陸金銘,李儒凡,倪 杰
(江蘇科技大學(xué)能源與動(dòng)力工程學(xué)院,江蘇鎮(zhèn)江 212003)
船舶推進(jìn)軸系軸徑傾斜對(duì)軸承負(fù)荷的影響
陸金銘,李儒凡,倪 杰
(江蘇科技大學(xué)能源與動(dòng)力工程學(xué)院,江蘇鎮(zhèn)江 212003)
船舶推進(jìn)軸系由于受軸承布置及運(yùn)行時(shí)各種動(dòng)態(tài)因素的影響,軸線會(huì)有一定程度的彎曲變形.軸承中軸徑的傾斜會(huì)導(dǎo)致軸承油膜厚度的變化,從而使軸承壓力分布產(chǎn)生變化,當(dāng)局部壓力超過(guò)軸承允許比壓時(shí),易產(chǎn)生軸承局部區(qū)域磨損,因此有必要分析軸徑傾斜對(duì)徑向滑動(dòng)軸承潤(rùn)滑性能的影響.對(duì)實(shí)船推進(jìn)軸系進(jìn)行分析,利用有限差分法求解Reynolds方程,用FORTRAN及MATLAB編程分別對(duì)艉管前軸承、艉管后軸承及中間軸承進(jìn)行計(jì)算分析.結(jié)果表明:當(dāng)軸徑傾斜時(shí),油膜局部壓力超過(guò)允許比壓,隨著傾斜角度變大,局部最大壓力突變,最小油膜厚度減小,其位置也向尾端傾斜,從而使油膜壓力和厚度分布等發(fā)生了較大的邊緣效應(yīng).
軸徑傾斜;軸承負(fù)荷;潤(rùn)滑;油膜;船舶
對(duì)于大型商船,主機(jī)一般采用大功率低速柴油機(jī),采用直接傳動(dòng)及大直徑低速螺旋槳,因此,為使各軸承負(fù)荷合理,需將軸系安裝成曲線狀態(tài).將艉管內(nèi)的前后軸承安裝在一直線,主機(jī)軸承低于艉管軸承一定距離,中間軸承的高度介于艉管軸承和主軸承之間.軸系安裝后成一曲線,此時(shí)各軸承處的軸徑呈傾斜狀態(tài),軸承油膜厚度產(chǎn)生變化,從而油膜壓力分布也產(chǎn)生變化,即軸承的支點(diǎn)位置發(fā)生變化,各軸承的負(fù)荷也會(huì)相應(yīng)變化.一般在校中時(shí),會(huì)將艉管前軸承中間軸承及主軸承的支點(diǎn)取在軸承中間位置,這與實(shí)際情況存在著較大誤差.軸徑傾斜會(huì)導(dǎo)致油膜壓力偏向軸承一端,從而使局部應(yīng)力過(guò)大,若超過(guò)軸承許用應(yīng)力,則會(huì)產(chǎn)生軸瓦局部磨損.
在過(guò)去的幾十年間,為了研究多重動(dòng)態(tài)因素對(duì)船舶軸系校中的影響,改善船舶航行的動(dòng)態(tài)性能,國(guó)外船級(jí)社和高校在理論和實(shí)驗(yàn)基礎(chǔ)上進(jìn)行了大量研究.DNV船級(jí)社在考慮尾軸傾斜、軸承支座熱應(yīng)力以及船體彈性等方面后進(jìn)行了合理的軸系校中.波蘭船舶研究中心分析了中間軸承、船體局部剛度以及油膜狀態(tài)參數(shù),研究了多個(gè)參數(shù)對(duì)軸承負(fù)荷的影響[1-2].日本福井工業(yè)大學(xué)的齊藤研究了尾管軸承在傾斜狀況下軸承的彈流潤(rùn)滑,假設(shè)不考慮螺旋槳力,分別計(jì)算了撓度和傾斜角度對(duì)油膜壓力分布的影響[3].
國(guó)內(nèi)一些高校和研究所在沒(méi)有考慮艉軸軸徑傾斜的影響下,分析了支承滑動(dòng)軸承的反力大?。墨I(xiàn)[4]研究了軸徑傾斜對(duì)軸承動(dòng)態(tài)特性的影響,給出了具體的油膜厚度計(jì)算公式,分析了油膜壓力分布規(guī)律;文獻(xiàn)[5]基于徑向滑動(dòng)軸承液體潤(rùn)滑機(jī)理,建立了船舶艉軸承潤(rùn)滑的數(shù)學(xué)模型,給出了油膜壓力和厚度分布;文獻(xiàn)[6]研究了滿載和載荷時(shí)船體變形對(duì)軸承負(fù)荷的影響;文獻(xiàn)[7]對(duì)動(dòng)壓滑動(dòng)軸承的承載能力因素進(jìn)行了有限差分法研究;文獻(xiàn)[8]研究了艉軸承變形對(duì)潤(rùn)滑特性的影響.本文以某散貨船推進(jìn)軸系為研究對(duì)象,基于Reynolds方程[7],建立了船舶艉軸和中間軸軸承的潤(rùn)滑模型,計(jì)算分析了推進(jìn)軸系軸徑傾斜對(duì)徑向滑動(dòng)軸承潤(rùn)滑性能的影響,為船舶推進(jìn)軸系實(shí)現(xiàn)合理地校中提供了一定參考.
圖1為有限長(zhǎng)圓形動(dòng)載滑動(dòng)軸承模型.圖中γ為承載力方向角;δ為偏位角,是軸承與軸頸的連心線O1O2與載荷W的作用線之間的夾角;油膜承載力作用角φ=180-(δ-γ).穩(wěn)態(tài)時(shí)潤(rùn)滑油在軸承間隙中的流動(dòng)遵循Reynolds方程[9-10]:

式中:h=c(1+εcos θ),c為軸承與軸徑的半徑間隙;η為潤(rùn)滑油粘度;軸頸速度Uj=Rjωj≈Rbωj;軸承速度Ub=Rbωj=0,R為半徑,ω為角速度,其中j表示軸頸,b表示軸承.

圖1 艉軸傾斜軸承模型Fig.1 Stern shaft inclined bearing model

2)圓周方向按Reynolds邊界條件
油膜起點(diǎn)在θ=0處,取 p=0;油膜終點(diǎn)在發(fā)散區(qū)間內(nèi)符合p=0的地方.油膜終點(diǎn)的位置必須在求解過(guò)程中加以確定,是浮動(dòng)邊界條件.即應(yīng)用迭代法求解代數(shù)方程組時(shí),在每次迭代過(guò)程中,對(duì)于p<0的各節(jié)點(diǎn)令p=0,最終可以自然地確定油膜終點(diǎn)位置.
采用差分法對(duì)微分方程進(jìn)行求解,差分式(2)可得:

整理得:

根據(jù)上述數(shù)學(xué)模型,利用FORTRAN語(yǔ)言編寫相關(guān)潤(rùn)滑數(shù)值程序,后期數(shù)據(jù)處理在MATLAB中完成.算例中預(yù)賦值參數(shù):節(jié)點(diǎn)數(shù)N=121×121;量綱一化偏心率EPS=0.1,0.2~0.9;軸瓦靜止,軸徑轉(zhuǎn)速ωj=105 r/m;潤(rùn)滑油粘度EDA=0.02 Pa·s;初始載荷量SUM0=322 000 N;軸徑傾斜角度為0°,0.000 22°,0.000 28°,0.000 61°;載荷方向角RI=40°;軸心初始位置和載荷角速度起點(diǎn)為原點(diǎn).
輸出參數(shù):節(jié)點(diǎn)壓力 P(I,J)分布在文件PRESSSYRE.DAT中,膜厚度分布在FILE.DAT中,各個(gè)情況的承載力在LOAD.DAT中,計(jì)算流程見(jiàn)圖2.

圖2 艉軸承潤(rùn)滑性能計(jì)算程序流程Fig.2 Flow chart of the lubrication process
以某115 000 t散貨船為例,該船主機(jī)額定轉(zhuǎn)速105 r/m;軸向剛度220 MN/m;最大軸承許用比壓0.8 MPa;艉軸承:長(zhǎng)1180 mm,軸徑585 mm,軸承間隙0.8 mm,軸承最大允許負(fù)荷552 kN;艉管前軸承:長(zhǎng)440 mm,軸徑588 mm,軸承最大允許負(fù)荷207 kN;中間軸承:長(zhǎng)250 mm,軸徑485 mm,軸承間隙0.55 mm,軸承最大允許負(fù)荷97 kN.
為方便計(jì)算,文中對(duì)模型做了如下假設(shè):潤(rùn)滑油粘度恒定為0.02 Pa·s,層流處理,軸系轉(zhuǎn)速穩(wěn)定,軸承的支撐反力大小和方向一定,軸承孔中心與軸徑不平行,有一定的傾斜角度且角度穩(wěn)定,作用在軸徑上的當(dāng)量載荷方向向下,采用Reynolds邊界條件,有限差分法進(jìn)行求解.在分析油膜壓力分布和油膜厚度分布時(shí),取軸徑傾斜角=0°,0.000 22°,0.000 28°,0.000 61°進(jìn)行計(jì)算,結(jié)果見(jiàn)圖3~5,圖中y/B為無(wú)量綱寬度.
從圖3~5中可看出,油膜壓力在周向主要集中在100°~170°區(qū)域。艉軸和中間軸軸承傾斜角度為0°時(shí),軸向油膜壓力呈對(duì)稱分布的拋物面,周向油膜厚度分布對(duì)稱,當(dāng)傾斜角逐漸增大時(shí),油膜壓力不再對(duì)稱分布且最大壓力超過(guò)了軸承許用比壓,相應(yīng)的油膜厚度分布也發(fā)生了較大變化,最小油膜厚度減小比較明顯,進(jìn)而會(huì)產(chǎn)生局部干摩擦,導(dǎo)致軸徑軸瓦磨損.圖5最明顯,集最大壓力為2.295 MPa,遠(yuǎn)高于最大軸承許用比壓0.8 MPa;最大油膜壓力位置也逐漸向尾端傾斜.在軸承軸向的兩端油膜壓力趨于0,是因?yàn)樵谳S承兩端發(fā)生了測(cè)泄.從圖4,5還可看出,傾斜角度增大時(shí),軸承負(fù)荷也增大,此時(shí)油膜最大壓力遠(yuǎn)遠(yuǎn)超過(guò)了許用比壓,而油膜厚度更是減小到接近表面的數(shù)量級(jí).
隨著軸徑傾斜角逐漸增大,油膜壓力的最大值和最大值點(diǎn)位置的變化情況見(jiàn)表1.根據(jù)表1分析可知,隨著軸徑傾斜角增大,油膜最大壓力也逐漸增大并超過(guò)軸承負(fù)荷的許用壓力0.8 MPa,易導(dǎo)致軸徑軸瓦的磨損.而當(dāng)軸徑不傾斜時(shí),最大壓力點(diǎn)位置都在1/2B處成對(duì)稱分布.

表1 軸徑傾斜時(shí)艉軸油膜壓力變化參數(shù)Table 1 Oil film pressure parameters of the inclined stern shaft

圖3 艉軸承傾斜0°,0.000 22°時(shí)油膜壓力和厚度三維分布Fig.3 3D distribution of the oil pressure and thickness with different tilt angle

圖4 艉管前軸承傾斜角0°,0.000 28°時(shí)油膜壓力和厚度三維分布Fig.4 3D distribution of the oil pressure and thickness with different tilt angle in the FW stern tube bearing

圖5 中間軸承傾斜角0°、0.000 61°時(shí)油膜壓力和厚度三維分布Fig.5 3D distribution of the oil pressure and thickness with different tilt angle in the intermediate bearing
1)油膜壓力在周向的分布集中在100°~170°區(qū)域,最小油膜厚度位置也在此區(qū)域內(nèi).
2)當(dāng)傾斜角為0°時(shí),艉軸和中間軸軸承的油膜壓力分布為對(duì)稱拋物面,當(dāng)傾斜角逐漸增大時(shí),油膜壓力分布不再對(duì)稱而呈尖角狀態(tài),最大油膜壓力超過(guò)許用比壓,最小油膜厚度減小,進(jìn)而會(huì)產(chǎn)生局部干摩擦,導(dǎo)致軸徑軸瓦磨損.
3)隨著傾斜角的增大,產(chǎn)生最大油膜壓力和最小油膜厚度的位置向尾端傾斜,艉軸和中間軸軸承的最大油膜壓力均超過(guò)了許用比壓,但中間軸軸承后端更容易出現(xiàn)軸瓦磨損.
4)艉軸和中間軸軸承在周向上的油膜壓力和厚度分布變化情況不大,但在軸向上,軸徑的傾斜角度對(duì)油膜壓力和厚度分布變化影響比較明顯.當(dāng)傾斜角度達(dá)到一定值時(shí),最小油膜厚度可能會(huì)小于軸徑和軸承表面的粗糙度,因此很可能發(fā)生摩擦表面的直接接觸,導(dǎo)致軸承損壞.對(duì)于影響軸承負(fù)荷的因素來(lái)說(shuō),軸徑傾斜角是一個(gè)重要考慮因素,通過(guò)計(jì)算,傾斜角在0.000 22°范圍內(nèi)是合理的.
References)
[1]Schiffer W.Advanced methods for static and dynamic shafting calculations[J].Journal of the Marine Engineering Society in Japan,2006,41(9):115-122.
[2]Murawski L.Shaft line alignment analysis taking ship construction flexibility and deformations into consideration[J].Marine Structures,2005,18(1):62-84.
[3]Saitou T.Elastohydrodynamic lubrication of stern-tube bearings with misalignment[J].Journal of Marine Engineering Society in Japan,2011,46(3):454-459.
[4] 賈小俊.考慮軸頸傾斜的徑向滑動(dòng)軸承動(dòng)態(tài)特性研究[J].船海工程,2008,37(5):54-57
Jia Xiaojun.Dynamic lubrication characteristics analysis of journal bearing considering misalignment[J].Ship&Ocean Engineering,2008,37(5):54-57.(in Chinese)
[5] 王良武,周瑞平.船舶推進(jìn)軸系艉管軸承潤(rùn)滑性能研究與分析[C]//第四屆全國(guó)船舶與海洋工程學(xué)術(shù)會(huì)議論文集.北京:中國(guó)造船工程學(xué)會(huì),2009:342-347.
[6] 肖建坤,周海港,陸金銘,等.船體變形對(duì)主軸承負(fù)荷的影響[J].江蘇科技大學(xué)學(xué)報(bào):自然科學(xué)版,2010,24(4):9-12.Xiao Jiankun,Zhou Haigang,Lu Jinming,et al.Impact of hull displacement on main bearing load[J].Journal of Jiangsu University of Science and Technology:Natural Science Edition,2010,24(4):9-12.(in Chinese)
[7] 姚志強(qiáng),錢安.?dāng)[動(dòng)瓦動(dòng)壓潤(rùn)滑滑動(dòng)軸承的承載能力因數(shù)[J].江蘇科技大學(xué)學(xué)報(bào):自然科學(xué)版,2002,16(3):35-38.
Yao Zhiqiang,Qian An.Loading ability factor in the hydrodynamical lubrication sliding bearing with the swing liner[J].Journal of Jiangsu University of Science and Technology:Natural Science Edition,2002,16 (3):35-38.(in Chinese)
[8] 鐘駿杰,朱漢華,周剛,等.船舶艉軸承的變形對(duì)其潤(rùn)滑特性的影響研究[J].武漢理工大學(xué)學(xué)報(bào),2006,30(2):224-227.
Zhong JunJie,Zhu Hanhua,Zhou Gang,et al.Influence of ship stern shaft deformation on journal bearing lubrication property[J].Journal of Wuhan University of Technology,2006,30(2):224-227.(in Chinese)
[9] 溫詩(shī)鑄,黃平.摩擦學(xué)原理[M].4版.北京:清華大學(xué)出版社,2012.
[10] 黃平.潤(rùn)滑數(shù)值計(jì)算方法[M].北京:高等教育出版社,2012.
(責(zé)任編輯:繆文樺)
Effect of inclined shaft on the shafting alignment
Lu Jinming,Li Rufan,Ni Jie
(School of Energy and Power Engineering,Jiangsu University of Science and Technology,Zhenjiang Jiangsu 212003,China)
Since propulsion shafting is affected by many dynamic factors of bearing arrangement and operation,the axis will have a certain degree of bending deformation.The inclined shaft leads to the change of bearing oil film thickness,so that the bearing pressure distribution changes.When the local pressure exceeds the allowable bearing pressure,it is easy to produce the local wear of bearing,so it is necessary to analyze the effect of misalignment on the lubrication characteristics of the journal bearing.The ship propulsion shafting is analyzed by using the finite difference method for solving the Reynolds equation,the intermediate bearing and the bearings before and after the stern shaft is calculated by making use of FORTRAN and MATLAB.The results show that when the shaft is inclined,local film pressure exceeds the allowable specific pressure;with the increase of the inclination angle,the maximum local pressure changes abruptly and the minimum oil film thickness decreases; its location moves to the stern,so that the oil film pressure and thickness distribution changed greatly.
inclined shaft;bearing load;lubrication;film;ship
U664.2
:A
:1673-4807(2015)05-0426-05
10.3969/j.issn.1673-4807.2015.05.004
2015-04-20
江蘇科技大學(xué)博士啟動(dòng)基金資助項(xiàng)目(635321301)
陸金銘(1967—),男,副教授,博士,研究方向?yàn)榇皠?dòng)力裝置.E-mail:ljm280ljm@163.com
陸金銘,李儒凡,倪杰.船舶推進(jìn)軸系軸徑傾斜對(duì)軸承負(fù)荷的影響[J].江蘇科技大學(xué)學(xué)報(bào):自然科學(xué)版,2015,29(5):426-430.