999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Rem arkson Liouville Type Resu lt for the 3D Hall-M HD System

2015-03-29 08:26:26ZHANGZujinYANGXianandQIUShulinSchoolofMathematicsandComputerSciencesGannanNormalUniversity

ZHANG Zu jin,YANG Xianand QIU Shu linSchoolofMathematicsand ComputerSciences,Gannan NormalUniversity,

Ganzhou 341000,China.

2Foreign LanguageDepartment,Ganzhou TeachersCollege,Ganzhou 341000,China. Received 17M ay 2015;Accep ted 31 Ju ly 2015

Rem arkson Liouville Type Resu lt for the 3D Hall-M HD System

ZHANG Zu jin1,?,YANG Xian2and QIU Shu lin11SchoolofMathematicsand ComputerSciences,Gannan NormalUniversity,

Ganzhou 341000,China.

2Foreign LanguageDepartment,Ganzhou TeachersCollege,Ganzhou 341000,China. Received 17M ay 2015;Accep ted 31 Ju ly 2015

.In this paper,w e consider the 3D Hall-M HD system,and p rovide an imp roved Liouv ille type resu lt for its stationary version.

Hall-MHD system;Liouville theorem.

1 In troduction

This paper concerns itselfw ith the th ree-d im ensional(3D)Hall-m agnetohyd rodynam ics system(Hall-MHD):

w here u is fl uid velocity field,B is them agnetic field,and π is a scalar p ressu re.We p rescribe the initialdata to satisfy the cond ition

The fi rst system atic study of the Hall-MHD system is p ioneered by Ligh thill[1]follow ed by Cam pos[2].Com paring w ith the usualMHD equations,the Hall-MHD systemhas the Hall term ?×[(? × B)× B]in(1.1)3,w hichm ay becom e signifi cant for such p roblem s asm agnetic reconnection in geo-dynam o[3],star form ation[4,5],neu tron stars[6] and space p lasm as[7,8].

Mathem atically,the Hall-MHD system can be derived from either tw o-fl uids or kineticm odels(see[3]),and the global existence of w eak solu tions,local existence and uniquenessof sm ooth solu tions,blow-up criteria and sm alldata globalexistenceof classical so lu tions w ere established in[9,10].For the fractional Hall-M HD,the reader is referred to[11].

The stationary version of(1.1)is

And in[9],theauthorsestablished the follow ing Liouville type theorem.

Theorem 1.1.([9])Let u,B be C2(R3)solutions to(1.3)satisfying

Then wehave u=B=0.

It isnotnatu ral to assum e that theboundednessof the solu tion u,B(see[12,13]),and the aim of this paper is to im proving Theorem 1.1 as

Theorem 1.2.Let u,B be C2(R3)solutions to(1.3)satisfying

Then wehave u=B=0.

2 Proof of Theorem 1.2

In th is section,w e shall p rove Theorem 1.2.

We fi rst derive an estim ate o f the p ressure.Taking the d ivergence o f(1.3)1,and using the vector iden tity

w e obtain

Classical ellip tic regu larity resu lts then yields

and 0 ≤ σ(|x|)≤ 1 for 1 < |x|< 2.For each R > 0,define σR(x)= σ(|x|/R),x ∈ R3.

Taking the inner p roduct of(1.3)1w ith uσR,(1.3)3w ith BσRin L2(R3),add ing the resu lting equations together,and in tegrating by parts,w e obtain

Now,consider a standard rad ial cu t-off function σ ∈ Cc∞(R3)such that

We successively estim ate Iifor i=1,2,···,7.For I1,H¨older inequality im p lies

For I2,w e invoke(2.1)to deduce

Then for I3,by Sobolev im bedd ing theorem,

The term I4can be sim ilarly estim ated as I1,

Exactly asestim ate for I3,w em ay dom inate I5,

Finally,w em ay bound I6and I7sim ultaneously as

Therefore,passing R → ∞ in(2.2),w e get

Levi’sm onotone convergence theorem then yields

Consequen tly,u,B are constantvector,and both are zero due to the fact that u,B∈ L92(R3).

The p roo f of Theorem 1.2 is com p lete.

A cknow ledgem en ts

Thisw orkw as partially supported by the Natu ral Science Foundation of JiangxiProvince (20151BAB201010).

[1]Lighthill M.J.,Studies on m agneto-hyd rodynam ic w aves and other anisotrop ic w avem otions.Philos.Trans.R.Soc.Lond.Ser.A,252(1960),397-430.

[2]Cam pos L.M.B.C.,On hyd rom agnetic w aves in atm ospheres w ith ap p lication to the sun. Theor.Comput.Fluid Dyn.,10(1998),37-70.

[3]Acheritogaray M.,Degond P.,Frouvelle A.,Liu J.G.,Kinetic form u lation and global existence for the Hall-M agento-hyd rodynm ics system s.Kinet.Relat.M odels,4(2011),901-918.

[4]Balbus S.A.,Terquem C.,Linear analysiso f the halleffect in p rotosteller disks.Astrophys.J., 552(2001),235-247.

[5]Ward leM.,Star form ation and the Halleffect.Astrophys.SpaceSci.,292(2004),317-323.

[6]Shalybkov D.A.,Urp in V.A.,The Halleffectand the decay ofm agnetic fields.Astron.Astrophys.,321(1997),685-690.

[7]Fo rbes T.G.,M agnetic reconnection in solar fl ares.Geophys.Astrophys.Fluid Dyn.,62(1991), 15-36.

[8]Hom ann H.,Grauer R.,Bifurcation analysiso fm agnetic reconnection in Hall-MHD sytsem s. Phys.D,208(2005),59-72.

[9]Chae D.,Degond P.,Liu J.G.,Well-posedness for Hall-m agnetohyd rodynam ics.Ann.I.H. Poincar′e-AN,31(2014),555-565.

[10]Chae D.,Lee J.,On the blow-up criterion and sm all data g lobal existence for the Hallm agnetohyd rodynam ics.J.D ifferential Equations,256(2014),3835-3858.

[11]Chae D.,Wu J.H.,Localw ell-posedness for the Hall-MHD equationsw ith fractionalm agnetic d iffusion.subm itted for publication.A lso posted in arXiv:1404.0486[m ath.AP]2 Ap r 2014.

[12]Chae D.,Rem arkson the Liouv ille type resu lts for the com p ressible N av ier-Stokesequations in RN.Nonlinearity,25(2012),1345-1349.

[13]LiD.,Yu X.W.,On som e Liouville type theorem s for the com p ressib le Navier-Stokesequations.Discrete Contin.Dyn.Syst.,34(2014),4719-4733.

[14]Beir?ao da Veiga H.,A new regu larity class for the Navier-Stokes equations in Rn.Chinese Ann.M ath.Ser.B,16(1995),407-412.

[15]Berselli L.C.,On a regu larity criterion for the 3D Navier-Stokesequations.Differential IntegralEquations,15(2002),1129-1137.

[16]Duan H.L.,On regu larity criteria in term s of p ressure for the 3D viscous MHD equations. Appl.Anal.,91(2012),947-952.

[17]Eskau riaza L.,Ser¨egin G.A., ˇSver′ak V.,L3,∞-so lu tions of Nav ier-Stokesequations and backw ard uniqueness.Russ.M ath.Surv.,58(2003),no.2,211-250.

[18]He C.,Xin Z.P.,On the regu larity ofw eak solu tionsto them agnetohyd rod ynam ic equations. J.Differential Equations,213(2005,235-254.

[19]Kato T.,PonceG.,Comm utator estim atesand the Eu ler and Navier-Stokesequations.Comm. PureAppl.Math.,41(1988),891-907.

[20]M inini P.D.,G ′om ez D.O.,M ahajan S.M.,Dynam o action in m agnetohyd rodynam ics and Hallm agnetohyd rodynam ics.Astrophys.,587(2003),472-481.

[21]ProdiG.,Un teorem a d iunicit′a per le equazionid iNavier-Stokes.Ann.Mat.Pura Appl.,48 (1959),173-182.

[22]Serrin J.,On the interior regu larity o fw eak solutions of the Navier-Stokesequations.Arch. RationalM ech.Anal.,9(1962),187-195.

[23]Zhou Y.,On regu larity criteria in term s o f p ressu re for the Nav ier-Stokes equations in R3. Proc.Amer.M ath.Soc.,134(2006),149-156.

[24]Zhou Y.,Rem aks on regu larities for the 3D MHD equations.Discrete Contin.Dyn.Syst.,12 (2005),881-886.

?Correspond ing au thor.Emailaddresses:zhangzuj in361@163.com(Z.J.Zhang),yangxianxisu@163.com(X. Yang),qiushul in2003@163.com(S.L.Q iu)

AM SSub ject Classifi cations:35Q35,35B65

Chinese Library Classifi cations:O 175.29,O175.28

主站蜘蛛池模板: 日韩国产无码一区| 欧美在线免费| 国产亚洲精品va在线| 99热这里只有精品在线播放| 伊人色婷婷| 免费国产高清精品一区在线| 91成人免费观看| 欧美日韩综合网| 亚洲日韩精品伊甸| 亚洲第七页| 国产粉嫩粉嫩的18在线播放91| 国产亚洲精品97在线观看| 亚洲欧美不卡| 色男人的天堂久久综合| 毛片大全免费观看| 97在线公开视频| 亚洲第一精品福利| 国产精品欧美亚洲韩国日本不卡| 欧美一级高清视频在线播放| 91久久精品日日躁夜夜躁欧美| 国产精品伦视频观看免费| 色综合久久88色综合天天提莫| 一级全黄毛片| 亚洲国产欧美国产综合久久 | 久久国产精品麻豆系列| 91久久青青草原精品国产| 亚洲大尺码专区影院| 亚洲精品你懂的| 波多野吉衣一区二区三区av| 91精品人妻互换| 亚洲IV视频免费在线光看| 欧美黄色网站在线看| 波多野结衣在线一区二区| 在线视频亚洲欧美| 国产成人高清亚洲一区久久| 国内精品久久久久鸭| 欧美无专区| 九九免费观看全部免费视频| 狠狠色丁香婷婷| 国产精品欧美日本韩免费一区二区三区不卡 | 欧洲精品视频在线观看| 国产精品高清国产三级囯产AV| 中文字幕在线免费看| 伊人激情综合网| 青青草原偷拍视频| 亚洲国产成人自拍| 精久久久久无码区中文字幕| 日韩毛片视频| 亚洲人成成无码网WWW| 色欲综合久久中文字幕网| 国产精品亚欧美一区二区三区 | 制服丝袜无码每日更新| 国产精品视频久| 99久久免费精品特色大片| 国产成人亚洲欧美激情| 中文天堂在线视频| 国产熟睡乱子伦视频网站| 欧美一区二区福利视频| 伊伊人成亚洲综合人网7777| 成人字幕网视频在线观看| 亚洲国产日韩在线成人蜜芽| 99久久国产综合精品2023| 欧美午夜在线视频| 亚洲国产在一区二区三区| 欧美成人一区午夜福利在线| 欧美色综合网站| 国产亚洲欧美在线人成aaaa| 丁香六月激情婷婷| 亚洲无码A视频在线| 九九九国产| 国产精品成人不卡在线观看| 精品自窥自偷在线看| 欧美激情视频二区| 久一在线视频| 亚洲成人网在线观看| 成人免费一级片| 免费精品一区二区h| 在线国产欧美| 久久狠狠色噜噜狠狠狠狠97视色| 久久亚洲中文字幕精品一区 | 天天色天天综合| 色老头综合网|