周明月,王可伊,張延明,趙 云,溫宏峰,孟凡磊,方伯言
1遼寧醫學院北京航天中心醫院研究生培養基地,北京 100049;2北京航天中心醫院,北京 100049;
3北京航天中心醫院 神經內科,北京 100049;4遼寧醫學院,遼寧錦州 121000
水通道蛋白4基因表達與阿爾茨海默病相關性的動物實驗
周明月1,王可伊2,張延明1,趙 云1,溫宏峰3,孟凡磊4,方伯言3
1遼寧醫學院北京航天中心醫院研究生培養基地,北京 100049;2北京航天中心醫院,北京 100049;
3北京航天中心醫院 神經內科,北京 100049;4遼寧醫學院,遼寧錦州 121000
目的探討水通道蛋白-4 (aquaporin 4,AQP4)基因表達與阿爾茨海默病的相關性。方法應用Agilent表達譜芯片,選用快速老化癡呆模型小鼠(SAMP8),通過與同月齡正常對照小鼠(SAMR1)比較,提取腦組織總RNA,篩選出差異基因并應用Real time-PCR技術和免疫熒光方法進行鑒定。結果篩選差異表達基因共804個,其中表達上調521個,表達下調283個,在GeneBank查找相關基因的生物學功能及通路,找到與AD密切相關基因有6條:Herc6,Lyst,Nkain1,Aqp4,Uch13,Slc9a8,其中Aqp4基因的差異倍數為6.26 (P<0.001)。Real time-PCR檢測結果顯示,SAMP8組Aqp4基因表達量較SAMR1組增高(P=0.037 6),免疫熒光提示SAMP8組中Aqp4表達增加。結論Aqp4在SAMP8小鼠中表達量增多,可能與清除β淀粉樣蛋白沉積、代償性星形膠質細胞增生有關。
阿爾茨海默病;基因芯片;水通道蛋白-4
阿爾茨海默病(Alzheimer′s disease,AD)是一種嚴重危害人類健康的神經系統退行性疾病,占進行性認知功能障礙的老年人群的50% ~ 60%[1]。目前公認的病理特征為腦組織細胞外以β淀粉樣蛋白(β-amyloid,Aβ)沉積為中心的神經炎性斑(neuritic plaques,NP),細胞內以Tau蛋白過度磷酸化形成的神經纖維纏結(neurofibrillary tangles,NFT)和神經細胞凋亡。普遍認為Aβ生成增多和Aβ清除障礙是Aβ沉積的主要原因。參與Aβ生成和清除的眾多因子中,類淋巴途徑及水通道蛋白4 (aquaporin 4,AQP4)近來備受關注[2-3]。AQP4蛋白存在于星形膠質細胞足突,圍繞在血管周圍,在類淋巴途徑的循環中起到重要的作用[4-5]。本研究利用Agilent表達譜芯片技術同時觀察SAMP8和SAMR1小鼠海馬組織基因表達的變化趨勢,篩選并通過進一步的驗證發現,AQP4在SAMP8癡呆小鼠表達增加,為進一步探究AQP4在類淋巴途徑循環中清除Aβ的研究提供依據。
1實驗動物及分組 采用10月齡SAMP8雄性小鼠20只,體質量26 ~ 30 g;10月齡SAMR1雄性小鼠10只,體質量30 ~ 35 g。小鼠由天津中醫藥大學第一附屬醫院老年動物中心提供(動物合格證號:SCXK津-2008-0001)。飼養于軍事醫學科學院SPF級動物房,飼養環境溫度(24±2)℃,濕度50% ~ 80%,12 h光照,自由飲水和攝食,單籠飼養。實驗分為正常老化SAMR1小鼠組(A組,n=10)、快速衰老SAMP8小鼠組(B組,n=10)。
2基因表達譜檢測 每組隨機選取3只小鼠,斷頭處死后,迅速在冰盒表面分離左側海馬,提取純化總RNA,利用NanoDrop ND-2000(Thermo Scientific)定量并經Agilent Bioanalyzer 2100(Agilent Technologies)檢測RNA完整性。質檢合格后,樣本標記、芯片雜交及洗脫參照芯片標準流程。首先,總RNA反轉錄成雙鏈cDNA,再進一步合成用Cyanine-3-CTP(Cy3)標記的cRNA。標記好的cRNA和芯片雜交,洗脫后利用Agilent Scanner G2505C(Agilent Technologies)掃描得到原始圖像提取原始數據。利用Genesrping軟件(Version 12.5;Agilent Technologies)進行Quantile標準化和后續處理。標準化后的數據進行過濾,在用于比較的每組樣本中至少有1組100%標記為Detected的探針留下進行后續分析。應用t檢驗的P值和倍數變化值進行差異基因篩選,篩選的標準為上調或者下調倍數變化值≥2.0且P≤0.05。接著,對差異基因進行GO和KEGG富集分析,以判定差異基因主要影響的生物學功能或者通路。
3差異表達基因的實時熒光定量PCR驗證 選取A、B兩組共6個樣本并挑選共同表達差異的基因進行驗證,以GAPDH為內參照,引物參照GenBank數據庫基因序列進行設計。Aqp4引物序列,上游引物:TTAATGAAGTGCATAGTGCCG;下游引物:GCATTGTTTCATGGCTCG,擴增產物約為117 bp。內參GAPDH引物序列,上游引物:CTTTGGCATTGTGGAAGGGC;下游引物:CAGGG ATGATGTTCTGGGCA,擴增產物約為125 bp。提取A組和B組總RNA,利用NanoDrop 2000分光光度計(Thermo Scientific,USA)測定濃度及OD260/ OD280,瓊脂糖凝膠電泳檢測RNA完整性,利用PrimerScript RT reagent Kit(TaKaRa,Japan)將待測RNA逆轉錄成cDNA。利用LightCycler 480 SYBR Green I Master試劑盒(Roche,Swiss),采用10 μl體系在LightCycler 480Ⅱ型熒光定量PCR儀(Roche,Swiss)上進行反應。反應條件:95℃變性10 min,退火10 s,60℃延伸30 s。40個循環結束后利用熔解曲線檢測產物特異性:從60℃緩慢升溫至97℃,每攝氏度采集5次熒光信號。分析擴增曲線,采用2-ΔΔCt法計算靶基因mRNA經內參GAPDH標準化后的相對水平。
4間接免疫熒光法檢測兩組AQP4蛋白的表達量將鼠海馬組織在液氮中快速冷凍并制成4 μm的切片。應用0.5% Trion-100處理4 min,浸入在10%的甲醛中固定4 min,PBS沖洗。并在10%的常規血清中封閉1 h。加入一抗(AQP-4,sc-32739,Santa Cruz Biotechnology)室溫孵育1 h,PBS沖洗3次后,加入FITC抗兔IgG (Southern Biotechnology Associates,Inc)(用PBS和1% BSA稀釋為1∶200)避光室溫孵育30 min,PBS沖洗后在熒光顯微鏡下應用Zeiss Axiovision軟件(Zeiss,Thornwood,NY,USA)觀察并拍照。
5統計學分析 應用SPSS16.0軟件進行數據處理,數據以表示,兩組均數之間比較應用t檢驗,檢驗水準a=0.05。
1基因表達譜概況 經Agilent Bioanalyzer 2100 (Agilent Technologies)檢測RNA完整性符合標準(圖1)。利用t檢驗分析出兩組樣本間差異表達的基因后,以Log2(fold change)為橫坐標,以t檢驗顯著性檢驗P值的負對數-Log10(P-value)為縱坐標,得火山圖(圖2)。B組與A組兩組篩選出基因表達差異在2倍以上的有804個,其中表達上調的有521個,表達下調的有283個。
2與AD密切相關的差異基因篩選 在GeneBank上查找差異基因中相關的生物學功能或通路,找到與AD密切相關基因有6條:Herc6、Lyst、Nkain1、Aqp4、Uch13、Slc9a8。見表1。
3差異表達基因的實時熒光定量PCR驗證 篩選出與AD密切相關的6條差異表達基因中差異倍數最高的Aqp4基因進行定量PCR檢測。結果發現,SAMP8小鼠組Aqp4基因表達量較SAMR1小鼠組上升(P=0.037 6)。與基因表達譜結果相比,具有相同的方向性,并且數據結果十分接近。見圖3。
4免疫熒光檢測 結果顯示,AQP4蛋白被FITC標記,表達為綠色熒光。圖4可見,實驗組即SAMP8組鼠內囊組織較對照組綠色熒光的表達增多,同時在SAMP8組鼠的海馬組織內也可見大量綠色熒光的表達。

表1 SAMP8與SAMR1組差異基因Tab. 1 Differential genes of SAMP8 and SAMR1

圖 1 SAMP8與SAMR1總RNA樣品電泳圖。 A1、A2和A3為SAMR1小鼠組隨機挑選出的3組總RNA樣品,B1、B2和B3為SAMP8小鼠組隨機挑選出的3組樣品Fig. 1 Electrophoregram of total RNA samples of SAMP8 and SAMR1. A1, A2 and A3 were three groups of total RNA samples that were randomly selected from SAMR1 rats. B1, B2 and B3 were three groups of total RNA samples that were randomly selected from SAMP8 rats

圖 2 SAMP8與SAMR1差異基因篩選火山圖(黑色部分即為差異基因即≥2倍變化且P<0.05)Fig. 2 Volcano plot of differential gene screening between SAMP8 and SAMR1 (The black part is the differential genes whose fold change≥2 times with P< 0.05)


圖 3 RT-PCR檢測AQP4 mRNA的相對表達量結果。 RT-PCR擴增Aqp4的擴增曲線(a)、溶解曲線(b);擴增GAPDH的擴增曲線(c),其溶解曲線(d);統計圖(e) (A: SAMR1組; B: SAMP8組; aP<0.05) Fig. 3 RT-PCR assay showing the relative expression of AQP4 mRNA. The amplification curve (a) and dissolve curve (b) of Aqp4 by RT-PCR; The amplification curve (c) and dissolution curve (d) of GAPDH; Statistical chart (e) [SAMR1 group (A) and SAMP8 group (B); aP<0.05]


圖 4 免疫熒光檢測AQP4蛋白的表達 A:對照組SAMR1小鼠內囊(×10); B:SAMP8小鼠內囊(×10); C:SAMP8組鼠海馬(×10); D:C圖的部分放大(×20)Fig. 4 Immunofluorescence assay showing expression level of AQP4 in the internal capsule of SAMR1 group (A), the internal capsule of SAMP8 group (B), the hippocampus of SAMP8 group (C) and the amplification results of figure C (D) (×20)
基因芯片技術又稱為DNA微陣列,其高效率、高精度并且能同時分析大量的DNA片段等優勢在生命科學領域的研究中得到了廣泛的應用,其原理就是將大量探針固定于支持物上并與標記后的樣品分子雜交,通過雜交信號強度獲得樣品分子的序列信息。阿爾茨海默病是一種復雜的神經退行性疾病,我們利用阿爾茨海默病替代研究模型SAMP8[6],應用基因芯片技術尋找阿爾茨海默病小鼠海馬中差異表達的基因并挑選差異倍數較高的Aqp4基因進行熒光定量PCR檢測。由結果我們看出,PCR檢測結果與基因芯片檢測結果具有相同的方向性,所以我們認為篩選的結果是可信的。
Aqp4基因編碼水通道蛋白4,AQP4是水通道蛋白的一種并首先由Jung等學者在大鼠的肺部分離出來[7],廣泛存在于哺乳動物的腦、脊髓、視網膜和骨骼肌等容易興奮的組織中。AQP4在中樞神經系統中主要存在于星形膠質細胞,并在腦室脈絡叢上皮細胞和室管膜細胞也有分布,其在腦中表現的功能較為復雜[8-10]。最新研究認為,AQP4與阿爾茨海默病、帕金森病的發生與進展密切相關[11-12]。據此,我們利用熒光免疫技術檢測快速衰老癡呆模型小鼠腦切片,發現AQP4在內囊組織和海馬組織的表達較對照組增多,AQP4的高表達在神經元變性疾病的過程中扮演重要角色。有學者認為,腦中的β-淀粉樣蛋白和Tau纏結等“垃圾蛋白”的清除依賴類淋巴途徑,即類似于身體的淋巴循環系統,腦脊液和組織間液中流動的類淋巴液推動神經元代謝所產生的廢物進入靜脈旁間隙,使類淋巴液直接匯入淋巴管進入體循環,最終在腎和肝內清除[13-14]。AQP4蛋白則存在于由星形膠質細胞圍繞構成的腦血管外壁上,促進CSF和ISF的流動,在類淋巴途徑的循環中起到重要的作用[4,15]。人為地減少實驗動物腦中星形膠質細胞上的AQP4表達能夠使類淋巴循環速率延緩70%左右,同時,熒光示蹤顯示Aβ的清除率也隨之降低[16-17]。
國外研究表明,AQP4蛋白通過增加水的流量來增大細胞的體積和容積,進而增加膠質細胞的遷移速率[18-19]。研究發現,與抗快速老化模型SAMR1小鼠組相比,SAMP8癡呆小鼠組中Aqp4基因的表達量增高。同時,免疫熒光的結果與基因篩選和RT-PCR結果具有一致性。因此,我們推測快速老化模型小鼠AQP4的高表達為代償性表達增高,試圖通過改變血管外壁星形膠質細胞體積和形態的同時增加細胞對水的通透作用來增加類淋巴循環,進而清除腦內Aβ蛋白和Tau纏結等“垃圾蛋白”,但是,其表達是否在病程的不同發展階段發生動態變化及其相關的具體機制還需要進一步的探究。
1 Li J, Jin Y, Shi Y, et al. Voxelwise spectral diffusional connectivity and its applications to Alzheimer’s disease and intelligence prediction[J]. Med Image Comput Comput Assist Interv, 2013, 16(Pt 1): 655-662.
2 Brundel M, De Bresser J, Van Dillen JJ, et al. Cerebral microinfarcts: a systematic review of neuropathological studies[J]. J Cereb Blood Flow Metab, 2012, 32(3):425-436.
3 Owler BK, Pitham T, Wang D. Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus[J]. Cerebrospinal Fluid Res, 2010, 7:15.
4 Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β[J]. Sci Transl Med,2012, 4(147):147ra111.
5 Amiry-Moghaddam M, Frydenlund DS, Ottersen OP. Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport[J]. Neuroscience, 2004, 129(4): 999-1010.
6 Fang B, Jia L, Jia J. Chinese Presenilin-1 V97L mutation enhanced Abeta42 levels in SH-SY5Y neuroblastoma cells[J]. Neurosci Lett, 2006, 406(1-2):33-37.
7 Mathew LG, Campbell EM, Yool AJ, et al. Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci[J]. Insect Biochem Mol Biol, 2011, 41(3):178-190.
8 Benfenati V, Ferroni S. Water transport between CNS compartments:functional and molecular interactions between aquaporins and ion channels[J]. Neuroscience, 2010, 168(4):926-940.
9 Jin BJ, Zhang H, Binder DK, et al. Aquaporin-4-dependent K(+)and water transport modeled in brain extracellular space following neuroexcitation[J]. J Gen Physiol, 2013, 141(1):119-132.
10 Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, et al. Glialconditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet[J]. Proc Natl Acad Sci U S A, 2011, 108(43):17815-17820.
11 Fang B, Wang D, Huang M, et al. Hypothesis on the relationship between the change in intracellular pH and incidence of sporadic Alzheimer’s disease or vascular dementia[J]. Int J Neurosci,2010, 120(9):591-595.
12 Yarchoan M, Xie SX, Kling MA, et al. Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias[J]. Brain, 2012, 135(Pt 12):3749-3756.
13 Eberhardt C, Amann B, Feuchtinger A, et al. Differential expression of inwardly rectifying K+ channels and aquaporins 4 and 5 in autoimmune uveitis indicates misbalance in Müller glial celldependent ion and water homeostasis[J]. Glia, 2011, 59(5):697-707.
14 Iliff JJ, Wang M, Zeppenfeld DM, et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain[J]. J Neurosci, 2013, 33(46): 18190-18199.
15 Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain[J]. Science, 2013, 342(6156):373-377.
16 Nedergaard M. Garbage truck of the brain[J]. Science, 2013, 340(6140): 1529-1530.
17 Yang L, Kress BT, Weber HJ, et al. Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer[J]. J Transl Med, 2013, 11:107.
18 Nagae T, Miyake S, Kosaki S, et al. Identification and characterisation of a functional aquaporin water channel (Anomala cuprea DRIP) in a coleopteran insect[J]. J Exp Biol, 2013, 216(Pt 14):2564-2572.
19 Auguste KI, Jin S, Uchida K, et al. Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury[J]. FASEB J, 2007, 21(1):108-116.
Correlation between gene expression of aquaporin 4 and Alzheimer's disease in animal experiment
ZHOU Mingyue1, WANG Keyi2, ZHANG Yanming1, ZHAO Yun1, WEN Hongfeng3, MENG Fanlei4, FANG Boyan3
1The Graduate Student Training Base-Aerospace Center Hospital of Liaoning Medical College, Beijing 100049, China;2Beijing Aerospace Center Hospital, Beijing 100049, China;3Department of Neurology, Beijing Aerospace Center Hospital, Beijing 100049, China;4Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
FANG Boyan. Email: fangboyanv@163.com
ObjectiveTo explore the correlation between aquaporin 4 (AQP4) and Alzheimer's disease (AD).MethodsAgilent expression profile chip was used to screen the gene expression differences through the comparison between SAMP8 and SAMR1 after total RNA of brain tissue being extracted out, then Real-Time PCR technology and indirect immunofluorescence assay were applied for identification.ResultsTotally 804 genes related to dementia were selected, among which the number of up-regulated genes was 521 and down-regulated genes was 283. The biological function and pathways of the related genes were searched in GeneBank, then six genes were found to be closely related to AD: Herc6, Lyst, Nkain1, Aqp4, Uch13, Slc9a8. The fold change of Aqp4 was 6.26 with P<0.001. The Real-time PCR of the Aqp4 gene showed that the expression quantity in SAMP8 group was higher than that in SAMR1 group (P= 0.037 6), and the immunofluorescence assay showed that the expression of Aqp4 in SAMP8 also increased.ConclusionIncreased Aqp4 expression is related to the increased need for Aβ clearance in SAMP8 rats which has astrocytes compensatory proliferation.
Alzheimer's disease; gene microarray; aquaporin 4
R 749.16
A
2095-5227(2015)05-0482-05
10.3969/j.issn.2095-5227.2015.05.020
時間:2015-03-03 09:58
http://www.cnki.net/kcms/detail/11.3275.R.20150303.0958.002.html
2014-12-04
國家自然科學基金項目(81100962)
Supported by the National Natural Science Foundation of China(81100962)
周明月,女,在讀碩士。研究方向:神經變性病的基礎與臨床。Email: 1135957366@qq.com
方伯言,博士,碩士生導師。Email: fangboyanv@163.com