999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Maximum Likelihood Grid Search Based Weighted Cost Function Localization of TDOA and FDOA*

2015-02-28 17:36:44TONGJuanjuanCHENXiaohuiSHUFengLIJunWANGJianxinLUJinhui
電子器件 2015年1期
關鍵詞:南京方向

TONG Juanjuan,CHEN Xiaohui,SHU Feng,2,3* ,LI Jun,WANG Jianxin,LU Jinhui

(1.School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;2.National Mobile Communications Research Laboratory,Southeast University,Nanjing 210096,China;3.Ministerial Key Laboratory of JGMT,Nanjing University of Science and Technology,Nanjing 210094,China)

Passive source localization plays an extremely important role in many applications such as radar,sensor networks,navigation,microphone arrays,wireless communications,and tracking of acoustic sources[1-10].In the past decades,various methods were developed for localization as follows:least squares(LS)[2-3],spherical intersection[4],plane intersection[5],particle filtering[6]and Hough Transform[7].Recently,the received signal strength measured at different sensors is also used to estimate a source position[8-9].In Ref.[10 -11],semidefinite programming based on time difference of arrival(TDOA)is used to estimate sensor location in wireless sensor networks.In Ref.[12],authors considered recursive tracking of one mobile emitter using a sequence of TDOA and frequency difference of arrival(FDOA)measurement pairs obtained by one pair of sensors.However,TDOA or FDOA usually involves several remote sensors,which require precise timesynchronization and frequency-locking among them.In Ref.[13],authors proposed a maximum likelihood(ML)estimation approach using only two sensors,without any synchronization or locking.In Ref.[14],authors derived a“conditional”(or a“signal-specific”)Cramer-Rao bound,modeling the signal as a deterministicunknown. Furthermore,a cooperation method is proposed to track the position of a moving target with high accuracy,and to reduce the energy consumption and signaling overhead via node selection[15]. In Ref.[1 ],maximum ratiocombining(MRC)was used to combine two independent passive source solutions from the TDOA maximum likelihood grid search(MLGS)and the frequency difference of arrival(FDOA)MLGS,resulting in better performance than TDOA MLGS or FDOA MLGS alone.Unfortunately,its complexity is high for practical applications.Thus,a lower-complexity approach achieving the joint Cramer-Rao Lower Bound(CRLB)is highly desirable.

1 System Model and CRLB

CRLB can be used to evaluate the error bound that optimal unbiased estimator can achieve.The covariance matrix of CRLB with the parameter vector of constrained unbiased estimation is as follows:

where Jis Fisher information matrix,Fis the gradient matrix of unknown parameters for constraints

In the unconstrained case,the CRLB covariance matrix is equal to J-1.The Fisher information matrix is as follows:

2 Proposed Weighted ML Grid Search

To reduce computational complexity of MRC,a weighted joint localization of TDOA and FDOA,called weighted ML Grid Search(WMLGS),is proposed.

2.1 Determining Local Search Space(LSS)

To observe the property of error function,we define the following localization errorsurface of TDOA as wherer0=[x0,y0,z0]is the exact position of passive source andr=[x,y,z]is the estimated position.The above error function is helpful to determine the local search space in which the error function is convex.In the same manner,the FDOA error function is given by

Table 1 Satellite Parameters

Fig.1 plots the 3D error surface for TDOA with satellite parameters as listed in Table 1.In the figures,the errorfunction from TDOA is convex within[(-0.5°,0.5°)(129.5°,130.5°)].

This means the LSS of TDOA below will be chosen to lie in this region.

Fig.1 Position error surface from TDOA

Fig.2 Position error surface from FDOA

Fig.2 plots the 3D error surface for FDOA with satellite parameters as listed in Table 1.In the figures,the error function from FDOA is convex within[(-4.9°,5.1°)(129.9°,130.1°)].

This means the LSS of FDOA will also be chosen to lie in this region in the following.

2.2Proposed WMLGS

To achieve the joint CRLB of TDOA and FDOA,a five-step localization is devised as follows:(1)One algorithm in Ref.[2-6]is first adopted to make a coarse estimation of the passive source position as ras;(2)A small LSS around rasis constructed with each dimension divided to N equally-spaced intervals per dimension;(3)The proposed WMLGS is given as

(4)Setras=rwand construct a smaller LSS as in(2)with each dimension search interval being half that of the previous LSS and being equally divided into N intervals.(5)Repeat step(3)and step(4)until convergence.The process above becomes TDOA MLGS forgf(ras)=0 in Eq.(22)whereas it degenerates towards FDOA MLGS forgt(ras)=0 in Eq.(22).From Eq.(23)and Eq.(24),the smaller position estimation error of TDOA and FDOA will be heavily weighted in Eq.(22).Essentially,the MRC of the objective functions of TDOA and FDOA is replaced by the MRC of the TDOA and FDOA position solutions in Ref.[1].That is,it needs one MLGS not two ones in Ref.[11].Its complexity isO{(N+1)dlog2[R/(Δr(N+1)d)]}float point operations where Δris the predefined position precision andRis the diameter of initial LSS.Thus,its search complexity is almost half that of this method in Ref.[1].

3 Simulation Results

In our simulation,Mwas chosen to be 4.The passive source has a longitude 132 °W and latitude 2 °N with zero altitude.Earth radius is 6 378 km.The relative speeds,longitudes,latitudes,and altitudes of satellites to Earth are listed Table 1.

In Fig.3,the root mean squared error(RMSE)of source position estimation is plotted versus the TDOA measurementerror(TDOAME)fortheproposed WMLGS,MRC in Ref.[1],and the TDOA and FDOA MLGS with FDOA measurement error(FDOAME)being 1 Hz.Like MRC,the proposed WMLGS achieves the joint CRLB of TDOA and FDOA for all TDOAMEs.The proposed WMLGS performs slightly better than the MRC,TDOA and FDOA MLGS methods.

Fig.3 RMSE of estimation versus TDOA measurement error

Fig.4 plots the RMSE of the source position estimation versus FDOAME with TDOAME=50 ns.The same trends are seen as in Fig.3 and Fig.4.

Fig.4 RMSE of estimation versus FDOA measurement error

Fig.5 illustrates the running times of the TDOA algorithm,MRC and proposed WMLGS roughly measured by the cputime function in MATLAB.Obviously,the running time of the proposed WMLGS is only half of that of MRC in Ref.[1].

Fig.5 Running Time

4 Conclusions

A weighted MLGS localization method has been proposed to reduce the high computational complexity of existing MRC[1].Simulations show that its performance is very close to the joint CRLB of TDOA and FDOA by using only half of the complexity of the MRC method in Ref.[1].

Acknowledgement

This work was supported in part by the open research fund of National Mobile Communications Research Laboratory,Southeast University(2013D02),the Fundamental Research Funds for the Central Universities(30920130122004),and the National Natural Science Foundation of China(61271230,61472190).

[1]Shu F,Zhu W Q,Lu J H,et al.Maximum Ratio Combining Based Maximum Likelihood TDOA/FDOA Joint Localization[J].Journal of Astronautics,2010,31(4):1143-1148.

[2]Chan Y T,Ho K C.A Simple and Efficient Estimator for Hyperbolic Location[J].IEEE Trans Signal Processing,1994,42(8):1905-1915.

[3]Smiht J O,Abel J S.Closed-Form Least-Square Source Location Estimation from Range-Difference Measurements[J].IEEE Trans on ASSP,1987,35(12):1661-1669.

[4]Shau H C,Robinson A Z.Passive Source Localization Employing Intersecting Spherical Surfaces from Time-of-Arrival Differences[J].IEEE Trans.on ASSP.,1987,35(8):1223-1225.

[5]Schmidt R O.A New Approach to Geometry of Range Difference[J].IEEE Trans Aerosp Electron,1972,8(6):821-835.

[6]Gustafsson F,Gunnarsson F.Positioning Using Time Difference of Arrival Measurements[C]//Proc IEEE Int Conf Acoust,Speech,Signal Process,Hong Kong,China,Apr.2003,6:553-556.

[7]Mikhalev A,Ormondroyd R F.Comparison of Hough Transform and Particle Flter Methods of Emitter Geolocation Using Fusion of TDOA Data[C]//4th Workshop on Positioning,Navigation and Communication 2007(WPNC’07),Hannover,Germany,Mar.2007:121-127.

[8]Sheng X,Hu Y,Hu H.Maximum Likelihood Multiple Source Localization Using Acoustic Energy Measurements with Wireless Sensor Networks[J].IEEE Trans Signal Process,2005,53(1):44-53.

[9]Birchfield S T,Gangishetty R.Acoustic Localization by Interaural Level Difference[C]//Proc IEEE Int Conf Acoust,Speech,Signal Process,Phiadeiphia,Pennsylvania,USA,Mar.2005,4:1109-1112.

[10]Yang K,Wang G,Luo Z.Efficient Convex Relaxation Methods for Robust Target Localization by a Sensor Network Using Time Differences of Arrivals[J].IEEE Transactions on Signal Processing,2009,57(7):2775-2784.

[11]Xu E,Zhi D,Dasgupta S.Robust and Low Complexity Source Localization in Wireless Sensor Networks Using Time Differ ence of Arrival Measurement[C]//IEEE WCNC 2010,Sydney,Australia,Apr.2010:1-5.

[12]Musicki D,Kaune R,Koch W.Mobile Emitter Geolocation and Tracking Using TDOA and FDOA Measurements[J].Signal Processing,IEEE Transactions on,2010,58(3):1863-1874.

[13]Yeredor A.On Passive TDOA and FDOA Localization Using Two Sensors with no Time or Frequency Synchronization[C]//Acoustics,Speech and Signal Processing(ICASSP),2013 IEEE International Conference on IEEE,2013:4066-4070.

[14]Yeredor A,Angel E.Joint TDOA and FDOA Estimation:A Conditional Bound and Its Use for Optimally Weighted Localization[J].Signal Processing,IEEE Transactions on,2011,59(4):1612-1623.

[15]Hadzic S,Yang D,Viola M,et al.Energy Efficient Mobile Tracking in Heterogeneous Networks Using Node Selection[J].EURASIP Journal on Wireless Communications and Networking,2014,2014(1):2.

童娟娟(1989-),女,研究生,研究方向為無線通信(協作多蜂窩無線通信系統預編碼技術)。2012年本科畢業于南京理工大學,碩士期間獲得校優秀研究生和特等獎學金等諸多榮譽稱號;

束 鋒(1973-),男,南京理工大學電子工程與光電技術學院,研究員,博士生導師,主要研究方向為無線通信、雷達信號處理、無線定位技術。發表期刊和會議論文100余篇,其中 SCI/SCIE收錄22篇,EI已收錄60多篇,論文被國內外學者引用291次,申請國家發明專利15項,已和正在主持國家層次項目三項。

猜你喜歡
南京方向
南京比鄰
“南京不會忘記”
環球時報(2022-08-16)2022-08-16 15:13:53
2022年組稿方向
計算機應用(2022年2期)2022-03-01 12:33:42
2022年組稿方向
計算機應用(2022年1期)2022-02-26 06:57:42
2021年組稿方向
計算機應用(2021年4期)2021-04-20 14:06:36
2021年組稿方向
計算機應用(2021年3期)2021-03-18 13:44:48
2021年組稿方向
計算機應用(2021年1期)2021-01-21 03:22:38
南京·九間堂
金色年華(2017年8期)2017-06-21 09:35:27
又是磷復會 又在大南京
南京:誠實書店開張
主站蜘蛛池模板: 爽爽影院十八禁在线观看| 国产精品va| 亚洲伊人天堂| 精品国产美女福到在线直播| 亚洲天堂免费| 天天综合天天综合| 国产性爱网站| 91www在线观看| aⅴ免费在线观看| 成年人国产网站| 亚洲成a人片| 特级aaaaaaaaa毛片免费视频 | 不卡午夜视频| 亚洲日韩AV无码一区二区三区人| 免费A级毛片无码无遮挡| 99er这里只有精品| 国产男女免费视频| 亚洲中文在线视频| 一本一道波多野结衣av黑人在线| 中文字幕在线播放不卡| 国产亚洲视频免费播放| 亚洲三级电影在线播放| 热久久综合这里只有精品电影| 亚洲系列无码专区偷窥无码| 国产在线观看精品| 久久综合AV免费观看| 亚洲国产成人无码AV在线影院L | 国产一区免费在线观看| 国产欧美亚洲精品第3页在线| 国产嫖妓91东北老熟女久久一| 无码免费的亚洲视频| 高清无码手机在线观看| 97国产精品视频自在拍| 亚洲一区毛片| 香蕉视频在线观看www| 在线观看亚洲精品福利片| 青青草国产一区二区三区| 永久在线精品免费视频观看| 色综合久久综合网| 亚洲国产成熟视频在线多多| 免费不卡视频| 国产精品开放后亚洲| 日韩AV手机在线观看蜜芽| 国产成+人+综合+亚洲欧美| 白浆视频在线观看| 欧美一级高清免费a| 精品亚洲欧美中文字幕在线看| 欧美在线三级| 永久天堂网Av| 欧美区一区二区三| 亚洲人免费视频| 欧美成人二区| 国产91丝袜| 五月激情综合网| 欧洲免费精品视频在线| 婷婷99视频精品全部在线观看| 尤物午夜福利视频| 日本一区高清| 国产免费黄| 日韩一级毛一欧美一国产 | 在线欧美a| 免费视频在线2021入口| 青草精品视频| 99热免费在线| 国产情精品嫩草影院88av| 91欧美亚洲国产五月天| 色欲色欲久久综合网| 色婷婷在线播放| 日韩av在线直播| 国产香蕉一区二区在线网站| 欧美一级高清片欧美国产欧美| 亚洲国内精品自在自线官| 香蕉视频在线观看www| 高清色本在线www| 国产精品lululu在线观看| 在线另类稀缺国产呦| 亚洲国产天堂久久综合| 国产精品九九视频| 为你提供最新久久精品久久综合| AV不卡在线永久免费观看| 久久综合九九亚洲一区| 五月婷婷欧美|