999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

淺談初中數學教學中數學思想的運用

2015-05-30 09:40:02陳玉華
數學學習與研究 2015年20期

陳玉華

【摘要】 新課程要求讓學生能夠掌握一定的數學思想,讓數學思想為學生的終身學習產生重要的影響. 因此我們在平時的教學中,要運用數學中的轉化思想體現新舊知識之間的聯系,運用類比思想揭示相似知識點之間的規律,利用數形結合把抽象的問題轉化成具體問題. 讓數學思想成為教師教學,學生學習的重要工具.

【關鍵詞】 轉化思想;類比思想;數形結合

新課程標準指出,數學的學習一定要讓學生掌握必需的數學基礎知識、基本技能、基本思想方法、基本經驗和綜合運用知識的能力. 因而在平時教學過程中,我們一定要注意運用適當的教學途徑,讓學生在數學課堂上能夠掌握一定的數學思想方法. 讓學生在學習時要學會運用,進而形成一定的數學技能. 下面我就結合我的課堂教學片斷,談談在數學教學中怎樣運用數學思想方法.

一、在數學課堂教學過程中運用數學轉化思想,體現已學知識與現學知識之間的聯系

我的初中數學教師曾經說過:“數學知識是一環套一環的,環環相扣,相互之間存在著很多的聯系”. 因此數學的學習一定要注重新舊知識之間的聯系,要學會運用已經學習過的知識來探究要學習的知識. 在這樣的一種教學過程中,我們可以運用數學的轉化思想,把新舊知識聯系在一起. 數學的轉化思想可以把一些繁難的知識點轉化成簡單的,把要學習的知識轉化成已經學習過的知識,這樣可以降低學生接受新知識的難度,讓學生的學習思路更廣闊,讓學生研究問題更有方向感. 例如在講四邊形的內角和時,可以先讓學生復習三角形中與之相關的知識,再讓學生去研究. 學生在回顧了三角形的內角和為180°后,會有學生聯想到將四邊形轉化成三角形來求解. 這時教師只要讓學生探究怎樣將四邊形轉化成三角形,學生會很明確的說出作四邊形的對角線,那求四邊形的內角和問題就變得簡單多了. 而這種用已經學習過的三角形的內角和知識,來探究四邊形的內角和知識的方法,就是數學的轉化思想方法. 用這樣的方法來探討新課,不但體現了新舊知識之間的聯系,而且讓學生探究新知識更容易,所以我們教師在數學課堂教學中要經常運用數學的轉化思想來聯系新舊知識點. 而這種轉化的思想在初中數學課堂中的運用,還是很多的. 例如在代數中學習解方程或方程組時,可以運用轉化思想讓多元方程轉化成一元方程,讓高次方程轉化成一次方程. 在幾何的學習中,可以運用轉化思想將空間圖形轉化成平面圖形來研究等.

二、在數學課堂教學中運用類比思想,提示概念和法則之間的相似規律

數學概念和法則中有許多是具有很高的相似度的,在這種類型的課堂教學中如果我們能很好的運用數學的類比思想,不但可以揭示數學知識點之間的規律,還能讓學生自己探索出知識點. 比如在講解分式的加減運算的過程中,分式的加減與分數的加減就有很高的相似度,我們可以通過先復習分數的加減運算法則,再讓學生通過分數的加減運算,最后類比到分式的加減上去. 在具體教學中,我們可以先讓學生去計算■ + ■,■ - ■,這兩個題目是學生小學所學習的內容,學生會很容易求出結果. 如果這時我們讓學生去計算,■ + ■,■ - ■學生就會采用類比的方法去做這個題目,也會用總結歸納得到“同分母分式相加減,分母不變,分子相加減”. 運用同分母分數相加減的法則類比得出同分母分式相加減的法則,可以更好地揭示這兩個知識點之間的規律,還能更好的讓學生接受并形成記憶,當然我們還可以讓學生類比的去解決分式運算中的其他問題. 因此在教學中我們要常用類比的思想,讓學生認識相似知識點之間的規律,這對學生學習新知識點有很大的幫助.

三、在課堂教學中多運用數形結合等思想方法,將抽象的問題轉為具體問題

在小學數學課堂教學中,數與形相結合這種實例很多. 初中數學與小學數學還有很明顯的區別,小學數學圖形與數字是融合在一起講授的,而初中數學已經很明顯的分成了幾何和代數兩部分. 那么就要通過數形結合的思想方法,把初中數學中的代數和幾何內容更好的結合在一起. 通過數與形結合我們還可以更好的訓練學生的思維能力,同時還能把數學知識點的難度降低. 例如在教學過程中經常要探討的函數的增減性問題,如果運用數形結合的思想方法,可以讓學生更加容易接受,并能直觀的得出結論. 比如已知A(1,y1),B(3, y2),C(-2,y3)是一次函數y = -2x + b圖像上的三點,比較y1, y2,y3的大小. 這種類型的題目讓學生通過記憶,k < 0時y隨x的增大而減小,初中學生根本不理解y隨x的增大而減小的意思. 如果我們通過數形結合,學生就很容易從圖形上看出y1,y2,y3的大小. 我們可以在平面直角坐標系中先作出y = -2x + b的草圖,然后讓學生在x軸上找出表示1,3, -2的點,過這些點作x軸的垂線,與直線y = -2x + b相交于A,B,C,過A,B,C三點分別作y軸的垂線與y軸相交,這些交點在y軸上所表示的值為y1,y2,y3(如圖所示),從圖形上很容易得出,y2 < y1 < y3. 通過數形結合,學生對于函數的增減性有了很直觀的認識,比單調的記憶要形象很多,同時還能培養學生的圖形感,讓學生識圖作圖的能力得到提升.

當然數學的思想方法很多,如果運用得當,對于我們初中的數學教學工作有很大的幫助. 數學思想方法對于學生的思維能力,解題能力的培養也有很重要的作用,它能對學生的終身學習產生重要的影響. 所以在教學中我們一定要重視數學思想的教學,讓數學思想成為我們學習數學的重要工具.

【參考文獻】

[1]謝秋影.轉化思想在初中數學解題中的應用與實踐[J].數理化解題研究(初中版),2013年第2期.

[2]黃宗升.類比思想在教學中的應用[J].讀寫算:教研版,2013年第7期.

[3]盧丙仁.數形結合的思想在函數教學中的應用[J].開封教育學院學報,2003年第6期.

主站蜘蛛池模板: 天堂av高清一区二区三区| 一区二区理伦视频| 欧洲熟妇精品视频| 亚洲aⅴ天堂| 欧美日韩国产一级| 欧美亚洲另类在线观看| 日韩区欧美区| 99久久国产自偷自偷免费一区| 欧美日韩亚洲综合在线观看| 亚洲成年网站在线观看| 亚洲欧州色色免费AV| 国产精品男人的天堂| 日韩福利在线视频| 久久国产拍爱| 日韩精品无码免费一区二区三区| 伊人久久综在合线亚洲91| 人人妻人人澡人人爽欧美一区 | 国产精品国产三级国产专业不| 日本免费福利视频| 国产成人h在线观看网站站| 婷婷六月天激情| 亚洲天堂网2014| 色网在线视频| 亚洲欧洲日韩国产综合在线二区| 欧美一区二区啪啪| 欧美午夜视频在线| 在线看国产精品| 久久久久无码精品国产免费| 成人国产精品视频频| 天天婬欲婬香婬色婬视频播放| 国产一区亚洲一区| 国产成人av大片在线播放| 99久久精品国产精品亚洲| 思思99热精品在线| 另类欧美日韩| 免费观看成人久久网免费观看| 亚洲欧美日韩中文字幕在线| 97精品国产高清久久久久蜜芽| 3344在线观看无码| 国产精品香蕉| 日韩在线欧美在线| 色婷婷在线影院| 国产杨幂丝袜av在线播放| 久久性妇女精品免费| 中文字幕在线欧美| 香蕉伊思人视频| 日本成人精品视频| 最新国产午夜精品视频成人| 青青草原国产免费av观看| 国产美女自慰在线观看| AV天堂资源福利在线观看| 四虎永久免费地址| 亚洲伊人天堂| 日韩精品成人在线| 大陆精大陆国产国语精品1024 | 欧美成人A视频| 国产成人久久综合777777麻豆| 超薄丝袜足j国产在线视频| 香蕉久人久人青草青草| 久久国产精品夜色| 欧美日韩在线成人| 91偷拍一区| 亚洲第一黄色网| 久久精品亚洲专区| 国产成人高清精品免费| 91成人精品视频| 欧美日本激情| 国产一级做美女做受视频| 国产精女同一区二区三区久| 国产69囗曝护士吞精在线视频| 久久精品人人做人人| 国产精品男人的天堂| 萌白酱国产一区二区| 国产爽妇精品| 55夜色66夜色国产精品视频| 精品福利国产| 亚洲狠狠婷婷综合久久久久| 国产成人一二三| 国产在线一二三区| 欧美日韩中文字幕二区三区| 国产电话自拍伊人| 四虎成人在线视频|