ZHANG Zu jin,YANG Xianand QIU Shu linSchoolofMathematicsand ComputerSciences,Gannan NormalUniversity,
Ganzhou 341000,China.
2Foreign LanguageDepartment,Ganzhou TeachersCollege,Ganzhou 341000,China. Received 17M ay 2015;Accep ted 31 Ju ly 2015
Rem arkson Liouville Type Resu lt for the 3D Hall-M HD System
ZHANG Zu jin1,?,YANG Xian2and QIU Shu lin11SchoolofMathematicsand ComputerSciences,Gannan NormalUniversity,
Ganzhou 341000,China.
2Foreign LanguageDepartment,Ganzhou TeachersCollege,Ganzhou 341000,China. Received 17M ay 2015;Accep ted 31 Ju ly 2015
.In this paper,w e consider the 3D Hall-M HD system,and p rovide an imp roved Liouv ille type resu lt for its stationary version.
Hall-MHD system;Liouville theorem.
This paper concerns itselfw ith the th ree-d im ensional(3D)Hall-m agnetohyd rodynam ics system(Hall-MHD):

w here u is fl uid velocity field,B is them agnetic field,and π is a scalar p ressu re.We p rescribe the initialdata to satisfy the cond ition

The fi rst system atic study of the Hall-MHD system is p ioneered by Ligh thill[1]follow ed by Cam pos[2].Com paring w ith the usualMHD equations,the Hall-MHD systemhas the Hall term ?×[(? × B)× B]in(1.1)3,w hichm ay becom e signifi cant for such p roblem s asm agnetic reconnection in geo-dynam o[3],star form ation[4,5],neu tron stars[6] and space p lasm as[7,8].
Mathem atically,the Hall-MHD system can be derived from either tw o-fl uids or kineticm odels(see[3]),and the global existence of w eak solu tions,local existence and uniquenessof sm ooth solu tions,blow-up criteria and sm alldata globalexistenceof classical so lu tions w ere established in[9,10].For the fractional Hall-M HD,the reader is referred to[11].
The stationary version of(1.1)is

And in[9],theauthorsestablished the follow ing Liouville type theorem.
Theorem 1.1.([9])Let u,B be C2(R3)solutions to(1.3)satisfying

Then wehave u=B=0.
It isnotnatu ral to assum e that theboundednessof the solu tion u,B(see[12,13]),and the aim of this paper is to im proving Theorem 1.1 as
Theorem 1.2.Let u,B be C2(R3)solutions to(1.3)satisfying

Then wehave u=B=0.
In th is section,w e shall p rove Theorem 1.2.
We fi rst derive an estim ate o f the p ressure.Taking the d ivergence o f(1.3)1,and using the vector iden tity

w e obtain

Classical ellip tic regu larity resu lts then yields


and 0 ≤ σ(|x|)≤ 1 for 1 < |x|< 2.For each R > 0,define σR(x)= σ(|x|/R),x ∈ R3.
Taking the inner p roduct of(1.3)1w ith uσR,(1.3)3w ith BσRin L2(R3),add ing the resu lting equations together,and in tegrating by parts,w e obtain

Now,consider a standard rad ial cu t-off function σ ∈ Cc∞(R3)such that
We successively estim ate Iifor i=1,2,···,7.For I1,H¨older inequality im p lies

For I2,w e invoke(2.1)to deduce

Then for I3,by Sobolev im bedd ing theorem,

The term I4can be sim ilarly estim ated as I1,


Exactly asestim ate for I3,w em ay dom inate I5,

Finally,w em ay bound I6and I7sim ultaneously as

Therefore,passing R → ∞ in(2.2),w e get

Levi’sm onotone convergence theorem then yields

Consequen tly,u,B are constantvector,and both are zero due to the fact that u,B∈ L92(R3).
The p roo f of Theorem 1.2 is com p lete.
Thisw orkw as partially supported by the Natu ral Science Foundation of JiangxiProvince (20151BAB201010).
[1]Lighthill M.J.,Studies on m agneto-hyd rodynam ic w aves and other anisotrop ic w avem otions.Philos.Trans.R.Soc.Lond.Ser.A,252(1960),397-430.
[2]Cam pos L.M.B.C.,On hyd rom agnetic w aves in atm ospheres w ith ap p lication to the sun. Theor.Comput.Fluid Dyn.,10(1998),37-70.
[3]Acheritogaray M.,Degond P.,Frouvelle A.,Liu J.G.,Kinetic form u lation and global existence for the Hall-M agento-hyd rodynm ics system s.Kinet.Relat.M odels,4(2011),901-918.
[4]Balbus S.A.,Terquem C.,Linear analysiso f the halleffect in p rotosteller disks.Astrophys.J., 552(2001),235-247.
[5]Ward leM.,Star form ation and the Halleffect.Astrophys.SpaceSci.,292(2004),317-323.
[6]Shalybkov D.A.,Urp in V.A.,The Halleffectand the decay ofm agnetic fields.Astron.Astrophys.,321(1997),685-690.
[7]Fo rbes T.G.,M agnetic reconnection in solar fl ares.Geophys.Astrophys.Fluid Dyn.,62(1991), 15-36.
[8]Hom ann H.,Grauer R.,Bifurcation analysiso fm agnetic reconnection in Hall-MHD sytsem s. Phys.D,208(2005),59-72.
[9]Chae D.,Degond P.,Liu J.G.,Well-posedness for Hall-m agnetohyd rodynam ics.Ann.I.H. Poincar′e-AN,31(2014),555-565.
[10]Chae D.,Lee J.,On the blow-up criterion and sm all data g lobal existence for the Hallm agnetohyd rodynam ics.J.D ifferential Equations,256(2014),3835-3858.
[11]Chae D.,Wu J.H.,Localw ell-posedness for the Hall-MHD equationsw ith fractionalm agnetic d iffusion.subm itted for publication.A lso posted in arXiv:1404.0486[m ath.AP]2 Ap r 2014.
[12]Chae D.,Rem arkson the Liouv ille type resu lts for the com p ressible N av ier-Stokesequations in RN.Nonlinearity,25(2012),1345-1349.
[13]LiD.,Yu X.W.,On som e Liouville type theorem s for the com p ressib le Navier-Stokesequations.Discrete Contin.Dyn.Syst.,34(2014),4719-4733.
[14]Beir?ao da Veiga H.,A new regu larity class for the Navier-Stokes equations in Rn.Chinese Ann.M ath.Ser.B,16(1995),407-412.
[15]Berselli L.C.,On a regu larity criterion for the 3D Navier-Stokesequations.Differential IntegralEquations,15(2002),1129-1137.
[16]Duan H.L.,On regu larity criteria in term s of p ressure for the 3D viscous MHD equations. Appl.Anal.,91(2012),947-952.
[17]Eskau riaza L.,Ser¨egin G.A., ˇSver′ak V.,L3,∞-so lu tions of Nav ier-Stokesequations and backw ard uniqueness.Russ.M ath.Surv.,58(2003),no.2,211-250.
[18]He C.,Xin Z.P.,On the regu larity ofw eak solu tionsto them agnetohyd rod ynam ic equations. J.Differential Equations,213(2005,235-254.
[19]Kato T.,PonceG.,Comm utator estim atesand the Eu ler and Navier-Stokesequations.Comm. PureAppl.Math.,41(1988),891-907.
[20]M inini P.D.,G ′om ez D.O.,M ahajan S.M.,Dynam o action in m agnetohyd rodynam ics and Hallm agnetohyd rodynam ics.Astrophys.,587(2003),472-481.
[21]ProdiG.,Un teorem a d iunicit′a per le equazionid iNavier-Stokes.Ann.Mat.Pura Appl.,48 (1959),173-182.
[22]Serrin J.,On the interior regu larity o fw eak solutions of the Navier-Stokesequations.Arch. RationalM ech.Anal.,9(1962),187-195.
[23]Zhou Y.,On regu larity criteria in term s o f p ressu re for the Nav ier-Stokes equations in R3. Proc.Amer.M ath.Soc.,134(2006),149-156.
[24]Zhou Y.,Rem aks on regu larities for the 3D MHD equations.Discrete Contin.Dyn.Syst.,12 (2005),881-886.
?Correspond ing au thor.Emailaddresses:zhangzuj in361@163.com(Z.J.Zhang),yangxianxisu@163.com(X. Yang),qiushul in2003@163.com(S.L.Q iu)
AM SSub ject Classifi cations:35Q35,35B65
Chinese Library Classifi cations:O 175.29,O175.28
Journal of Partial Differential Equations2015年3期