李 躍,萬里強,李向林
(中國農業科學院北京畜牧獸醫研究所,北京100193)
內源脫落酸生理作用機制及其與苜蓿耐旱性關系研究進展
李 躍,萬里強*,李向林*
(中國農業科學院北京畜牧獸醫研究所,北京100193)
隨著全球氣候的惡化,水資源短缺等生態問題日益嚴重。在這樣的背景下,作物的耐旱性研究成為人們研究的熱點之一。脫落酸(ABA)作為脅迫激素,在植物干旱脅迫響應中發揮著重要而廣泛的作用。植物細胞中,ABA通過2-甲基-D-赤蘚糖-4-磷酸(2-C-methyl-D-erythritol-4-phosphate,MEP)途徑合成,并最終與相應的受體結合并通過一系列的信號轉導控制氣孔關閉,或者通過其他通路調節脅迫相關的基因表達。紫花苜蓿是栽培廣泛且品質優良的豆科牧草,干旱脅迫下苜蓿中脫落酸(ABA)會發生積累;同時,ABA水平的升高與苜蓿主根貯藏蛋白動態、基因表達以及一些滲透調節物質的積累密切相關。ABA與苜蓿耐旱性關系的研究正在逐漸深入,這些研究將深化人們對苜蓿耐旱機理的認識,并對苜蓿的育種具有深遠影響。
ABA;生理作用機制;苜蓿;耐旱性
隨著全球性氣候的變化、土壤沙化和鹽漬化以及水資源短缺等生態問題日益嚴重,干旱已經成為制約農業發展的主要因素。據統計,目前世界上1/3的可耕地處于供水不足的狀態,我國干旱、半干旱地區約占國土面積的1/2,即使在非干旱的主要農業區,也不時受到旱災侵襲[1-2]。通過對玉米(Zea mays)、水稻(Oryza sativa)、擬南芥(Arabidopsis thaliana)、煙草(Nicotiana tabacum)等植物進行研究,人們逐漸發現,在植物響應干旱脅迫的過程當中,脫落酸(ABA)發揮著極其重要的調控作用[3-6]。植物在受到干旱脅迫時體內ABA含量會上升,并以此調控氣孔關閉,從而減少機體水分的喪失;同時,ABA還可以通過其他途徑影響植物生理代謝,增強植物對干旱的耐受性。
紫花苜蓿(Medicago sativa)因其高產和營養豐富,尤其是蛋白質含量高,被譽為“牧草之王”,是世界上廣泛種植的牧草,近年來在中國的種植面積也在不斷增長[7],但干旱對草產業造成了極大的威脅。干旱脅迫使苜蓿葉片的氣孔導度下降,光合作用受到抑制,生長變得緩慢甚至停止,牧草產量及其營養組分受到明顯影響。苜蓿對干旱的生理生化響應主要是滲透調節物質的增加和抗氧化酶活性的增加。隨著干旱程度的加劇,植物體內脯氨酸含量、可溶性糖含量、氨基酸含量、丙二醛含量和超氧化物歧化酶活性明顯上升[8-11]。在篩選抗旱品種的研究中,選用合適的抗旱指標是準確篩選的關鍵前提。已有研究表明,根冠比、根系長度/植株高度、地下生物量脅迫指數、根冠比脅迫指數等根系指標對評價苜蓿抗旱性的參考價值較大[12]。而ABA在調控干旱脅迫下滲透物質積累、活性氧代謝以及維持根的生長等方面都扮演著十分重要的角色。但是,在苜蓿上有關ABA與耐旱性關系的研究非常少。本文目的在于闡明干旱脅迫下ABA的生理作用、合成部位、合成與代謝過程以及信號轉導途徑,并對紫花苜蓿的耐旱的生理生化和分子方面的響應進行綜述,為今后苜蓿耐旱機理的研究和生產應用提供參考。
1.1 脫落酸的主要合成部位
植物感受到干旱脅迫刺激后ABA合成積累主要在哪些部位發生,相關的研究結果并不十分一致。在植株整體水平上,一種觀點認為,發生干旱脅迫時ABA首先在根部合成,并作為長距離信號調控氣孔行為。1985年,Blackman和Davies[13]通過玉米幼苗的分根實驗提出了根冠通訊理論,認為干旱時根部產生化學信號并向上傳導至葉片,同時觀察到了根部ABA水平的升高;之后又有研究表明氣孔導度下降伴隨著木質部汁液ABA濃度上升[14-15],這些都說明干旱條件下氣孔關閉可能是來自于根源的ABA信號[16-17]。根冠通訊理論的支持者必然要面對根源信號傳輸的問題。有研究表明,干旱脅迫發生后根部維管組織中ABA含量增高,并通過維管束向上運輸。如膠體金免疫電鏡技術和酶聯免疫(ELISA)研究表明,蠶豆(Vicia faba)和花生(Arachis hypogaea)在水分充足或是水分脅迫的情況下,根部和葉片ABA均主要分布在維管組織區域,但在水分脅迫下維管組織的ABA含量更高[18-19]。Diego等[20]對ABA進行免疫定位的結果也表明,干旱復水后,松樹針葉內ABA主要分布在維管束內,少量存在葉肉內;根部ABA則主要分布在外皮層;而水分脅迫時,針葉內的ABA嚴格分布在保衛細胞內,與氣孔關閉現象吻合。這些結果都暗示維管組織可能在ABA信號控制中處于支配地位。然而,一些研究不支持以上觀點。Ikegami等[21]發現,在干旱處理后離體葉片中ABA增加的方式與在體葉片相似,而且在干旱處理4 h后離體根中的ABA水平也沒有明顯變化。這暗示ABA主要在葉片中合成。13C同位素示蹤實驗也證明葉片中合成的ABA在干旱脅迫下可以被運輸到根部。以上結果表明了在遭遇干旱脅迫時ABA合成與分布的復雜性。
在細胞水平和亞細胞水平上,據Pastor等[22]報道,當水分充足時,ABA在細胞壁、細胞質、細胞核以及葉綠體內分布差異不顯著,即在細胞內均勻分布。干旱脅迫時,細胞壁、細胞核和葉綠體的ABA水平分別上升了4,3和2倍。而van Rensburg等[23]的結果則顯示葉綠體內的ABA含量不增加。
1.2 脫落酸的合成與代謝通路
ABA屬于萜類化合物,包含三個異戊烯單位。植物體內的萜類化合物均由異戊烯基二磷酸(isopentenyl pyrophosphate,IPP)參與合成。在高等植物體內存在著兩種合成IPP的途徑-甲羥戊酸(mevalonic acid,MVA)途徑和2-甲基-D-赤蘚糖醇-4-磷酸(2-C-methyl-D-erythritol-4-phosphate,MEP)途徑。首先,通過MEP途徑產生IPP,進而合成C40前體——類胡蘿卜素,類胡蘿卜素通過裂解氧化形成ABA。ABA與類胡蘿卜素的關系已經由18O同位素標記試驗、營養缺陷體遺傳學分析以及生化試驗證實[24]。類胡蘿卜素裂解氧化的過程在擬南芥中研究的最為透徹。玉米黃素環氧化酶(zeathanxinepoxidase,ZEP)(在擬南芥中由ABA1基因編碼,在煙草中由ABA2基因編碼)催化玉米黃素(zeaxanthin)轉化為黃素(violaxanthin);堇菜黃素可能先形成新黃素再異構為9-順-新黃素(9-cis-neoxanthin),也可能直接異構為9-順-黃素(9-cis-violaxanthin);9-順-環氧類胡蘿卜素氧化酶(9-cis-epoxycarotenoid dioxygenase,NCED)進一步催化9-順-新黃素或9-順-黃素產生黃氧素(xanthoxin),黃氧素在短鏈乙醇脫氫酶(ABA2)的作用下轉化為脫落酸醛,最后,鉬輔因子(molybdenum cofactor sulfurase,Mo-Co)激活脫落酸醛氧化酶(ABA-aldehydeoxidase,AAO)將脫落酸醛氧化生成ABA。以上的每一步反應,只有催化黃素轉變為9-順-新黃素或9-順-黃素產生黃氧素的酶尚未得到突變體的證實,催化其他步驟的所有酶均在擬南芥突變體中得到證實,個別酶在番茄(Lycopersicon esculentum)、玉米、水稻和煙草突變體中得到證實,具體見表1。所有這些酶中NCED所催化的反應步驟可能為ABA合成途徑中的限速步驟[40]。最近在轉錄水平上的研究顯示,擬南芥在受到水分脅迫時,PSY(phytoene synthase)基因的轉錄水平與合成ABA相關酶的基因轉錄水平協同性很高,這暗示該基因與胡蘿卜素前體的合成密切相關[41]。Ruiz-Sola等[42]進一步研究發現,ABA處理后PSY表達上調,胡蘿卜素和ABA的水平上升,藥理學阻斷胡蘿卜素合成途徑后,ABA水平下降,說明PSY不僅對ABA合成有關,而且其表達受外源ABA的誘導,同時這種上調反應只是特異性地在根中進行。Ruiz-Sola等[42]的結果同時表明誘導調控ABA合成的途徑可能并不唯一。不僅干旱脅迫可以誘導ABA合成酶系基因的表達上調,葡萄糖也可以誘導擬南芥的ABA合成途徑中ZEP、AAO3、ABA 3基因表達[43],但NCED的表達不受葡萄糖的誘導。同時,某些研究也暗示著施用ABA可以促進ABA自身的合成,這說明ABA對其自身的合成可能具有正反饋調節作用[44]。

表1 不同物種中編碼ABA合成相關酶的基因Table 1 Genes encoding enzymes related with synthesis of ABA in various species
干旱脅迫條件下,除了ABA的合成,植物體內ABA的積累還與ABA的降解和失活密切相關。目前,催化ABA降解的基因還沒有被分離鑒定。生化實驗暗示一種細胞色素P450單氧酶催化ABA氧化降解的第一步[45-46],將ABA羥基化為8-OH-ABA,然后異構為紅花菜豆酸(phaseic acid,PA),并最終被還原為沒有活性的二氫紅花菜豆酸(dihydrophaseic acid,DPA)。該酶在擬南芥中由CYP 707As基因編碼。植物受到ABA、脫水和復水處理后,該基因的表達量增高[47]。ABA還可通過糖基化失去活性。另外,ABA可以通過根滲漏到土壤中[20,48],至于土壤中的ABA對植物的生長有無影響,相關研究極少。
2.1 脅迫激素及其作用
作為一種重要的植物激素,ABA不僅參與抑制種子萌發、促進休眠、抑制生長、促進葉片衰老脫落、調節花期和果實成熟等多個植物生長發育過程,而且ABA作為脅迫激素還參與植物對外界脅迫刺激的響應。很多研究也表明ABA參與對干旱脅迫的響應。不同植物的ABA缺失突變體研究也證明了這點[25,32,35]。從目前的研究來看,ABA在植株受到干旱脅迫時所做出的響應和所起的作用主要表現在兩個方面,即控制水分平衡和提高細胞耐受性。ABA控制植物水分平衡主要通過調控氣孔開度來實現的,一方面抑制氣孔的開放,另一方面促進氣孔的關閉。這一過程在干旱脅迫發生后較短時間內發生。同時ABA通過信號轉導,誘導調控一些基因表達,合成滲透調節物質(如脯氨酸和甜菜堿等)、功能蛋白(如胚胎晚期表達蛋白等)和調節蛋白(包括蛋白激酶、轉錄因子、磷脂酶等)。這一過程相對前一過程較慢。也有研究表明,脅迫發生時老葉產生的ABA會調節新生葉片氣孔的發育,增加氣孔密度,從而使植物適應干旱環境[49]。最近,Yusuke等[50]通過對煙草ABA缺陷體(aba1)的研究發現,葉片ABA還會降低煙草葉肉細胞導度。葉肉細胞導度降低可以降低光合速率,同時也就減少了水分的消耗。
2.2 脫落酸受體
目前報道了3種與脅迫相關的ABA受體:CHLH蛋白、GPCR(GCR2/GTG1/GTG2)和RCARs/PYR1/PYLs。2006年,Shen等[51]報道鎂離子螯合酶H亞基(Mg-chelatase H subunit,CHLH)是ABA受體,并能與ABA結合形成ABAR/CHLH復合體,引起一系列相關基因的表達。Tsuzuki等[52]研究發現CHLH RNAi植株和鎂離子螯合酶I亞基敲除植株對ABA均不敏感,因此推測鎂螯合酶可能以整體形式參與調控氣孔的運動;但放射性標記ABA試驗結果顯示CHLH并沒有結合ABA,所以認為CHLH不是ABA受體。Müller和Hansson[53]發現CHLH在大麥(Hordeum vulgare)中的同源蛋白Xan F也不能與ABA結合,其突變體對ABA信號應答相關表型與野生型一致。因此,CHLH蛋白是否為ABA受體還有待于進一步的研究確定。
Liu等[54]報道的G蛋白偶聯受體GCR2以及Pandey等[55]報道的另外2種的G蛋白偶聯受體GTG1和GTG2都疑似為ABA受體。但Johnston等[56]通過生物信息學的方法預測GCR2不是一種跨膜蛋白,更不是一種G蛋白偶聯受體,而是一種細菌羊毛膜合成酶同源蛋白,同時GTG1和GTG2與ABA的結合率很低,因此GCR2的ABA受體地位受到質疑。
RCARs/PYR1/PYLs家族作為ABA受體已經得到鑒定[57],其調控ABA經典應答反應的機制如下:ABA響應元件為ABRE(ABA responsive element),受ABA響應元件結合因子ABFs(ABA responsive element binding factors)的調控。ABI5屬ABFs,其功能的發揮還需要ABI3的輔助作用,屬共激活子。擬南芥中介子亞單位MED25(MEDIATOR25)能夠結合于ABI5靶基因啟動子區與ABI5之間,從而抑制ABI5調控基因的表達。ABI4為CE反式作用因子,與CE順式作用元件相互結合。ABI3,ABI4和ABI5共同作用執行ABA應答反應,然而ABFs需要磷酸化才能有活性,它由磷酸化的SNF1相關蛋白激酶Sn RK2(SNF1-related protein kinase 2)執行。SnRK2本身能夠進行自我磷酸化,由于PP2Cs家族中一些成員(如ABI1)的結合使其去磷酸化而失去活性,導致ABA應答基因不能夠正常轉錄[58]。即正常生長條件下,PP2Cs家族中一些成員(如ABI1)與SnRK2結合使其去磷酸化而失去活性;失活的SnRK2不能將ABFs磷酸化,ABFs便沒有活性,不能執行ABA應答反應[59]。滲透脅迫下,植物體產生的ABA與其受體RCARs/PYR1/PYLs結合后,又和PP2Cs結合,形成RCARs/ABA/PP2Cs三元復合物,PP2Cs便脫離SnRK2,SnRK2恢復活性,將ABFs磷酸化,從而啟動ABA應答反應。RCARs/ABA/PP2Cs三元復合物與氣孔開放因子(open stomata 1,OST1)激酶結合執行ABA應答反應[60]。OST1在ABA調控氣孔開閉過程中的作用非常關鍵,是重要的限制因素[61]。OST1激酶既控制S型陰離子通道SLAC1,也控制R型陰離子通道QUAC1[62]。在擬南芥中,ABA通過一系列的信號反應,最終通過OST1調控保衛細胞膜上的這兩種離子通道來調節保衛細胞滲透壓,是實現氣孔開閉調節的重要途徑之一。
2.3 脫落酸控制氣孔關閉的信號轉導
2.3.1 脫落酸與鈣離子信號 保衛細胞內鈣離子濃度與氣孔關閉行為密切相關,ABA可引起保衛細胞內鈣離子濃度變化。采用激光共聚焦顯微鏡技術觀察到的結果是,氣孔關閉前ABA可引起胞內鈣離子濃度的明顯升高;用膜片鉗技術觀察到的結果是,ABA可使胞內鈣離子濃度瞬間升高,之后則忽高忽低的振蕩[63]。同時有證據表明ABA可激活保衛細胞質膜鈣離子通道[64]。鈣離子通道激活后可使鈣離子內流,同時抑制鈣離子外流。Lee等[65]用ABA處理蠶豆保衛細胞后,10 s內IP3濃度迅速增加,并呈現類似鈣離子的震蕩現象。IP3可激活液泡膜鈣離子通道,而液泡被認為是細胞內鈣庫。另外,c ADPR(cyclic adenosine5p-diphosphate ribose)也可以使細胞內鈣離子濃度升高。因此,鈣離子、IP3和c ADPR[66]都可能是ABA介導氣孔關閉的第二信使,ABA可能通過多種途徑使胞內鈣離子濃度增加[67]。鈣離子濃度升高會抑制細胞質膜鉀離子內流通道,同時激活氯離子外流通道,導致保衛細胞滲透勢下降,氣孔關閉。
2.3.2 脫落酸與過氧化氫和一氧化氮信號 1996年,Mc Ainsh等[68]發現外源H2O2可使細胞質鈣離子濃度升高并且導致氣孔關閉。苗晨雨等[69]的試驗也得出了相同的結論。H2O2調控氣孔關閉的作用可以被鈣離子螯合劑EGTA所抑制,證明鈣離子在H2O2的下游參與信號轉導。至于ABA是如何誘導H2O2產生的,相關研究不多。在蠶豆中NADPH氧化酶是調節保衛細胞H2O2產生的關鍵酶。Mustilli等[70]研究表明,擬南芥OST1蛋白激酶突變抑制了ABA誘導的氣孔關閉。在擬南芥ost1突變體中,ABA不能誘導ROS的產生,而用H2O2處理該突變體保衛細胞卻能誘導氣孔關閉。因此,OST1激酶可能與ABA誘導ROS的產生有關。分裂原蛋白激酶(mitogen-aetivated protein kinase,MAPK)也可能起到了一定作用。MAPK抑制劑PD098059可以抑制或逆轉ABA或H2O2誘導蠶豆氣孔關閉的效應;用PD098059預處理蠶豆葉片后,ABA就不能促進H2O2產生。這些都表明MAPK可能參與了ABA調控產生H2O2的過程。
NO也可以在ABA誘導下產生,在一些植物(如蠶豆)中NO是誘導氣孔關閉所必需的[71]。在擬南芥中NO的產生依賴于H2O2水平的升高[72];在蠶豆和鴨跖草(Commelina communis)中,H2O2能夠誘導保衛細胞NO的產生,這種作用可被NO清除劑carboxy PTIO(c-PTIO)和NOS抑制劑L-NAME所阻斷[73]。暗示H2O2可能通過NOS途徑誘導NO的產生。NO激活質膜外向K+通道促進K+外流,同時抑制內向K+通道阻止K+內流,兩種途徑共同作用抑制氣孔開放[74]。
2.4 ABA調控的脅迫相關基因表達
目前,已知150余種植物基因可受外源ABA的誘導。Campbell等[75]從小麥中已克隆出2種cDNA,即Ta Hsp 101B和Ta Hsp 101C,它們能編碼由高溫、脫水和ABA誘導的熱休克蛋白。p5cR是逆境脅迫下植物合成脯氨酸的主要酶,Yoshiba等[76]報道ABA能誘導p 5cs基因的表達,促進脯氨酸的合成,緩解水分脅迫。Seki[77]在擬南芥鑒定了245個ABA誘導基因,299個干旱誘導基因,在245個ABA誘導基因中,有155個基因(占ABA誘導基因的63%)能被干旱誘導。這些結果說明,在干旱脅迫過程中,ABA參與了大量的基因調控。
目前,有關苜蓿耐旱性的研究主要集中在耐旱指標及耐旱品種的篩選[78],滲透調節物質和抗氧化酶等生理生化響應[79-81],干旱對固氮活性的影響[8],以及利用各種手段包括轉基因來提高苜蓿抗旱性[82-83]等方面。而關于ABA與苜蓿耐旱機制方面的研究還很少。現將已有的研究結果從如下4個方面進行總結。
3.1 干旱脅迫下苜蓿體內脫落酸含量變化
任敏和何金環[84]、韓瑞宏等[85]和Ivanova等[86]對水分脅迫下紫花苜蓿體內ABA的代謝變化進行了研究,和其他植物一樣,受到干旱脅迫時紫花苜蓿體內ABA水平也升高。Ivanova等[86]用PEG處理了具有不同耐旱性紫花苜蓿的離體葉片,并測量了不同處理時間下葉片內ABA濃度,結果表明耐旱品種能夠在較長的時間內維持高水平的ABA,而干旱敏感的品種只出現短暫的升高。李源等[87]考察了3份膠質苜蓿(Medicago glutinosa)在干旱脅迫下ABA的含量變化,結果和紫花苜蓿中的情況一樣,上升幅度和變化趨勢均存在品種特異性。
3.2 脫落酸與紫花苜蓿主根貯藏蛋白(VSP)
VSP(vegetative storage protein)是苜蓿和白三葉(Trifolium repens)等多年生牧草中用于氮貯存的一類蛋白質,苜蓿主根內主要存在分子量為57,32,19和15 k Da的4類蛋白[88]。在秋季或早冬,苜蓿主根內的VSP合成增加,將氮素貯存起來,第二年返青時,這些貯藏蛋白可用于地上部的再生,同時主根內的VSP含量下降。水分脅迫可以誘導苜蓿主根內VSP含量升高[89],而根部貯藏物質含量的增加有利于脅迫過后植株的再生生長。用不同濃度(1,5,10,20μmol/L)的ABA處理也可誘導VSP含量的升高,其中32 k Da VSP對ABA的響應程度最高,在ABA處理的6 d內,32 k Da VSP的基因表達水平連續升高,同時主根內可溶性蛋白的含量沒有任何顯著變化[90]。以上這些證據表明,ABA在水分脅迫下苜蓿體內干物質的分配方面可能有特殊作用。
3.3 脫落酸與蒺藜苜蓿(Medicago truncatula)的水分脅迫響應
通過對轉錄組的分析來了解生物體內基因表達的信息是近年來人們研究的熱點。蒺藜苜蓿作為新的豆科模式植物,其在遭遇水分脅迫時的基因表達特征對豆科植物尤其是紫花苜蓿耐旱性的研究意義重大。Zhang等[91]對水分脅迫下的蒺藜苜蓿進行了轉錄組的分析:在水分脅迫早期,根部和地上部控制ABA生物合成的2個ZEP基因被誘導表達;脅迫后第3,4天,根部被誘導表達的ZEP基因數量增加到5個,之后表達量下降;同時,第3天后有3個NCED基因也被誘導表達量開始上升直至第10天。這一結果暗示了ABA是水分脅迫下調控苜蓿生理響應的信號分子。隨后研究結果則進一步證實了這一點,Planchet等[92]對剛萌發的蒺藜苜蓿幼苗進行了PEG處理和ABA處理,通過與對照對比來研究植株氮代謝對水分脅迫和ABA的響應。研究結果顯示,PEG模擬的水分脅迫可以誘導脯氨酸和天冬氨酸的積累,而ABA處理可以達到相同的效果。同時,水分脅迫下氮代謝的調節也有不依賴ABA的途徑,如水分脅迫可以誘導谷氨酸鹽代謝酶和天冬氨酸合成酶基因的上調,施用ABA則不能實現。Planchet等[93]進一步研究發現水分脅迫下ABA誘導苜蓿體內一氧化氮的積累,并證明一氧化氮和脯氨酸的積累是通過兩個相對獨立的途徑實現的,而一氧化氮又是誘導氣孔關閉的信號分子。可見,ABA能夠通過誘導氣孔關閉和調節苜蓿體內滲透調節物質的積累來提高苜蓿的耐旱性。
3.4 脫落酸和干旱誘導的紫花苜蓿基因表達
在20世紀,關于脫落酸和干旱誘導的紫花苜蓿基因表達研究已經取得了一些成果。pSM2075是Luo等[94]于1991年報道的受ABA和干旱等脅迫誘導的蛋白,該蛋白是富甘氨酸蛋白,全長為159個氨基酸,包含7個“GGGYNHGGGGYN”重復。1992年,Luo等[95]又報道了一個受ABA誘導表達的基因家族——p UM 90,其中p UM 90-1可在干旱脅迫和ABA誘導下表達。1998年,Kovács等[96]發現了一個cDNA克隆,被命名為Ann Ms2。該基因編碼333個氨基酸,與哺乳動物和植物中膜聯蛋白有32%~37%的相似度,在干旱脅迫和ABA誘導下表達,表達部位為紫花苜蓿的根和花。免疫熒光試驗顯示,Ann Ms2在細胞質、細胞內膜以及細胞核中均有表達,考慮到細胞核的主要功能就是合成核糖體,因此Kovács等[96]推測Ann Ms2與干旱脅迫下蛋白質的合成有關。可以肯定的說,ABA和干旱脅迫誘導的紫花苜蓿基因不會只有以上介紹的兩個,相信隨著研究的繼續深入,會有更多相關誘導基因被發現。
ABA作為脅迫激素,在植物體中所起的作用非常重要,且功能極其廣泛,一直是研究的熱點。國內外有關苜蓿耐旱性的研究很多,而且苜蓿在水分脅迫下的某些生理生化反應與其他植物相似。然而,令人遺憾的是人們并未將這些響應與ABA的功能聯系起來。另外,苜蓿作為豆科牧草可以一年刈割多次,而且具有固氮功能。水分脅迫下苜蓿的這些特性與ABA又有怎樣的關系,人們知之甚少,亟待研究。關于豆科新模式植物蒺藜苜蓿與ABA的關系也有了些許研究。蒺藜苜蓿和紫花苜蓿同屬,因此有關蒺藜苜蓿的研究對認識紫花苜蓿來說具有一定的意義,為以后紫花苜蓿耐旱性研究奠定了一定的基礎。在其他作物上,雖然研究眾多,ABA信號轉導的一些關鍵機制也得以揭示,但是仍有一些關鍵的調控機制也還未研究清楚,如植物細胞是如何感受水分脅迫,又是如何誘導ABA合成的,這些過程人們都還不清楚,仍需要更加全面和深入的研究。
References:
[1] Liu Z L,Cheng D.Plant drought-resistant physiology research progress and breeding.Chinese Agricultural Science Bulletin,2011,27(24):249-252.
[2] Chen Y L,Cao M.The relationship among ABA,stomatal conductance and leaf growth under drought condition.Plant Physiology Communications,1999,35(5):398-403.
[3] de Souza T C,Magalhaes P C,de Castro E M,et al.The influence of ABA on water relation,photosynthesis parameters,and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance.Acta Physiologiae Plantarum,2013,35(2):515-527.
[4] Ye N,Jia L,Zhang J.ABA signal in rice under stress conditions.Rice,2012,5:1-9.
[5] Mahdieh M,Mostajeran A.Abscisic acid regulates root hydraulic conductance via aquaporin expression modulation in Nicotiana tabacum.Journal of Plant Physiology,2009,166(18):1993-2003.
[6] Ghassemian M,Lutes J,Chang H,et al.Abscisic acid-induced modulation of metabolic and redox control pathways in Arabidopsis thaliana.Phytochemistry,2008,69(17):2899-2911.
[7] Cao H,Zhang H L,Gai Q H,et al.Test and comprehensive assessment on the performance of 22 alfalfa varieties.Acta Prataculturae Sinica,2011,20(6):219-229.
[8] Schubert S,Serraj R,Plies-Balzer E,et al.Effect of drought stress on growth,sugar concentrations and amino acid accumulation in N2-fixing alfalfa(Medicago sativa).Journal of Plant Physiology,1995,146(4):541-546.
[9] Antolín M C,Muro I,Sánchez-Díaz M.Application of sewage sludge improves growth,photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions.Environmental and Experimental Botany,2010,68(1):75-82.
[10] Sgherri C L M,Salvateci P,Menconi M,et al.Interaction between drought and elevated CO2in the response of alfalfa plants to oxidative stress.Journal of Plant Physiology,2000,156(3):360-366.
[11] Sgherri C L M,Quartacci M F,Menconi M,et al.Interactions between drought and elevated CO2on alfalfa plants.Journal of Plant Physiology,1998,152(1):118-124.
[12] Han R H,Lu X S,Gao G J,et al.Analysis of the principal components and the subordinate function of alfalfa drought resistance.Acta Agrestia Sinica,2006,14(2):142-146.
[13] Blackman P G,Davies W J.Root-to-shoot communication in maize plants of the effects of soil drying.Journal of Experimental Botany,1985,36(1):39-48.
[14] Liang J,Zhang J,Wong M H.How do roots control xylem sap ABA concentration in response to soil drying.Plant Cell Physiology,1997,38(1):10-16.
[15] Jackson G E,Irvine J,Grace J,et al.Abscisic acid concentrations and fluxes in drought conifer samplings.Plant,Cell&Environment,1995,18(1):13-22.
[16] Davies W J,Zhang J.Root signals and the regulation of growth and development of plants in drying soil.Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:55-76.
[17] Sauter A,Davies W J,Hartung W.The long-distance abscisic acid signal in the droughted plant:the fate of the hormone on its way from root to shoot.Journal of Experimental Botany,2001,52(363):1991-1997.
[18] Endo A,Sawada Y,Takahashi H,et al.Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells.Plant Physiology,2008,147(4):1984-1993.
[19] Hu B,Xiao S N,LüY.Distribution of ABA and Ah NCED1 in peanut leaves of different drought resistant cultivars subjected to drought stress.Chinese Journal of Cell Biology,2012,34(10):992-997.
[20] De Diego N,Rodríguez J L,Dodd I C,et al.Immunolocalization of IAA and ABA in roots and needles of radiata pine(Pinus radiata)during drought and rewatering.Tree Physiology,2013,33(5):537-549.
[21] Ikegami K,Okamoto M,Seo M,et al.Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit.Journal of Plant Research,2009,122(2):235-243.
[22] Pastor A,Lopez-Carbonell M,Alegre L.Abscisic acid immunolocalization and ultrastructural changes in water-stressed lavender(Lavandula stoechas L.)plants.Physiologia Plantarum,1999,105(2):272-279.
[23] Van Rensburg L,Krüger H,Breytenbach J.Immunogold localization and quantification of cellular and subcellular abscisic acid,prior to and during drought stress.Biotechnic&Histochemistry,1996,71(1):38-43.
[24] Nambara E,Marion-Poll A.Abscisic acid biosynthesis and catabolism.Annual Review Plant Biology,2005,56:165-185.
[25] Audran C,Liotenberg S,Gonneau M,et al.Localisation and expression of zeaxanthin epoxidase m RNA in Arabidopsis in response to drought stress and during seed development.Australia Journal of Plant Physiology,2001,28(12):1161-1173.
[26] Marin E,Nussaume L,Quesada A,et al.Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia,a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana.Journal of Experi-mental Botany,1996,15(10):2331-2342.
[27] Audran C,Borel C,Frey A,et al.Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia.Plant Physiology,1998,118(3):1021-1028.
[28] Agrawal G K,Yamazaki M,Kobayashi M,et al.Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion.Tagging of a zeaxanthin epoxidase gene and a novel Os TATC gene.Plant Physiology,2001,125(3):1248-1257.
[29] Schwartz S H,Tan B C,Gage D A,et al.Specific oxidative cleavage of carotenoids by VP14 of maize.Science,1997,276:1872-1874.
[30] Thompson A J,Jackson A C,Symonds R C,et al.Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid.Plant Journal,2000,23(3):363-374.
[31] Burbidge A,Grieve T M,Jackson A,et al.Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14.Plant Journal,1999,17(4):427-431.
[32] Iuchi S,Kobayashi M,Taji T,et al.Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase,a key enzyme in abscisic acid biosynthesis in Arabidopsis.Plant Journal,2001,27(4):325-333.
[33] Gonz′alez-Guzm′an M,Apostolova N,Bell′es J M,et al.The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde.Plant Cell,2002,14(8):1833-1846.
[34] Groot S P C,Van Yperen I,Karssen C M.Strongly reduced levels of endogenous abscisic acid in developing seeds of the tomato mutant sitiens do not influence in vivo accumulation of dry matter and storage proteins.Plant Physiology,1991,81(1):73-78.
[35] Koiwai H,Nakaminami K,Seo M,et al.Tissue specific localization of an abscisic acid biosynthetic enzyme,AAO3,in Arabidopsis.Plant Physiology,2004,134(4):1697-1707.
[36] Seo M,Aoki H,Koiwai H,et al.Comparative studies on the Arabidopsis aldehyde oxidase(AAO)gene family revealed a major role of AAO3 in ABA biosynthesis in seeds.Plant Cell Physiology,2004,45(11):1694-1703.
[37] Seo M,Peeters A J M,Koiwai H,et al.The Arabidopsis aldehyde oxidase 3(AAO3)gene product catalyzes the final step in abscisic acid biosynthesis in leaves.Proceedings of the National Academy Sciences of United States of America,2000,97(23):12908-12913.
[38] Sagi M,Scazzocchio C,Fluhr R.The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants.Plant Journal,2002,31(3):305-317.
[39] Bittner F,Oreb M,Mendel R R.ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana.Journal of Biological Chemistry,2001,276(44):40381-40384.
[40] Qin X,Zeevaart J A D.The 9-cisepoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean.Proceedings of the National Academy Sciences of United States of America,1999,96(26):15354-15361.
[41] Meier S,Tzfadia O,Vallabhaneni R,et al.A transcriptional analysis of carotenoid,chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana.BMC Systems Biology,2011,5(77):1-19.
[42] Ruiz-Sola M A,Vicent A,Aurelio G,et al.A Root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in Arabidopsis.PLoS ONE,2014,9(3):e90765.
[43] Cheng W H,Endo A,Zhou L,et al.A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions.Plant Cell,2002,14:2723-2743.
[44] Xu Z J,Nakajima M,Suzuki Y,et al.Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings.Plant Physiology,2002,129:1285-1295.
[45] Zhu J K.Salt and drought stress signal transduction in plants.Annual Review of Plant Biology,2002,53:247-273.
[46] Krochko J E,Abrams G D,Loewen M K,et al.(+)-abscisic acid 8′-hydroxylase is a cytochrome P450 monooxygenase.Plant Physiology,1998,118(3):849-860.
[47] Yamaguchi-Shinozaki K,Shinozaki K.Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses.Annual Review of Plant Biology,2006,57:781-803.
[48] Degenhardt B,Gimmler H,Hose E,et al.Effect of alkaline and saline substrates on ABA contents,-distribution and-transport in plant roots.Plant and Soil,2000,225:83-94.
[49] Chater C C C,Oliver J,Casson S,et al.Putting the brakes on:abscisic acid as a central environmental regulator of stomatal development.New Phytologist,2014,202(2):376-391.
[50] Yusuke M,Noguchi K,Kojima M,et al.Mesophyll conductance decreases in the wild type but not in an ABA-deficient mu-tant(aba1)of Nicotiana plumbaginifolia under drought conditions.Plant,Cell and Environment,2015,28(3):388-398.
[51] Shen Y Y,Wang X F,Wu F Q,et al.The Mg-chelatase H subunit is an abscisic acid receptor.Nature,2006,443(7113):823-826.
[52] Tsuzuki T,Takahashi K,Inoue S,et al.Mg-chelatase H subunit affects ABA signaling in stomatal guard cells,but is not an ABA receptor in Arabidopsis thaliana.Journal of Plant Research,2011,124(4):527-538.
[53] Müller A H,Hansson M.The barley magnesium chelatase 150-kd subunit is not an abscisic acid receptor.Plant Physiology,2009,150(1):157-166.
[54] Liu X,Yue Y,Li B,et al.A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid.Science,2007,315(5819):1712-1716.
[55] Pandey S,Nelson D C,Assmann S M.Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis.Cell,2009,136(1):136-148.
[56] Johnston C A,Temple B R,Chen J G,et al.Comment on“A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid”.Science,2007,318(5852):914.
[57] Soon F F,Ng L M,Zhou X E,et al.Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases.Science,2012,335(6064):85-87.
[58] Fujii H,Chinnusamy V,Rodrigues A,et al.In vitro reconstitution of an abscisic acid signaling pathway.Nature,2009,462(7273):660-664.
[59] Yoshida R,Umezawa T,Mizoguchi T,et al.The regulatory domain of SRK2E/OST1/Sn RK2.6 interacts with ABI1 and integrates abscisic acid(ABA)and osmotic stress signals controlling stomatal closure in Arabidopsis.The Journal of Biological Chemistry,2006,281(8):5310-5318.
[60] Yang L,Ji W,Gao P,et al.Gs APK,an ABA-activated and calcium-independent Sn RK2-type kinase from G.soja,mediates the regulation of plant tolerance to salinity and ABA stress.PLoS ONE,2012,7(3):e33838.
[61] Biswa R A,Byeong W J,Zhang W,et al.Open Stomata 1(OST1)is limiting in abscisic acid responses of Arabidopsis guard cells.New Phytologist,2013,200(4):1049-1063.
[62] Dennis I,Patrick M,Jennifer B,et al.Open stomata 1(OST1)kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells.The Plant Journal,2013,74(3):372-382.
[63] Allen G J,Chu S P,Schumacher K,et al.Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant.Science,2000,289(5488):2338-2342.
[64] Hamilton D W,Hills A,Kohler B,et al.Ca2+channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid.Proceedings of the National Academy Sciences of United States of America,2000,97(9):4967-4972.
[65] Lee Y,Choi Y B,Sub C S,et al.Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia faba.Plant Physiology,1996,110:987-996.
[66] Leckie C P,Mc Ainsh M R,Allen G J,et al.Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose.Proceedings of the National Academy Sciences of United States of America,1998,95:15837-15842.
[67] Leung J,Giraudat J.Abscisic acid signals transduction.Annual Review Physiology and Plant Molecular Biology,1998,49:199-222.
[68] Mc Ainsh M R,Clayton H,Mansgield T A,et al.Changes in stomatal behavior and cytosolic free calcium in response to oxidative stress.Plant Physiology,1996,111:1031-1042.
[69] Miao Y C,Song C P,Dong F C,et al.ABA-induced hydrogen peroxide generation in guard cells of Vicia faba.Acta Phytophysiologica Sinica,2000,26(1):53-58.
[70] Mustilli A C,Merlot S,Vavasseur A,et al.Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production.Plant Cell,2002,14(12):3089-3099.
[71] Wendehenne D,Durner J,Klessig D F.Nitric oxide:a new player in plant signaling and defense responses.Current Opinion Plant Biology,2004,7:449-455.
[72] Bright J,Desikan R,Hancock J T,et al.ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2synthesis.Plant Journal,2006,45:113-122.
[73] Yan J P,Tsuichihara N,Etoh T,et al.Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening.Plant,Cell and Environment,2007,30:1320-1325.
[74] Zhang L,Zhao X,Wang Y J,et al.Crosstalk of NO with Ca2+in stomatal movement in Vicia faba guard cells.Acta Agronomica Sinica,2009,35(8):1491-1499.
[75] Campbell J L,Klueva N Y,Zheng H G,et al.Cloning of new members of heat shock protein HSP 101 gene family in wheat[Triticum aestivum(L.)Moench]inducible by heat,dehydration,and ABA.Biochimica et Biophysica Acta-gene Structure and Expression,2001,1517:270-277.
[76] Yoshiba Y,Kiyosue T,Katagiri T,et al.Correlation between the induction of a gene for 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress.Plant Journal,1995,7:751-760.
[77] Seki M.Monitoring the expression pattern of around 7000 Arabidopsis genes under ABA treatments using a full length cDNA microarray.Functional&Integrative Genomics,2002,2(6):282-291.
[78] Zhu X Q,Zhang X Y,Shi S L,et al.Comparison on the root drought resistance of four alfalfa cultivars under drought stress.Journal of Gansu Agricultural University,2012,47(1):103-107.
[79] Han R H,Gao G J,Zhang Y G.Research progress on Medicago adaptation under drought stress.Anhui Agricultural Science Bulletin,2009,15(18):27-29.
[80] Han D L,Wang Y R.Adaptability of Medicago sativa under water stress.Acta Prataculturae Sinica,2005,14(6):7-13.
[81] Xu X N,Yi J,Yu L Q,et al.Advances on drought resistance of alfalfa.Chinese Agricultural Science Bulletin,2009,25(21):180-184.
[82] Mckersie B D,Bowley S R,Harjanto E,et al.Water-deficit tolerance and field performance of transgenic alfalfa over expressing superoxide dismutase.Plant Physiology,1996,111(4):1117-1181.
[83] Mckersie B D,Chen Y,Beus M,et al.Super oxide dismutase enhances tolerance of freezing stress in transgenic alfalfa(Medicago sativa L.).Plant Physiology,1993,103(4):1155-1163.
[84] Ren M,He J H.Changes of ABA metabolism in leaves and roots of alfalfa under natural drought stress.Journal of Anhui Agricultural Science,2010,38(4):1771-1772.
[85] Han R H,Zhang Y G,Tian H,et al.Study on changes of endogenous hormones in the leaves of alfalfa under drought stress.Acta Agriculturae Boreali-Sinica,2008,23(3):81-84.
[86] Ivanova A,Djilianov D,Van Onckelen H,et al.Abscisic acid changes in osmotic stressed leaves of alfalfa genotypes varying in drought tolerance.Journal of Plant Physiology,1997,150(1-2):224-227.
[87] Li Y,Wang Z,Liu G B,et al.Study on endogenesis hormones and anatomical structures of Medicago glutinosa under drought stress.Acta Agriculturae Boreali-sinica,2010,25(6):211-216.
[88] Avice J C,Ourry A,Lemaire G,et al.Root protein and vegetative storage proteins are key organic nutrients for alfalfa shoot regrowth.Crop Science,1997,37:1187-1193.
[89] Erice G,Irigoyen J J,Sánchez-Díaz M,et al.Effect of drought,elevated CO2and temperature on accumulation of N and vegetative storage proteins(VSP)in taproots of nodulated alfalfa before and after cutting.Plant Science,2007,172:903-912.
[90] Avice J C,Le Dily F,Goulas E,et al.Vegetative storage proteins in overwintering storage organs of forage legumes:roles and regulation.Canada Journal of Botany,2003,81:1198-1212.
[91] Zhang J Y,Maria H C C,Torres-Jerez I,et al.Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering.Plant,Cell and Environment,2014,37:2553-2576.
[92] Planchet E,Verdu I,Delahaie J,et al.Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula.Journal of Experimental Botany,2014,65(8):2161-2170.
[93] Planchet E,Rannou O,Ricoult C,et al.Nitrogen metabolism responses to water deficit act through both abscisic acid(ABA)-dependent and independent pathways in Medicago truncatula during post-germination.Journal of Experimental Botany,2011,62:605-615.
[94] Luo M,Lin L H,Hill R D,et al.Primary structure of an environmental stress and abscisic acid-inducible alfalfa protein.Plant Molecular Biology,1991,17(6):1267-1269.
[95] Luo M,Liu J H,Mohapatra S,et al.Characterization of a gene family encoding abscisic acid and environmental stress-inducible proteins of alfalfa.Journal of Biological Chemistry,1992,267(22):15367-15374.
[96] Kovács I,Ayaydin F,Oberschall A,et al.Immunolocalization of a novel annexin-like protein encoded by a stress and abscisic acid responsive gene in alfalfa.The Plant Journal,1998,15(2):185-197.
[1] 劉志玲,程丹.植物抗旱生理研究進展與育種.中國農學通報,2011,27(24):249-252.
[2] 陳玉玲,曹敏.干旱條件下ABA與氣孔導度和葉片生長的關系.植物生理學通訊,1999,35(5):398-403.
[7] 曹宏,章會玲,蓋瓊輝,等.22個紫花苜蓿品種的引種試驗和生產性能綜合評價.草業學報,2011,20(6):219-229.
[12] 韓瑞宏,盧欣石,高桂娟,等.紫花苜蓿抗旱性主成分及隸屬函數分析.草地學報,2006,14(2):142-146.
[19] 胡博,肖素妮,呂滟.不同花生品種響應干旱脅迫后葉片內ABA與Ah NCED1的分布.中國細胞生物學學報,2012,34(10):992-997.
[69] 苗雨晨,宋純鵬,董發才,等.ABA誘導蠶豆氣孔保衛細胞H2O2的產生.植物生理學報,2000,26(1):53-58.
[74] 張霖,趙翔,王亞靜,等.NO與Ca2+對蠶豆保衛細胞氣孔運動的互作調控.作物學報,2009,35(8):1491-1499.
[78] 朱新強,張新穎,師尚禮,等.干旱脅迫下4個苜蓿品種根系抗旱性的比較.甘肅農業大學學報,2012,47(1):103-107.
[79] 韓瑞宏,高桂娟,張亞光.干旱脅迫下苜蓿適應性研究進展.安徽農學通報,2009,15(18):27-29.
[80] 韓德梁,王彥榮.紫花苜蓿對干旱脅迫適應性的研究進展.草業學報,2005,14(6):7-13.
[81] 徐向南,易津,于林清,等.紫花苜蓿抗旱性研究進展.中國農學通報,2009,25(21):180-184.
[84] 任敏,何金環.自然干旱脅迫下紫花苜蓿葉片和根部ABA的代謝變化.安徽農業科學,2010,38(4):1771-1772.
[85] 韓瑞宏,張亞光,田華,等.干旱脅迫下紫花苜蓿葉片幾種內源激素的變化.華北農學報,2008,23(03):81-84.
[87] 李源,王贊,劉貴波,等.干旱脅迫下膠質苜蓿內源激素及解剖結構的研究.華北農學報,2010,25(6):211-216.
Progress in understanding relationships between the physiological mechanisms of endogenous abscisic acid and drought resistance of alfalfa
LI Yue,WAN Li-Qiang*,LI Xiang-Lin*
Institute of Animal Science,Chinese Academy of Agricultural Science,Beijing 100193,China
The shortage of water resources and related ecological crises due to climate change make the drought resistance of crops an important research topic.As a plant stress hormone,abscisic acid(ABA)plays an important role in drought stress response.Abscisic acid is synthesized from the 2-C-methyl-D-erythritol-4-phosphate(MEP)pathway.Through binding with its receptor,ABA controls stomatal closure by a series of signal transductions and/or regulates stress-related gene expression through other pathways.Alfalfa(Medicago sativa)is a high-performing legume that is widely cultivated for forage.Under conditions of drought stress,ABA accumulates in alfalfa and is closely related to vegetative protein storage in the tap root,gene expression and a range of osmolyte responses.Research on the relationship between ABA and drought resistance in alfalfa is under development.This research will assist understanding drought resistance mechanisms in alfalfa and will have profound influences on the breeding of alfalfa cultivars.
abscisic acid;physiological mechanism;alfalfa;drought resistance
10.11686/cyxb2014489 http://cyxb.lzu.edu.cn
李躍,萬里強,李向林.內源脫落酸生理作用機制及其與苜蓿耐旱性關系研究進展.草業學報,2015,24(11):195-205.
LI Yue,WAN Li-Qiang,LI Xiang-Lin.Progress in understanding relationships between the physiological mechanisms of endogenous abscisic acid and drought resistance of alfalfa.Acta Prataculturae Sinica,2015,24(11):195-205.
2014-11-28;改回日期:2015-03-30
國家自然科學基金項目“水分脅迫下紫花苜蓿根源信號ABA應旱機制及其調控模型研究”(31372370)和國家牧草產業技術體系(CARS-35-12)資助。
李躍(1986-),男,河北承德人,在讀博士。Email:liyue-s@163.com
*通訊作者Corresponding author.Email:wanliqiang@caas.cn,lxl@caas.cn