,(1):286-295.

[9]Kim,H.C..The Hájek-Rényi inequality for weighted sums of negatively orthant dependent random variables[J].Int.J.Contemp.Math.Sci.,2006,(6):297-303.

[10]Liu,J.J.,Gan,S.X.,Chen,P.Y..The Hájek-Rényi inequality for NA random variables and its application[J].Statist. Probab.Lett.,1999,(43):99-105.

陳 侃

O211.4 Document code:A Article ID:1672-2868(2015)03-0001-06

Eceived date:2015-03-03

Fund Project:Foundation of Anhui Educational Committee(No.KJ2013Z225)

Author:Ma Songlin(1978-),male,Lujiang,Anhui Province,Scool of Applied Mathematics,Chaohu College.Research direction:probability limit theory.

主站蜘蛛池模板: 国产欧美中文字幕| 亚洲手机在线| 人妻21p大胆| 东京热高清无码精品| 91在线视频福利| 国产va欧美va在线观看| 亚洲综合激情另类专区| 国产无遮挡裸体免费视频| 亚洲色图另类| 欧美日韩精品一区二区视频| 成人精品午夜福利在线播放| 精品久久人人爽人人玩人人妻| 99这里只有精品在线| 丰满的熟女一区二区三区l| 在线人成精品免费视频| 国产激情无码一区二区APP| 亚洲视频四区| 91成人精品视频| 精品伊人久久久香线蕉 | 天堂网国产| 99在线视频精品| 污视频日本| 亚洲久悠悠色悠在线播放| 国产精品大尺度尺度视频| 亚洲第一香蕉视频| 国产成人成人一区二区| 亚洲五月激情网| 99re在线免费视频| 成人在线天堂| 国内自拍久第一页| 国产精品 欧美激情 在线播放| 久久精品只有这里有| 亚洲乱伦视频| 国产欧美精品专区一区二区| 久久中文字幕不卡一二区| 欧美激情第一欧美在线| 国产成人调教在线视频| 中文字幕无码av专区久久| 91精品亚洲| 亚洲欧美人成人让影院| 精品夜恋影院亚洲欧洲| 日韩不卡高清视频| 亚洲中文字幕在线一区播放| 99视频免费观看| 日韩AV无码一区| 日本高清有码人妻| 日本欧美中文字幕精品亚洲| 欧美啪啪一区| 欧美一级在线看| 熟女视频91| 97超级碰碰碰碰精品| 99999久久久久久亚洲| 亚洲男人的天堂在线| 成人福利视频网| 国产一级二级三级毛片| 国产成人AV大片大片在线播放 | 青青青国产在线播放| 国产在线精品99一区不卡| 国产不卡国语在线| 亚洲天堂精品在线观看| 青青草综合网| 亚洲综合色区在线播放2019| 亚洲va视频| 国产人在线成免费视频| 亚洲天堂首页| 国产免费怡红院视频| 欧美在线伊人| 成人午夜免费观看| 日本黄网在线观看| 国产成人a在线观看视频| 免费中文字幕在在线不卡| 久久婷婷人人澡人人爱91| 波多野结衣的av一区二区三区| 色妞www精品视频一级下载| 理论片一区| 国产亚洲高清视频| 久久精品无码一区二区日韩免费| 广东一级毛片| 日韩欧美综合在线制服| 99久久99这里只有免费的精品| 久久99国产视频| 伊人网址在线|