999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On geometric-arithmetic index of line graph

2014-09-13 09:34:26LiuKeqiangZhaoBiao
江蘇師范大學學報(自然科學版) 2014年4期

Liu Keqiang, Zhao Biao

(College of Mathematics & System Sciences,Xinjiang University,Urumqi 830046,Xinjiang,China)

0 Introduction

The chemical applicability of theGA1index was examined documented in detail in the paper [8] and the reviews [9-10]. Upper and lower bounds forGA1index of general graphs have been given in [4,11-12]. In this paper, the sharp upper and lower bounds onGA1index of line graph are obtained.

LetE′={(u1v,vu2)|u1v,vu2∈E(G)}, call graph (E(G),E′) as line graph ofG, denotedL(G). Denote the edge ofL(G) by (u1,v,u2), both (u1,v,u2) and (u1,v,u2) demonstrate the same edge. LetP={(u1,v,u2)∈E(L(G))|u1v,vu2∈E(G),d(u1)=1,d(v)=2} be the set of pendant edges,Γ={H|u1,v,u2∈V(H) andu1v,vu2∈E(H) such thatd(u1)=1,d(v)=2,d(u2)=Δ=δ1} be the class of graphH.

1 Some lemmas

Lemma1[13]Let (a1,a2,…,an) be the positiven-tuples such that there exist positive numbersaandAsatisfying 0

(1)

Lemma4[14]LetGbe a graph withnvertices andmedges,anddvdenote the degree of a vertexvinG,then

ii) the degree inL(G) of an edgeuvofGisd(u)+d(v)-2.

2 Bounds for GA1 index of line graph

Theorem1LetGbe a simple connected graph of ordernwithmedges, maximum vertex degreeΔand minimum vertex degreeδ,δ≥2, then

GA1(L(G))≥GA1(G),

(2)

with equality holding if and only ifG?Cn.

ProofDefine the index

For 2≤d(u1),d(v),d(u2)≤Δ, we have

(3)

with equality holding if and only ifd(u2)=d(v)=Δ=2.Thus

(4)

Forv∈V(G), we have

(5)

Thus

(6)

Now suppose that equality holds in (2),then all inequalities in the above argument must be equalities, from equality (5) and (6), we have forv∈V(G),d(v)=2, that isG?Cn.

Conversely, we can see easily that the equality holds in (2) forG?Cn.

Theorem2LetGbe a simple connected graph of ordernwithmedges,ppendent edges, maximum vertex degreeΔ, minimum vertex degreeδ1of non-pendent edge, (d1,d2,…,dm) be a degree sequence ofL(G). Then

(7)

with equality holding if and only ifGis isomorphic to a regular graph orG∈Γ.

ProofDefine the index

For brevity, write

Forδ1≤d(u1),d(v),d(u2), we have

This implies

and finally we get

(8)

Now since

Note that |E′-P|=e(L(G))-p, using (1), we get

(9)

BecauseP={(u1,v,u2)|u1v,u2v∈E(G),d(u1)=1,d(v)=2}, then |P|=p, we have

(10)

Thus

(11)

(12)

with equality holding if and only ifΔ=δ1(for allv∈V″, thend(v)=(2m-3p)/(n-2p)).

Forδ1≤d(u2)≤Δ, we have

(13)

From (10)-(13), we get (7).

Suppose that equality holds in (7), then all inequalities in the above argument must be equalities. Now we consider two case:

i) ifp=0, from equality in (8), we getΔ=δ1. ThenGis isomorphic to a regular graph.

ii) ifp>0, from equality in (10) and (13), we getd(u1)=1,d(v)=2,d(u2)=Δ=δ1, thusG∈Γ.

Conversely, one can easily see that the equality holds in (7) for regular graph orG∈Γ.

Theorem3LetGbe a simple connected graph of ordernwithmedges,ppendant edge. Then

(14)

with equality holding in (14) if and only ifGis isomorphic to the complete graphK3orG?P3orG?P4.

ProofFor each pendant edge (u1,v,u2)∈E′,we have eitherd(u1)=1,d(v)=2 ord(u2)=1,d(v)=2.Thus

and finally we get

(15)

with equality holds in (15) if and only ifd(u1)=1,d(v)=2,d(u2)=n-2.

For each non-pendant edge (u1,v,u2)∈E′, we have 2≤d(u1),d(v),d(u2)≤n-1. Thus

then

(16)

with equality holds in (16) if and only ifd(u1)=2,d(v)=2,d(u2)=n-1.Thus

Suppose that equality holds in (14), then all inequalities in the above argument must be equalities. Now we consider two case

i) ifp=0, from equality (16), we getd(u1)=2,d(v)=2,d(u2)=n-1. Then we have a common neighborv. ThusGis isomorphic to the complete graphK3.

ii) ifp>0, from equality (16), we getd(u1)=1,d(v)=2,d(u2)=n-2. Firstly, assume thate(L(G)) =p, then all the edges are pendant edges inL(G), and henceGis isomorphic toP3orP4. Next, assume thate(L(G))>p. In this case, the maximum degree vertex, sayu2,by equality in (16) has degreen-1. There exists at least one non-pendant edge inG, and hence two vertices, sayviandvj, are adjacent to vertexu2. By equality in (16), for the non-pendant edgevivj∈E(G), eitherdi=n-1 ordj=n-1. Thus do not have any pendant vertex inGasdi=n-1, that is a contradiction.

Conversely, we can easily see that the equality holds in (14) for the complete graphK3orG?P3orG?P4.

Theorem4LetGbe a simple connected graph withnvertices,medges,ppendant edges,maximum vertex degreeΔand minimum vertex degreeδ1of non-pendant edge,(d1,d2,…,dm) be a degree sequence ofL(G).Then

(17)

with equality holding in (17) if and only ifGis isomorphic to a regular graph orG∈Γ.

ProofFor each pendant edge (u1,v,u2)∈E′,we have eitherd(u1)=1,d(v)=2 ord(u2)=1,d(v)=2.By Lemma 1,we have

(18)

with equality holds in (18) if and only ifd(u1)=1,d(v)=2,d(u2)=δ1.

Sincee(L(G))-pis the number of non-pendant edges inL(G). By Cauchy-Schwarz Inequality, we get

(19)

Note that |V″|=n-2p, by lemma 4, we have

(20)

with equality holds in (20) if and only if for ?v∈V″,d(v)=Δ.

From (18),(19) and (20), we get (17).

Suppose that equality holds in (17), then all inequalities in the above argument must be equalities. Now we consider two case:

i) ifp=0, from equality (19),(20), we getd(u1)=d(v)=d(u2)=Δ=δ1.That is,Gis isomorphic to a regular graph.

ii) ifp>0, from equality (18)-(20), we getd(u1)=1,d(v)=2,d(u2)=Δ=δ1. That is,G∈Γ.

Conversely, one can easily see that the equality holds in (17) for a regular graph orG∈Γ.

:

[1] Dankelmann P,Gutman I,Mukwembi S,et al.On the degree distance of a graph[J].Discrete Appl Math,2009,157(13):2773.

[2] Das K C,Gutman I.Estimating the wiener index by means of number of vertices,number of edges and diameter[J].MATCH Commun Math Comput Chem,2010,64:647.

[4] Todeschini R,Consonni V.Molecular descriptors for chemoinformatics.Vol 41[M].Weinheim:Wiley-VCH,2009.

[5] Das K C.Atom-bond connetivity index of graphs[J].Discrete Appl Math,2010,158(11):1181.

[7] Horoldagva B,Lee S G.Comparing Zagreb indices for connected graphs[J].Discrete Appl Math,2010,158(10):1073.

[9] Das K C,Gutman I,Furtula B.Survey on geometric-arithmetic indices of graphs[J].MATCH Commun Math Comput Chem,2011,65:595.

[10] Gutman I,Furtula B.Novel molecular structure descriptors:theory and applications.Vol Ⅰ[M].Kragujevac:University of Kragujevac,2010.

[11] Das K C.On geometric-arithmetic index of graphs[J].MATCH Commun Math Comput Chem,2010,64:619.

[12] Das K C,Gutman I,Furtula B.On the first geometic-arithmatic index of graph[J].Discrete Appl Math,2011,159(17):2030.

[13] Pólya G,Szeg? G.Problems and theorems in analysis,series,integeral calulus:theory of functions.Vol Ⅰ[M].New York:Springer-Verlay,1972.

[14] Beineke L W,Wilson R J.Selected topics in graph theory.Vol 2[M].New York:Academic Press Inc,1978.


登錄APP查看全文

主站蜘蛛池模板: 99这里只有精品免费视频| 91色国产在线| 国产一区二区三区在线观看视频| 国产精品美乳| 婷婷亚洲天堂| 欧美黄色a| 久久久精品无码一二三区| 国产精品护士| 在线日韩一区二区| 99精品视频九九精品| 欧美午夜在线观看| 色天天综合| 天天激情综合| 巨熟乳波霸若妻中文观看免费| 国产美女精品在线| 香蕉eeww99国产精选播放| 国产成人综合亚洲欧洲色就色| 免费在线不卡视频| 国产成人精品第一区二区| 天堂成人av| 亚洲成人一区二区| 久久久国产精品免费视频| 日本不卡在线| 久久精品无码专区免费| 日韩av电影一区二区三区四区| 国产美女无遮挡免费视频| 四虎国产精品永久在线网址| 久久综合色天堂av| 在线无码私拍| 欧美在线天堂| 国产一区二区影院| 亚洲欧洲日韩久久狠狠爱| 亚洲人免费视频| a免费毛片在线播放| 亚洲有无码中文网| 国产在线视频自拍| 四虎成人精品在永久免费| 欧美日韩专区| 中文字幕欧美日韩高清| 久久综合AV免费观看| 亚洲色大成网站www国产| 中文字幕在线视频免费| 91精品专区国产盗摄| 亚洲国产成人久久77| 亚洲AⅤ综合在线欧美一区| 无码日韩精品91超碰| 人妻少妇久久久久久97人妻| 日本福利视频网站| 亚洲欧美在线看片AI| 亚洲91在线精品| 国产白浆视频| 思思热精品在线8| 亚洲第一中文字幕| 91色爱欧美精品www| 青青久视频| 精品无码日韩国产不卡av| 免费国产无遮挡又黄又爽| 午夜日本永久乱码免费播放片| 亚洲一区二区黄色| 国产亚洲精品资源在线26u| 欧美一级爱操视频| 制服丝袜 91视频| 成人午夜天| 色婷婷电影网| 亚洲va在线观看| 欧美成人手机在线观看网址| 无码福利视频| 91精品视频网站| 久久毛片免费基地| 亚洲成人精品| 亚洲无卡视频| 国产男女免费视频| 久久一色本道亚洲| 国产精品永久不卡免费视频| 国产自在线播放| 亚洲日韩精品欧美中文字幕| 色偷偷一区| 激情六月丁香婷婷| 欧美成人精品一级在线观看| 国产在线八区| 午夜在线不卡| 91精品啪在线观看国产91九色|