舒敬榮, 常思江, 楊海波, 張婷
(1.陸軍軍官學(xué)院 二系, 安徽 合肥 230031; 2.南京理工大學(xué) 能源與動力工程學(xué)院, 江蘇 南京 210094)
?
氣動偏心角對非對稱翼末敏彈掃描運動的影響規(guī)律研究
舒敬榮1, 常思江2, 楊海波1, 張婷1
(1.陸軍軍官學(xué)院 二系, 安徽 合肥 230031; 2.南京理工大學(xué) 能源與動力工程學(xué)院, 江蘇 南京 210094)
針對非對稱尾翼末敏彈的結(jié)構(gòu)特點,建立適合力學(xué)分析的坐標(biāo)系,分析考慮氣動偏心角和大攻角非線性時的力和力矩模型,推導(dǎo)出六自由度運動微分方程組。以某非對稱末敏彈結(jié)構(gòu)為例進(jìn)行數(shù)值仿真計算,計算結(jié)果與實驗數(shù)據(jù)相吻合,表明:與非對稱翼展開方向一致的氣動偏心角能夠誘導(dǎo)彈體產(chǎn)生穩(wěn)定螺旋掃描運動,且掃描角必定與氣動偏心角共面,掃描轉(zhuǎn)速隨氣動偏心角的增大而減小,掃描角隨氣動偏心角的增大而增大,且大致成線性關(guān)系,為非對稱翼末敏彈的結(jié)構(gòu)設(shè)計和氣動設(shè)計提供了理論參考。
兵器科學(xué)與技術(shù); 末敏彈; 非對稱翼; 氣動偏心角; 穩(wěn)態(tài)掃描; 大攻角; 空氣動力非對稱

圖1 非對稱翼末敏彈的螺旋掃描運動Fig.1 Spiral scanning motion of asymmetric-fin terminal sensitive ammunition
非對稱翼末敏彈利用非對稱尾翼提供的非對稱氣動力和力矩,誘導(dǎo)彈體形成如圖1所示的彈體縱軸繞鉛直下降軸成一定角度的勻速旋轉(zhuǎn)運動,以實現(xiàn)對目標(biāo)區(qū)的螺旋掃描,國外已研制成功并裝備部隊[1]。由于技術(shù)保密原因,關(guān)于其掃描運動形成機理分析方面的國外文獻(xiàn)資料很少[2-5]。文獻(xiàn)[2-3]側(cè)重于此類子彈藥的實驗研究,文獻(xiàn)[4]側(cè)重于對非對稱單翼的氣動力進(jìn)行有限元分析,文獻(xiàn)[5]側(cè)重于研究此類子彈藥從母彈中分離后的旋轉(zhuǎn)運動及分離運動對其旋轉(zhuǎn)運動的影響。近幾年,國內(nèi)對此問題的研究也陸續(xù)取得部分初步成果:文獻(xiàn)[6-7]是國內(nèi)最早對此類問題開展專題研究的成果,側(cè)重于研究單側(cè)翼無傘末敏彈在非對稱空氣動力作用下產(chǎn)生穩(wěn)態(tài)掃描運動的機理,在國內(nèi)具有一定的開創(chuàng)性意義。顧建平等[8]首次將四元數(shù)法引入到單翼末敏彈仿真計算領(lǐng)域,成功解決了其大姿態(tài)回轉(zhuǎn)運動時的方程奇異性問題,在此基礎(chǔ)上,對單翼末敏彈與有傘末敏彈的掃描特性進(jìn)行了比較[9]。郭銳等對非對稱雙翼結(jié)構(gòu)的減速導(dǎo)旋特性進(jìn)行了試驗研究[10]。隨后,史金光等[11]和舒敬榮等[12]對雙翼末敏彈進(jìn)行了受力分析,并建立了其四元數(shù)動力學(xué)模型。文獻(xiàn)[13-17]對平板雙翼、S-C型雙翼和S-S型雙翼的氣動特性及氣動外形設(shè)計進(jìn)行了集中研究,為雙翼無傘末敏彈動力學(xué)仿真計算中的氣動力計算奠定了基礎(chǔ)。上述研究成果,均以單側(cè)翼或非對稱雙翼為背景,通過建立動力學(xué)模型并進(jìn)行數(shù)值仿真計算,驗證彈丸在非對稱空氣動力作用下產(chǎn)生穩(wěn)態(tài)掃描運動的可能性,為非對稱翼末敏彈研制的技術(shù)可行性提供了理論支撐。而對非對稱翼末敏彈的具體結(jié)構(gòu)設(shè)計和氣動設(shè)計而言,需要掌握的是其某一結(jié)構(gòu)參數(shù)或氣動參數(shù)對其掃描運動參數(shù)的影響規(guī)律。特別是空氣動力非對稱彈丸的氣動偏心角,它是形成螺旋掃描運動的首要動因,研究它與掃描運動的關(guān)系及其對掃描參數(shù)的影響規(guī)律顯得尤為重要。本文即對這一問題進(jìn)行專門研究,以期為非對稱翼末敏彈的結(jié)構(gòu)設(shè)計和氣動設(shè)計提供參考。
考慮到既要適應(yīng)非對稱翼末敏彈的結(jié)構(gòu)特點,又要使所建立的動力學(xué)方程形式簡單,建立4個坐標(biāo)系,即地面坐標(biāo)系Ox0y0z0、平動坐標(biāo)系Cx0y0z0、彈體固連坐標(biāo)系Cxpypzp和速度坐標(biāo)系Cxvyvzv[18]。如圖2示,其中:C為彈體質(zhì)心;縱軸Cxp平行于彈體圓柱部的母線且指向爆炸成型彈丸戰(zhàn)斗部飛出的方向;法線軸Cyp平行于兩個折疊翼的旋轉(zhuǎn)樞軸(與母線垂直);橫軸Czp由右手定則確定;Cxv軸與彈體的速度矢量v一致;Cyv軸在Cxpyp面內(nèi);Czv軸由右手定則確定。

圖2 彈體固連坐標(biāo)系Cxpypzp和速度坐標(biāo)系CxvyvzvFig.2 Projectile-fixed coordinate system Cxpypzp and velocity coordinate system Cxvyvzv
如圖3示,Cx0y0z0系與Cxpypzp系之間的關(guān)系由偏航角ψ、俯仰角?和傾斜角γ確定。由Cx0y0z0系向Cxpypzp系轉(zhuǎn)換的坐標(biāo)轉(zhuǎn)換矩陣為

(1)

圖3 Cx0y0z0系與Cxpypzp系之間的關(guān)系Fig.3 The relationship between coordinate systems Cx0y0z0and Cxpypzp
如圖4示,Cxvyvzv系與Cxpypzp系之間的關(guān)系由攻角α和側(cè)滑角β確定。由Cxvyvzv系向Cxpypzp系轉(zhuǎn)換的坐標(biāo)轉(zhuǎn)換矩陣為

(2)

圖4 Cxvyvzv系與Cxpypzp系之間的關(guān)系Fig.4 The relationship between coordinate systems Cxvyvzv and Cxpypzp
非對稱翼彈丸與對稱彈丸在受力方面最本質(zhì)的區(qū)別有兩點:一是由于其一般處于大攻角飛行姿態(tài),因此氣動力和力矩系數(shù)是總攻角(或攻角、側(cè)滑角)的非線性函數(shù),而不是線性函數(shù);二是非對稱翼彈丸存在氣動偏心角。氣動偏心角對受力的影響主要體現(xiàn)在升力Ry和空氣動力穩(wěn)定力矩M的計算公式中。
2.1非對稱翼末敏彈受到的力
非對稱翼末敏彈受到的力主要有重力G、阻力Rx、升力Ry及馬格努斯力Rz,將受到的力表示在地面坐標(biāo)系Ox0y0z0中。
2.1.1空氣阻力Rx

(3)

2.1.2升力Ry
升力大小為qSc′y(δ-δ0),其中:c′y=cy0+cy2δ2是升力系數(shù)導(dǎo)數(shù);cy0是線性部分;cy2是非線性部分;δ是總攻角;δ0是與升力對應(yīng)的氣動偏心角。由此可見,對非對稱彈丸,當(dāng)總攻角δ為0°時,升力并不為0,而是在有總攻角δ0時才為0,這正是非對稱彈丸與對稱彈丸在所受空氣動力方面的本質(zhì)區(qū)別。


式中:Iyx0、Iyy0、Iyz0分別為升力方向矢量在地面坐標(biāo)系Ox0、Oy0、Oz03軸上的投影。因此,升力在地面坐標(biāo)系Ox0y0z0中的投影表達(dá)式為

(4)
2.1.3馬格努斯力Rz

對右旋彈,馬格努斯力的方向為

因此,馬格努斯力在地面坐標(biāo)系Ox0y0z0中的投影表達(dá)式為

(5)
2.2非對稱翼末敏彈受到的力矩
將非對稱翼末敏彈受到的力矩投影到彈體固連坐標(biāo)系Cxpypzp中。
2.2.1尾翼導(dǎo)轉(zhuǎn)力矩Mw

(6)
式中:l為彈體的特征長度;mw是彈體的尾翼導(dǎo)轉(zhuǎn)力矩系數(shù)。
2.2.2空氣動力穩(wěn)定力矩Ms
設(shè)彈體為靜穩(wěn)定的,則

(7)

2.2.3空氣動力阻尼力矩MD

(8)

2.2.4馬格努斯力矩MMa

(9)

將上述4種力矩相加,即得非對稱翼末敏彈受到的合力矩在彈體固連坐標(biāo)系Cxpypzp中的表達(dá)式:

(10)

(11)
式中:m為非對稱翼末敏彈的質(zhì)量;g為重力加速度;ωxp、ωyp、ωzp分別為彈丸總角速度ω在Cxp、Cyp、Czp方向上的分量。
方程組(11)式可用Runge-Kutta法或Adams法進(jìn)行數(shù)值積分求解。在求解的過程中,通過調(diào)整氣動偏心角δ0、α0、β0,即可判斷其是否能誘導(dǎo)非對稱翼末敏彈產(chǎn)生穩(wěn)態(tài)掃描運動,并可分析其對掃描特性的影響規(guī)律。
以某非對稱末敏彈結(jié)構(gòu)為例[10],在固定某組氣動力和力矩系數(shù)前提下,僅改變氣動偏心參數(shù)進(jìn)行數(shù)值積分計算。
4.1與空氣動力矩對應(yīng)的氣動偏心角的影響

表1第1組掃描轉(zhuǎn)速和掃描角與β0間的關(guān)系
Tab.1The relationships between scanning rolling speed, scanning angle and pneumatic eccentric sideslip angle in Group 1

β0/(°)ωs/(r·s-1)θs/(°)328.63.5527.95.8825.29.21023.211.41221.613.61519.416.81817.620.02016.622.12315.325.12514.627.12714.129.13013.332.03212.933.93512.536.74011.941.34511.645.9
從表1和表2中可以看出,在其他參數(shù)不變的情況下,掃描轉(zhuǎn)速隨氣動偏心側(cè)滑角β0的增大而減小;掃描角隨氣動偏心側(cè)滑角β0的增大而增大,大致呈線性關(guān)系,且掃描角在數(shù)值上與β0十分接近。
上述規(guī)律已在高空投放試驗中得到了驗證。試驗用表1所基于的非對稱翼末敏彈的等比縮微模型進(jìn)行升空投放,利用微機電測量裝置測量其運動參數(shù),經(jīng)數(shù)據(jù)處理得到其掃描轉(zhuǎn)速和掃描角。氣動偏心側(cè)滑角β0分別取15°、20°、25°、30°情況下,掃描轉(zhuǎn)速分別穩(wěn)定在18、16、13、12 r/s左右,而掃描角穩(wěn)定在17°、22°、27°、32°附近,試驗結(jié)果與計算結(jié)果基本一致。
表2第2組掃描轉(zhuǎn)速和掃描角與β0間的關(guān)系
Tab.2The relationships between scanning rolling speed, scanning angle and pneumatic eccentric sideslip angle in Group 2

β0/(°)ωs/(r·s-1)θs/(°)330.83.8529.46.3826.610.01024.712.41222.914.91520.618.41818.822.02017.824.32316.527.92515.830.22715.332.63014.636.23214.238.63513.842.34013.748.7
若取β0=0°,改變α0計算,則不能形成穩(wěn)態(tài)掃描運動。
此處需要說明兩點:1)以上計算過程中,僅改變氣動偏心角而固定了其他氣動參數(shù),這樣近似處理的理由,一方面是本文主要研究氣動偏心角對掃描運動的影響,因此,固化其他參數(shù),更容易看清影響規(guī)律。更重要的是,從影響彈丸運動規(guī)律的諸氣動力和力矩,特別是影響其姿態(tài)運動的力矩來看,空氣動力穩(wěn)定力矩是最主要的力矩,彈丸的運動受其影響最大,而空氣動力穩(wěn)定力矩的大小和方向受氣動偏心角影響最大。其他次要力矩雖然也隨氣動偏心角的變化(因為結(jié)構(gòu)會變化)而變化,但通過合理設(shè)計進(jìn)行規(guī)避,可以使其變化較小,且這些力矩對彈丸運動的影響要比空氣動力穩(wěn)定力矩小得多。實際計算也表明,考慮氣動偏心角的變化對其他氣動系數(shù)的微小影響時,仍然能得到上述結(jié)論;2)僅從力學(xué)意義上看,氣動偏心攻角α0和氣動偏心側(cè)滑角β0是對等概念。此處氣動偏心側(cè)滑角β0能誘導(dǎo)彈體產(chǎn)生穩(wěn)定螺旋掃描運動,而氣動偏心攻角α0不能使然,完全是由于圖2和圖4中非對稱翼的方位與所定義的坐標(biāo)系之間的相對關(guān)系導(dǎo)致的。準(zhǔn)確地講,只要氣動偏心角所在的平面與翼展開方向(即圖2中的Cxpzp平面)一致,就能誘導(dǎo)彈體產(chǎn)生穩(wěn)定螺旋掃描運動,而不管其是定義成側(cè)滑角還是攻角。
4.2與空氣動力對應(yīng)的氣動偏心角的影響
與空氣動力對應(yīng)的氣動偏心角就是與升力相關(guān)的氣動偏心角δ0. 若取氣動偏心攻角α0=0°、氣動偏心側(cè)滑角β0=0°,僅取δ0≠0°進(jìn)行計算,可以發(fā)現(xiàn),此時不能形成如圖1所示的螺旋掃描運動。這說明,與升力相關(guān)的氣動偏心角δ0不能獨立誘導(dǎo)彈體產(chǎn)生穩(wěn)定螺旋掃描運動。
綜合以上分析表明,與空氣動力矩對應(yīng)的氣動偏心側(cè)滑角是誘導(dǎo)彈體形成穩(wěn)定螺旋掃描運動的首要動因。
1)對非對稱翼末敏彈而言,氣動偏心角是誘導(dǎo)彈體形成螺旋掃描運動的首要動因,通過合理設(shè)計氣動偏心角的大小和方位即可獲得所需形式的穩(wěn)態(tài)掃描運動。
2)氣動偏心角分為與升力相關(guān)的氣動偏心角及與空氣動力穩(wěn)定力矩相關(guān)的氣動偏心角兩類。與升力相關(guān)的氣動偏心角δ0不能獨立誘導(dǎo)彈體形成穩(wěn)態(tài)掃描運動,僅與空氣動力穩(wěn)定力矩相關(guān)的氣動偏心角(氣動偏心攻角α0和氣動偏心側(cè)滑角β0)可以誘導(dǎo)彈體形成穩(wěn)態(tài)掃描運動,且氣動偏心角所在的平面與非對稱翼展開的方向(即圖2中的Cxpzp平面)一致時,才能夠誘導(dǎo)。
3)非對稱翼末敏彈實現(xiàn)穩(wěn)態(tài)掃描時,其掃描角所在的平面、氣動偏心角所在的平面必定與非對稱翼展開的方向一致,即掃描角所在的平面、氣動偏心角所在的平面必定與圖2中的Cxpzp平面重合。此時,末敏彈在掃描下降過程中,始終以固定的一面對向鉛直下降軸,這種運動稱為“似月運動”[19]。
4)數(shù)值積分計算結(jié)果表明,掃描轉(zhuǎn)速隨氣動偏心角的增大而減??;掃描角隨氣動偏心角的增大而增大,且大致成線性關(guān)系。而更嚴(yán)格的定量關(guān)系表達(dá)式(也就是掃描轉(zhuǎn)速和掃描角與氣動偏心角之間的解析表達(dá)式),需建立在求出非對稱翼末敏彈運動微分方程解析解的基礎(chǔ)之上。由于非線性微分方程解析解的求解難度極大,且多數(shù)情況下無法求出,因此,這是后續(xù)相關(guān)研究工作中需要重點關(guān)注和希望有所突破的內(nèi)容之一。
References)
[1]王冬梅,代文讓,張永濤.信息化彈藥的研究現(xiàn)狀及發(fā)展趨勢[J].兵工學(xué)報,2010,31(增刊2):144-148.
WANG Dong-mei,DAI Wen-rang,ZHANG Yong-tao. Study status and development trends of information ammunition[J]. Acta Armamentarii,2010,31(S2):144-148. (in Chinese)
[2]Vicente N M,Piechocki J,Cuerva A, et al.Experimental research on a vertically falling rotating wing decelerator model[C]∥19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Williamsburg, VA: AIAA,2007.
[3]Vicente N M,Angel S A,Alvaro C. Experimental investigation of an autorotating-wing aerodynamic decelerator system[C]∥18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Munich,Alemania: AIAA,2005.
[4]Crimi P. Finite element analysis of a samara-wing decelerator[J]. Journal of Aircraft,1996,33(4):793-802.
[5]Borgstrom D, Paulsson L, Karlsen L. Aerodynamics of a rotating body descending from the separation position of an artillery munition shell[C]∥11th Aerodynamic Decelerator Systems Technology Conference. San Diego, CA, US: AIAA, 1991.
[6]舒敬榮,張邦楚,韓子鵬,等. 單翼末敏彈掃描運動研究[J]. 兵工學(xué)報,2004,25(4):415-420.
SHU Jing-rong,ZHANG Bang-chu,HAN Zi-peng,et al. A study on the scanning motion of single-fin target-sensitivity-projectile[J]. Acta Armamentarii,2004,25(4):415-420. (in Chinese)
[7]舒敬榮,劉昌源,韓子鵬,等. 柔性單翼末敏彈掃描運動研究[J].彈道學(xué)報,2004,16(1):36-42.
SHU Jing-rong,LIU Chang-yuan,HAN Zi-peng,et al. Study on scanning motion of flexible single-fin terminal sensing ammunition[J]. Journal of Ballistics,2004,16(1):36-42. (in Chinese)
[8]顧建平,韓子鵬.四元數(shù)在單翼末敏彈掃描仿真中的應(yīng)用[J].彈道學(xué)報,2010,22(4):15-18.
GU Jian-ping,HAN Zi-peng. Application of quaternionin in single-fin terminal sensing ammunition scanning simulation[J]. Journal of Ballistics,2010,22(4):15-18. (in Chinese)
[9]顧建平,韓子鵬.單翼與有傘末敏子彈的掃描比較及分析[J].彈箭與制導(dǎo)學(xué)報.2011,31(1):123-124.
GU Jian-ping,HAN Zi-peng. Comparison and analyses of single-fin TSA’s and parachute TSA’s scanning[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2011,31(1):123-124. (in Chinese)
[10]郭銳,劉榮忠,王本河, 等.一種非對稱雙翼結(jié)構(gòu)彈丸減速導(dǎo)旋特性試驗研究[J].彈箭與制導(dǎo)學(xué)報,2009,29(5):249-254.
GUO Rui,LIU Rong-zhong,WANG Ben-he,et al. Experimental study on decelerating and spinning characteristics of an asymmetric two-wing projectile[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2009,29(5):249-254. (in Chinese)
[11]史金光,韓子鵬,舒敬榮,等. 雙翼型無傘末敏彈穩(wěn)態(tài)掃描運動數(shù)學(xué)模型[J].彈道學(xué)報,2010,22(2):24-27.
SHI Jin-guang,HAN Zi-peng,SHU Jing-rong, et al. Stable scanning model for non-parachute terminal sensitive projectile with two fins[J]. Journal of Ballistics, 2010,22(2):24-27 (in Chinese)
[12]舒敬榮,蔣勝平,李明軍,等. 無傘雙翼末敏彈穩(wěn)態(tài)掃描段受力分析[J]. 彈道學(xué)報,2010,22(2): 48-51.
SHU Jing-rong, JIANG Sheng-ping, LI Ming-jun,et al. Forces and moments analysis for double-win terminal sensing ammunition without parachute at the stage of stable-scanning[J]. Journal of Ballistics, 2010,22(2): 48-51. (in Chinese)
[13]胡志鵬,劉榮忠,郭銳. 兩種典型尾翼形狀對無傘末敏彈氣動特性的影響[J]. 南京理工大學(xué)學(xué)報,2012,36(5):740-744.
HU Zhi-peng, LIU Rong-zhong, GUO Rui. Effect of two typical wing shapes on aerodynamic characteristics of non-parachute terminal sensitive projectile[J]. Journal of Nanjing University of Science and Technology,2012,36(5):740-744. (in Chinese)
[14]呂勝濤,劉榮忠,郭銳,等. S-S 雙翼末敏彈氣動外形優(yōu)化設(shè)計[J].兵工學(xué)報,2013,34(9):1150-1154.
LYU Sheng-tao,LIU Rong-zhong, GUO Rui, et al. Optimum design on aerodynamic shape of the S-S style non-parachute terminal sensitive projectile[J]. Acta Armamentarii,2013,34(9):1150-1154. (in Chinese)
[15]胡志鵬,劉榮忠,郭銳. 基于FLUENT 的雙翼末敏彈氣動特性研究[J]. 飛行力學(xué),2013,31(1):53-56.
HU Zhi-peng,LIU Rong-zhong,GUO Rui. Aerodynamic characteristics of two wings terminal sensitive projectile based on FLUENT[J]. Flight Dynamics,2013,31(1):53-56. (in Chinese)
[16]胡志鵬,劉榮忠,郭銳. 無傘末敏彈雙S形尾翼彎折角對氣動特性影響研究[J]. 空氣動力學(xué)學(xué)報,2014,32(1):62-68.
HU Zhi-peng, LIU Rong-zhong, GUO Rui. The dual-wings terminal sensitive projectile bending angle effect on the aerodynamic characteristics[J]. Acta Aerodynamic Sinica, 2014,32(1):62-68. (in Chinese)
[17]呂勝濤,劉榮忠,郭銳,等. S-C型雙翼末敏彈尾翼結(jié)構(gòu)方案設(shè)計[J]. 彈道學(xué)報,2014,26(2):6-11.
LYU Sheng-tao, LIU Rong-zhong, GUO Rui, et al. Optimum design on aerodynamic configuration of terminal sensitive projectile with S-C style wings[J]. Journal of ballistics, 2014,26(2):6-11. (in Chinese)
[18]韓子鵬.彈箭外彈道學(xué)[M].北京:北京理工大學(xué)出版社,2008: 127-129.
HAN Zi-peng. Exterior ballistics of projectile and rochet[M]. Beijing:Beijing Institute of Technology Press, 2008: 127-129. (in Chinese)
[19]Nicolaides J D. Two nonlinear problems in the flight dynamics of modern ballistic missiles[M]. US: Bureau of Ordnance, Department of the Navy, 1959.
Research on the Effect of Pneumatic Eccentric Angle on Scanning Motion of Asymmetric-fin Terminal Sensitive Ammunition
SHU Jing-rong1, CHANG Si-jiang2, YANG Hai-bo1, ZHANG Ting1
(1.Department 2, Army Officer Academy, Hefei 230031, Anhui, China;2.School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China)
A coordinate system for mechanics analysis is established based on the structural features of the asymmetric-fin terminal sensitive ammunition. The force and moment models are analyzed with consideration of pneumatic eccentric angle and large angle of attack asymmetries, and the 6D differential equation set of motion is deduced. The simulation calculation is performed according to the structure of a certain asymmetric terminal sensitive projectile. The calculated result shows that the pneumatic eccentric angle which is in the same plane as the wingspan direction can induce stable spiral scanning motion, and the scanning angle must be in the same plane as the pneumatic eccentric angle. The result also shows that the scanning rolling speed decreases but the scanning angle increases linearly as the pneumatic eccentric angle increases.
ordnance science and technology; terminal sensitive ammunition; asymmetric fin; pneumatic eccentric angle; stable scanning; large angle of attack; aerodynamic asymmetry
2014-04-17
國家自然科學(xué)基金項目(11272356);中國博士后科學(xué)基金項目(2012M521842)
舒敬榮(1974—),男,副教授,博士。E-mail:shujr1974@126.com
TJ410.1; TJ012.3
A
1000-1093(2015)04-0637-07
10.3969/j.issn.1000-1093.2015.04.010