張化冰 酈和生
摘要:指出了電化學殺菌是一種高效率、低成本、環(huán)境友好的新型殺菌技術,包括電解活性氯殺菌、電解·OH殺菌、電解O3殺菌、電解H2O2殺菌等。對這4種電化學殺菌技術的殺菌機理、電極材料、電解工藝條件及特點進行了探討。
關鍵詞:電解;殺菌;水處理
收稿日期:20131209
作者簡介:張化冰(1984—),女,河南洛陽人,博士,工程師,主要從事水處理方面的相關研究工作。中圖分類號:X703文獻標識碼:A文章編號:16749944(2014)01014603
1引言
微生物的有效控制是水處理領域的關鍵技術之一,常用的方法包括物理法和化學法。其中,物理法是利用物理技術進行殺菌,包括紫外線照射、超聲破碎、電磁輻射、微波等。物理法對環(huán)境友好,但殺菌效果較差?;瘜W殺菌法[1]是向水中投加無機或有機的殺菌劑,殺死或抑制微生物的生長繁殖,從而控制微生物。常用的殺菌劑包括臭氧、H2O2、氯和次氯酸鹽、二氧化氯、溴及溴化物、季銨鹽、戊二醛、異噻唑啉酮等,其中使用最多的是氯系殺菌劑。化學法殺菌成本低、效果好,但這些藥劑均屬化學品,在生產(chǎn)、儲存、運輸和使用過程中存在安全隱患,且大部分使用后對環(huán)境不友好。隨著電極材料的日趨成熟,電化學殺菌作為一種“清潔技術”,有望在水處理領域得到快速發(fā)展。電化學殺菌可以根據(jù)需求實現(xiàn)殺菌劑的現(xiàn)場制備,避免了殺菌劑在儲運過程和使用過程中污染環(huán)境或發(fā)生安全事故,具有高效率、低成本、對環(huán)境友好等優(yōu)點。
電化學殺菌的基本原理是利用電場的物理作用和電解產(chǎn)物的化學作用進行殺菌,前者為直接殺菌,后者為間接殺菌。直接殺菌[2]是利用電場擊穿細胞膜,造成微生物細胞質(zhì)外流致死,或通過電極與微生物細胞之間的電子傳遞,擾亂其呼吸系統(tǒng)致死。具有代表性的直接殺菌是吸附-電解法殺菌[3],此類裝置的吸附區(qū)為導電性吸附材料如活性炭、活性炭纖維等,對水中微生物進行吸附,吸附區(qū)兩端為電極,施加電壓進行殺菌。
對于間接殺菌,電解產(chǎn)物因電極材料及電解質(zhì)溶液的組成不同而異,電解殺菌活性產(chǎn)物主要包括:活性氯、·OH、O3和H2O2。
2電化學殺菌技術綜述
2.1電解活性氯殺菌
活性氯是Cl2、HClO和ClO-三種形式的總和,HClO和ClO-的比例由電解質(zhì)溶液的pH值決定[4]。電解氯離子含量高的水(如海水)或向水中添加鹽酸鹽,可產(chǎn)生高濃度的活性氯,其殺菌效果已得到普遍認可[5~7],但高濃度氯離子和活性氯會引起水質(zhì)的腐蝕性增強。為了解決水質(zhì)腐蝕性增強的問題,20世紀90年代開始,研究人員開始研究Cl-濃度極低溶液的電解殺菌[8~11]。
含Cl-電解質(zhì)溶液電解時,陽極產(chǎn)生次氯酸或次氯酸鹽(式1,2,3),
伴隨著析氧副反應的發(fā)生,以低Cl-濃度水(×10-6級)為電解質(zhì)溶液進行電解活性氯殺菌,電極材料的電流效率是關鍵因素,電流效率越高,產(chǎn)生的活性氯越多,殺菌效果越好。對于低Cl-濃度水電解,不同的電極材料產(chǎn)生活性氯的效率差別很大[4,8~10]。Alexander Kraft等人[4]分別以Ti/IrO2、Ti/IrO2-RuO2、Pt、摻硼金剛石BDD(Boron-Doped Diamond)為陽極電極,對不同Cl-濃度的水進行電解。Ti/IrO2電極和Ti/IrO2-RuO2電極的電流效率和活性氯產(chǎn)率都明顯高于Pt電極和摻硼金剛石BDD電極。當Cl-濃度為180mg/L時,Ti/IrO2電極的電流效率在10%左右,而Pt電極和BDD電極的電流效率低于2%。Joonseon Jeong等人[12]研究了Ti/IrO2、Ti/RuO2、Ti/Pt-IrO2、BDD、Pt電極材料在低Cl-濃度水溶液中(1.7×10-2M NaCl)的電化學特性,得出了相似的結論,電極材料的活性氯產(chǎn)率順序為:Ti/IrO2>Ti/RuO2>Ti/Pt-IrO2>BDD>Pt,與電極材料的析氯活性(Ti/IrO2>Ti/RuO2>Ti/Pt-IrO2>BDD>Pt)相一致。
2.2電解·OH殺菌
羥基自由基·OH是目前已知的水中最強的氧化劑[13],其氧化電位高達3.06V(表1[14])?!H通過破壞微生物的蛋白質(zhì)、酶和核酸使其致死[15]。
2.3電解O3殺菌
氧化過電位高的陽極材料在高電流密度、低溫條件下可直接電解水產(chǎn)生O3(式8)[4],這類高氧化過電位陽極材料主要有PbO2[19~21]、SnO2[22,23]、玻璃碳[24]、BDD[12,25]等。Manuela Stadelmann等人[26]發(fā)明的“三明治”結構電極組件:金剛石陽極/固體聚合物(SPE,solid polymer electrolyte)/陰極,類似于質(zhì)子交換膜燃料電池的三合一膜電極組件,電極結構緊湊,電流效率高,可用于電導率極低的水(如去離子水)電解產(chǎn)生O3。Alexander Kraft 等人[27]采用BDD/Nafion324/BDD電極結構(BDD基體為金屬Nb),研究了電流密度、水流速、電導率等因素對電解O3產(chǎn)率和電流效率的影響,當電流密度為153mA/cm2,水的流速為95L/h,電導率為1 μS/cm時,電解水生成O3的電流效率達到24%。Kazuki Arihara等人[25]采用類似的“三明治”電極結構,以多孔BDD為陰、陽極材料,研究了孔直徑、孔數(shù)、極板厚度以及總邊緣長度對電解水產(chǎn)生O3效率的影響。采用厚度為0.54mm的D10HN410電極(孔徑為1mm,孔數(shù)為410),在適宜的工藝條件下電解水產(chǎn)生O3的電流效率可達到47%。Choonsoo Kim等人[12]分別采用BDD、Pt、Ti/IrO2、Ti/RuO2、Ti/Pt-IrO2電極材料電解水生成O3,其中BDD電極的活性最高。研究發(fā)現(xiàn)叔丁醇的加入可明顯抑制O3的生成,·OH在BDD電解水生成O3的過程中起關鍵作用,O3可由O2和·O生成(式9,10)[28]。endprint
2.4電解H2O2殺菌
多數(shù)電解殺菌活性物質(zhì)(如Cl2、·OH、O3 等)都由陽極產(chǎn)生,而H2O2是由陰極產(chǎn)生。為了減少電解時陰極析氫副反應的發(fā)生,采用氣體擴散陰極(GDE,gas diffusion electrode)可將氧氣還原生成H2O2(式11)[4]。碳材料(石墨、活性炭、活性碳纖維、玻璃碳等)具有自催化作用,是比較理想的電解產(chǎn)生H2O2的陰極材料。Choonsoo Kim等人[12]分別采用BDD、Pt、Ti/IrO2、Ti/RuO2、Ti/Pt-IrO2電極材料電解水生成H2O2,其中BDD電極的活性最高,其次是Ti/RuO2電極,與產(chǎn)生·OH的活性[12]相一致,表明H2O2由2個·OH生成(式12)[29]。
·OH +·OH→H2O2(11)
在碳材料的基礎上,加入具有氧化還原催化性能的有機物(PTFE、2-乙基蒽醌等)或貴金屬(如Pt)可進一步提高H2O2的產(chǎn)率[30,31]。Wenying Xu等人[30]以活性碳/聚四氟乙烯PTFE作為氣體擴散層電解產(chǎn)生H2O2,研究發(fā)現(xiàn)Pt擔載量為3‰,NH4HCO3造孔劑用量為30%、pH<8、O2流速為1.25L/min、Na2SO4含量為10%、電流密度為6.7mA/cm2時的殺菌效果最好,成本相對較低。
O2 + H2O + 2 e-→H2O2 + 2OH-(12)
3結語
在這4種電化學殺菌技術中,電解活性氯殺菌研究的較多,且技術相對成熟,已經(jīng)在飲用水和工業(yè)用水方面有所應用[4]。對于Cl-含量極少又不能添加鹽酸鹽,電導率極低(如高純水、雨水)的低溫水質(zhì),可通過電解O3殺菌。電解O3殺菌技術不受電導率低的限制,副反應少,電流效率高(47%[25]),但其電極材料BDD的制備目前還僅限于小尺寸,限制了該技術的規(guī)模應用。H2O2的氧化電位比O3低,穩(wěn)定性較活性氯差,在高效、長時殺菌場合應用受限。·OH氧化能力極強(氧化電位3.06V),可快速殺菌滅藻,最終產(chǎn)物是水和二氧化碳,無二次污染,但穩(wěn)定性差,其規(guī)模應用還有待進一步的研究。
參考文獻:
[1] 齊冬子.敞開式循環(huán)冷卻水系統(tǒng)的化學處理[M].北京: 化學工業(yè)出版,2005.
[2] 吳永華,韓伯平,王勁.電場殺菌的物理效應與化學效應分析[J].工業(yè)用水與廢水,2007,38: 45~47.
[3] 朱又春,張樂華,林美強,等.電解殺菌和反硝化脫氮技術發(fā)展及其在水處理中的應用[J].環(huán)境保護,2001(11):21~23.
[4] Alexander Kraft.Electrochemical Water Disinfection: A Short Review[J].Platinum Metals Review,2008,52(3): 177~185.
[5] C.-C.Hu,C.-H.Lee,T.-C.Wen.Oxygen evolution and hypochlorite production on Ru-Pt binary oxides[J].Journal of Applied Electrochemistry,1996,26(1): 72~82.
[6] M.Rudolf,I.Rousar,J.Krysa.Cathodic reduction of jypochlorite during reduction of dilute sodium chloride solution[J].Journal of Applied Electrochemistry,1995,25(2): 155~165.
[7] H.-J Heidrich,L.Muller,B.I.Podlovchenko.The influence of electrode porosity and temperature on electrochemical gas evolution at platinum and rhodium[J].Journal of Applied Electrochemistry,1990,20(4): 686~691.
[8] A.Kraft,M.Stadelmann,M.Blaschke,D.Kreysig,B.Sandt,F(xiàn).Schroder,J.Rennau.Electrochemical water disinfection Part Ⅰ: Hypochlorite production from very dilute chloride solutions[J].Journal of Applied Electrochemistry,1999,29(7): 861~868.
[9] A.Kraft,M.Blaschke,D.Kreysig,B.Sandt,F(xiàn).Schroder,J.Rennau.Electrochemical water disinfection Part Ⅱ: Hypochlorite production from potable water,chlorine consumption and the problem of calcareous deposits[J].Journal of Applied Electrochemistry,1999,29(8): 895~902.
[10] M.E.H.Bergmann,A.S.Koparal.Studies on electrochemical disinfectant production using anodes containing RuO2[J].Journal of Applied Electrochemistry,2005,35(12): 1321~1329.endprint
[11] A Kraft,M Blaschte,D Kreysig Electrochemical water disinfection Part Ⅲ: Hypochlorite production from potable water with ultrasound assisted cathode cleaning[J].Journal of Applied Electrochemistry,2002,32(6): 597~601.
[12] Joonseon Jeong,Choonsoo Kim,Jeyong Yoon.The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes[J].Water Research,2009,43(4): 895~901.
[13] Urs von Gunten.Ozonation of drinking water: Part Ⅰ.Oxidation kinetics and product formation[J].Water Research,2003,37(7): 1443~1467.
[14] 高廷耀,顧國維,周琪.水污染控制工程(下冊)[M].北京: 高等教育出版社,2007.
[15] 劉剛,杜俊琪,童志勇,等.羥基自由基活性氧用于中水處理[J].工業(yè)水處理,2009,29(3):81~83.
[16] B.Marselli,J.Garcia-Gomez,P.-A.Michaud,M.A.Rodrigo,Ch.Comninellis.Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes [J].Journal of The Electrochemical Society,2003,150(3):79~83.
[17] P.Canizares,F(xiàn).Martinez,M.Diaz,J.Garcia-Gomez,M.A.Rodrigo.Electrochemical Oxidation of Aqueous Phenol Wastes Using Active and Nonactive Electrodes [J].Journal of The Electrochemical Society,2002,149(8):118~124.
[18] Christos Comninellis.Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment [J].Electrochimica Acta,1994,39(11-12):1857-1862.
[19] Kazuo Onda,Takahiro Ohba,Hironobu Kusunoki,Shinya Takezawa,Daisuke Sunakawa,Takuto Araki.Improving Characteristics of Ozone Water Production with Multilayer Electrodes and Operating Conditions in a Polymer Electrolyte Water Electrolysis Cell [J].Journal of The Electrochemical Society,2005,152(10):177~183.
[20] Jianren Feng,Dennis C.Johnson,Stephen N.Lowery,James J.Carey.Electrocatalysis of Anodic Oxygen-Transfer Rdactions [J].Journal of The Electrochemical Society,1994,141(10):2708~2711.
[21] Pallay Tatapudi,James M.Fenton.Synthesis of Ozone in a Proton Exchange Membrane Electrochemical Reactor [J].Journal of The Electrochemical Society,1993,140(12):3527~3530.
[22] Shao-an Cheng,Kwong-Yu Chan.Electrolytic Generation of Ozone on an Antimony-Doped Tin Dioxide Coated Electrode [J].Electrochemical and Solid-State Letters,2004,7(3):4~6.
[23] Yun-Hai Wang,Shaoan Cheng,Kwong-Yu Chan,Xiao Yan Li.Electrolytic Generation of Ozone on Antimony- and Nickel-Doped Tin Oxide Electrode [J].Journal of The Electrochemical Society,2005,152(11):197~200.
[24] P.C.Foller,G.H.Kelsall.Ozone Generation via the electrolysis of fluoboric acid fsing glassy carbon anodes and air depolarized cathodes [J].Journal of Applied Electrochemistry,1993,23(10):996~1010.endprint
[25] Kazuki Arihara,Chiaki Terashima,Akira Fujishima.Electrochemical Production of High-Concentration Ozone-Water Using Freestanding Perforated Diamond Electrodes [J].Journal of The Electrochemical Society,2007,154(4):71~75.
[26] Manuela Stadelmann,Manfred Blaschke.Electrode assembly for the electrochemical treatment of liquids with a low conductivity [P].US7704353B2.
[27] Alexander Kraft,Manuela Stadelmann,Maja Wunsche,Manfred Blaschke.Electrochemical ozone production using diamond anodes and a solid polymer electrolyte [J].Electrochemistry Communications,2006,8(5):883~886.
[28] P-A.Michaud,M.Panizza,L.Ouattara,T.Diaco,G.Foti,Ch.Conminellis.Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes [J].Journal of Applied Electrochemistry,2003,33(2):151~154.
[29] Joonseon Jeong,Jee Yeon Kim,Jeyong Yoon.The role of reactive oxygen species in the electrochemical inactivation of microorganisms [J].Environmental Science & Technology,2006,40 (19):6117~6122.
[30] Wenying Xu,Ping Li,Bin Dong.Electrochemical disinfection using the gas diffusion electrode system[J].Journal of Environmental Sciences,2010,22(2):204~210.
[31] J.C.Forti,R.S.Rocha,M.R.V.Lanza,R.Bertazzoli.Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone[J].Journal of Electroanalytical Chemistry,2007,601(1-2):63~67.endprint
[25] Kazuki Arihara,Chiaki Terashima,Akira Fujishima.Electrochemical Production of High-Concentration Ozone-Water Using Freestanding Perforated Diamond Electrodes [J].Journal of The Electrochemical Society,2007,154(4):71~75.
[26] Manuela Stadelmann,Manfred Blaschke.Electrode assembly for the electrochemical treatment of liquids with a low conductivity [P].US7704353B2.
[27] Alexander Kraft,Manuela Stadelmann,Maja Wunsche,Manfred Blaschke.Electrochemical ozone production using diamond anodes and a solid polymer electrolyte [J].Electrochemistry Communications,2006,8(5):883~886.
[28] P-A.Michaud,M.Panizza,L.Ouattara,T.Diaco,G.Foti,Ch.Conminellis.Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes [J].Journal of Applied Electrochemistry,2003,33(2):151~154.
[29] Joonseon Jeong,Jee Yeon Kim,Jeyong Yoon.The role of reactive oxygen species in the electrochemical inactivation of microorganisms [J].Environmental Science & Technology,2006,40 (19):6117~6122.
[30] Wenying Xu,Ping Li,Bin Dong.Electrochemical disinfection using the gas diffusion electrode system[J].Journal of Environmental Sciences,2010,22(2):204~210.
[31] J.C.Forti,R.S.Rocha,M.R.V.Lanza,R.Bertazzoli.Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone[J].Journal of Electroanalytical Chemistry,2007,601(1-2):63~67.endprint
[25] Kazuki Arihara,Chiaki Terashima,Akira Fujishima.Electrochemical Production of High-Concentration Ozone-Water Using Freestanding Perforated Diamond Electrodes [J].Journal of The Electrochemical Society,2007,154(4):71~75.
[26] Manuela Stadelmann,Manfred Blaschke.Electrode assembly for the electrochemical treatment of liquids with a low conductivity [P].US7704353B2.
[27] Alexander Kraft,Manuela Stadelmann,Maja Wunsche,Manfred Blaschke.Electrochemical ozone production using diamond anodes and a solid polymer electrolyte [J].Electrochemistry Communications,2006,8(5):883~886.
[28] P-A.Michaud,M.Panizza,L.Ouattara,T.Diaco,G.Foti,Ch.Conminellis.Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes [J].Journal of Applied Electrochemistry,2003,33(2):151~154.
[29] Joonseon Jeong,Jee Yeon Kim,Jeyong Yoon.The role of reactive oxygen species in the electrochemical inactivation of microorganisms [J].Environmental Science & Technology,2006,40 (19):6117~6122.
[30] Wenying Xu,Ping Li,Bin Dong.Electrochemical disinfection using the gas diffusion electrode system[J].Journal of Environmental Sciences,2010,22(2):204~210.
[31] J.C.Forti,R.S.Rocha,M.R.V.Lanza,R.Bertazzoli.Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone[J].Journal of Electroanalytical Chemistry,2007,601(1-2):63~67.endprint