999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

砷誘導(dǎo)蠶豆氣孔保衛(wèi)細(xì)胞死亡的毒性效應(yīng)

2014-08-11 14:41:43薛美昭儀慧蘭
生態(tài)學(xué)報(bào) 2014年5期
關(guān)鍵詞:水平

薛美昭, 儀慧蘭

(山西大學(xué)生命科學(xué)學(xué)院, 太原 030006)

砷誘導(dǎo)蠶豆氣孔保衛(wèi)細(xì)胞死亡的毒性效應(yīng)

薛美昭, 儀慧蘭*

(山西大學(xué)生命科學(xué)學(xué)院, 太原 030006)

采用蠶豆(ViciafabaL.)葉面氣孔保衛(wèi)細(xì)胞,研究砷對(duì)細(xì)胞的毒性效應(yīng)。結(jié)果表明,0.3—10 mg/L的NaAsO2能降低保衛(wèi)細(xì)胞活性,使部分細(xì)胞死亡,死亡率隨砷濃度升高而增高。死細(xì)胞中呈現(xiàn)核固縮、核崩解等典型程序性死亡特征,且泛caspase抑制劑Z-Asp-CH2-DCB能阻止NaAsO2誘發(fā)的細(xì)胞死亡。過(guò)氧化氫清除劑過(guò)氧化氫酶與NaAsO2共同作用時(shí),細(xì)胞死亡率顯著低于砷單獨(dú)處理組,保衛(wèi)細(xì)胞內(nèi)Ca2+水平降低,具程序性死亡特征的細(xì)胞數(shù)減少;Ca2+特異性螯合劑EGTA亦能降低NaAsO2誘發(fā)的細(xì)胞死亡。研究結(jié)果表明,NaAsO2能誘發(fā)蠶豆保衛(wèi)細(xì)胞程序性死亡,該過(guò)程由脅迫引發(fā)的ROS升高引起,ROS可能通過(guò)激活質(zhì)膜Ca2+通道,使胞外Ca2+內(nèi)流,造成胞內(nèi)Ca2+濃度升高,進(jìn)而誘導(dǎo)細(xì)胞程序性死亡。

蠶豆保衛(wèi)細(xì)胞;NaAsO2;程序性細(xì)胞死亡;ROS;Ca2+

砷(As)是一種廣泛存在于自然界中的類金屬元素,通常以極低濃度存在于人類生存環(huán)境中,不會(huì)對(duì)生物造成危害。近年來(lái),隨著砷化物在工、農(nóng)、醫(yī)藥業(yè)中的大量使用,含砷礦石的開(kāi)采和冶煉,含砷廢水、廢渣的不合理排放,以及地下水的不合理開(kāi)采,導(dǎo)致很多地區(qū)大氣、土壤和水體砷污染[1]。

植物葉表面的氣孔保衛(wèi)細(xì)胞是研究細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)的模式系統(tǒng),對(duì)環(huán)境變化反應(yīng)靈敏而準(zhǔn)確[9- 10]。前人采用蠶豆(ViciafabaL.)葉面氣孔保衛(wèi)細(xì)胞研究氰化物、鋁、二氧化硫的細(xì)胞毒性效應(yīng),發(fā)現(xiàn)了它們對(duì)細(xì)胞的致死效應(yīng)及信號(hào)途徑,說(shuō)明保衛(wèi)細(xì)胞對(duì)環(huán)境化學(xué)物的毒性具有靈敏的反應(yīng)[11- 13]。因此,本文以蠶豆氣孔保衛(wèi)細(xì)胞為實(shí)驗(yàn)?zāi)P停鶕?jù)砷在植物體內(nèi)多以三價(jià)砷存在的事實(shí)[14],研究NaAsO2對(duì)蠶豆氣孔保衛(wèi)細(xì)胞的致死作用,為進(jìn)一步揭示砷的毒性作用機(jī)制提供依據(jù)。

1 材料與方法

1.1 材料準(zhǔn)備

蠶豆(ViciafabaL.)種子清洗后用自來(lái)水浸泡48 h,25 ℃濕紗布包裹催芽2—3 d,然后播種于較肥沃的營(yíng)養(yǎng)土中。培養(yǎng)條件:光暗周期為14 h/10 h,溫度18—25 ℃,光照強(qiáng)度240 μmol·m-2·s-1,相對(duì)濕度40%—80%。幼苗長(zhǎng)至4周時(shí)用于實(shí)驗(yàn)。

取頂端第2節(jié)完全展開(kāi)的葉片,選非葉脈部位用鑷子撕取其下表皮,切成長(zhǎng)約1 cm,寬約0.5 cm的表皮條,置于含2-(N-morpholino)ethanesulfonic acid(MES)的緩沖液中。MES緩沖液含50 mmol/L KCL,10 mmol/L MES,用三羥甲基氨基甲烷(Tris)調(diào)節(jié)pH值至7.0。

1.2 藥物處理

用MES緩沖液配制含NaAsO2濃度為0.1、0.3、1、3和10 mg/L的溶液作為砷處理液。緩解組采用一定濃度拮抗劑分別與NaAsO2同時(shí)作用。MES緩沖液作對(duì)照。每個(gè)處理用3個(gè)不同蠶豆植株上的葉片,將表皮條置于含不同藥物的處理液中,于23 ℃光照3 h。

所選拮抗劑包括:0.5 μmol/L的泛caspase 抑制劑(Z-Asp-2,6-dichlorobenzoyloxymet-hylketon,Z-Asp-CH2-DCB),200 U/mL的CAT和1 mmol/L的Ca2+特異性螯合劑乙二醇雙四乙酸(ethylene glycol tetraacetic acid,EGTA)。實(shí)驗(yàn)中,用NaAsO2處理蠶豆表皮后,檢測(cè)保衛(wèi)細(xì)胞內(nèi)ROS和Ca2+水平,與對(duì)照組比較,以分析砷脅迫誘發(fā)的細(xì)胞死亡過(guò)程中胞內(nèi)ROS和Ca2+的變化;將NaAsO2和CAT共同作用于蠶豆表皮后,檢測(cè)保衛(wèi)細(xì)胞內(nèi)Ca2+水平的改變,分析ROS水平降低時(shí)胞內(nèi)Ca2+的變化規(guī)律[12- 13],判斷砷脅迫期間ROS對(duì)Ca2+的調(diào)節(jié)作用。

1.3 細(xì)胞活性檢測(cè)

參照Yi等實(shí)驗(yàn)方法[13],藥物處理結(jié)束后,表皮條用0.1 mg/L的二乙酸熒光素(fluorescein diacetate,F(xiàn)DA)暗染10 min,熒光顯微鏡下觀察、拍照。統(tǒng)計(jì)無(wú)綠色熒光的保衛(wèi)細(xì)胞(死細(xì)胞)數(shù)與觀察的保衛(wèi)細(xì)胞總數(shù),計(jì)算保衛(wèi)細(xì)胞死亡率。每個(gè)處理重復(fù)3次,每次至少觀察2000個(gè)保衛(wèi)細(xì)胞。

1.4 細(xì)胞核形態(tài)觀察

藥物處理后,表皮條用卡諾氏液固定2 h,F(xiàn)eulgen法染色[15],普通光學(xué)顯微鏡觀察。

1.5 胞內(nèi)ROS和 Ca2+水平檢測(cè)

參照González等實(shí)驗(yàn)方法[16],藥物處理后表皮條分別于10 μmol/L的活性氧熒光指示劑2′,7′-二氯熒光黃雙乙酸酯(2′,7′-dichlorofluorescein diacetate,DCFH-DA)或10 μmol/L的Ca2+熒光指示劑fluo- 3 acetomethoxyester(Fluo- 3 AM)中暗孵育60—90 min后,熒光顯微鏡(激發(fā)波長(zhǎng)488 nm)下觀察并拍照。使用圖像分析軟件Image-Pro Plus 6.0測(cè)量每組3個(gè)表皮條中約300個(gè)細(xì)胞的熒光值,計(jì)算其平均值。將對(duì)照組熒光值計(jì)為1,各處理組的相對(duì)熒光值為處理組熒光值與對(duì)照組的比值。

1.6 數(shù)據(jù)分析

計(jì)算每組3個(gè)重復(fù)實(shí)驗(yàn)的平均值和標(biāo)準(zhǔn)誤,采用SPSS17. 0對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行F檢驗(yàn)后,采用Duncan方法進(jìn)行多重比較,分析不同處理組和對(duì)照組之間的差異顯著性(*P<0.05,差異顯著;**P<0.01,差異極顯著;不同字母間差異顯著,P<0.05)。

2 結(jié)果

2.1 砷誘發(fā)蠶豆保衛(wèi)細(xì)胞死亡

表皮條經(jīng)FDA染色后,對(duì)照組保衛(wèi)細(xì)胞發(fā)亮綠色熒光,表明細(xì)胞具有良好的活性;NaAsO2處理組保衛(wèi)細(xì)胞熒光亮度降低,說(shuō)明胞內(nèi)非特異性酯酶活性降低,不能很好地將FDA水解為極性熒光素分子,其中部分細(xì)胞無(wú)綠色熒光,記為死細(xì)胞。隨著NaAsO2濃度的增高,死細(xì)胞比率增高。濃度為0.3 mg/L的NaAsO2能顯著誘導(dǎo)蠶豆氣孔保衛(wèi)細(xì)胞死亡,NaAsO2濃度為1—10 mg/L時(shí),細(xì)胞死亡率極顯著增高(圖1),其中10 mg/L處理組死亡率最高,達(dá)到32.2%,比對(duì)照組增加了3.4倍。

圖1 砷對(duì)蠶豆保衛(wèi)細(xì)胞活性的影響Fig.1 Effect of arsenic on guard cell viability in detached epidermis of V. faba leaves

2.2 砷誘發(fā)保衛(wèi)細(xì)胞程序性死亡

用Schiff試劑染色后,對(duì)照組保衛(wèi)細(xì)胞核質(zhì)均勻,砷處理組保衛(wèi)細(xì)胞出現(xiàn)核固縮、核崩解等典型的程序性細(xì)胞死亡(Programmed cell death, PCD)特征(圖2),由此推測(cè)砷脅迫誘發(fā)的蠶豆保衛(wèi)細(xì)胞死亡過(guò)程中可能存在細(xì)胞程序性死亡。

Caspase是細(xì)胞程序性死亡的關(guān)鍵酶,本研究用0.5 μmol/L的泛caspase抑制劑Z-Asp-CH2-DCB分別與3 mg/L和10 mg/L的NaAsO2共同作用時(shí),細(xì)胞死亡率顯著低于砷單獨(dú)處理組(圖3),即caspase抑制劑抑制了NaAsO2誘發(fā)的細(xì)胞死亡。該結(jié)果說(shuō)明,蠶豆保衛(wèi)細(xì)胞中的類caspase蛋白酶參與并執(zhí)行了NaAsO2誘發(fā)的細(xì)胞死亡過(guò)程,砷脅迫誘發(fā)的蠶豆保衛(wèi)細(xì)胞死亡過(guò)程中存在程序性細(xì)胞死亡。

圖2 砷誘發(fā)蠶豆氣孔保衛(wèi)細(xì)胞核形態(tài)異常(×200) Fig.2 Abnormal nucleus in V. faba guard cells exposed to arsenica: 對(duì)照; b-d: NaAsO2處理組; b: 核崩解;c: 核固縮; d: 核消失

圖3 泛caspase抑制劑對(duì)砷致蠶豆保衛(wèi)細(xì)胞死亡的緩解作用Fig.3 Antagonistic effect of caspase inhibitor on As-induced guard cell death in V. faba

2.3 胞內(nèi)ROS和Ca2+水平升高與砷誘發(fā)的細(xì)胞死亡有關(guān)

在砷處理液中加入抗氧化劑CAT或Ca2+特異性螯合劑EGTA后,細(xì)胞死亡率顯著降低。200 U/mL的CAT或1 mmol/L的EGTA與NaAsO2同時(shí)作用時(shí),細(xì)胞死亡率顯著低于砷單獨(dú)處理組(圖4),說(shuō)明降低砷脅迫組胞內(nèi)ROS 和Ca2+水平可有效阻止砷誘發(fā)的細(xì)胞死亡,砷脅迫誘發(fā)的細(xì)胞死亡可能與脅迫引發(fā)的胞內(nèi)ROS和Ca2+升高有關(guān)。

圖4 CAT和EGTA對(duì)砷致蠶豆保衛(wèi)細(xì)胞死亡的緩解作用Fig.4 Antagonistic effects of CAT and EGTA on As-induced guard cell death in V. faba

為了證實(shí)砷脅迫中保衛(wèi)細(xì)胞內(nèi)ROS 和Ca2+水平的變化,采用特異性熒光探針標(biāo)記后檢測(cè)了保衛(wèi)細(xì)胞內(nèi)ROS和Ca2+水平。經(jīng)ROS探針DCFH-DA標(biāo)記后,NaAsO2處理組保衛(wèi)細(xì)胞ROS相對(duì)熒光值明顯高于對(duì)照組;用Ca2+探針Fluo-3AM標(biāo)記后,NaAsO2組保衛(wèi)細(xì)胞內(nèi)Ca2+相對(duì)熒光值較對(duì)照組明顯升高(圖5)。結(jié)果表明,NaAsO2處理組保衛(wèi)細(xì)胞內(nèi)ROS和Ca2+水平顯著升高。

上述結(jié)果表明,砷處理組細(xì)胞死亡與胞內(nèi)ROS和Ca2+水平升高同時(shí)發(fā)生,加入抗氧化劑降低胞內(nèi)ROS或用Ca2+特異性螯合劑減少胞外后Ca2+內(nèi)流后,保衛(wèi)細(xì)胞死亡率顯著下降,即脅迫組胞內(nèi)ROS和Ca2+水平增高參與介導(dǎo)了保衛(wèi)細(xì)胞的死亡。

加入200 U/mL的CAT后,砷處理組細(xì)胞死亡率降低(圖4),具有程序性死亡特征的細(xì)胞數(shù)減少(圖6),砷誘發(fā)的胞內(nèi)Ca2+升高被抑制(圖5),表明在砷誘發(fā)蠶豆保衛(wèi)細(xì)胞死亡過(guò)程中,ROS對(duì)胞內(nèi)Ca2+水平具有正調(diào)控作用,ROS位于Ca2+的上游發(fā)揮作用。加入Ca2+特異性螯合劑EGTA 降低細(xì)胞外Ca2+濃度,阻止胞外Ca2+內(nèi)流后,可阻止砷處理誘發(fā)的細(xì)胞死亡(圖4),說(shuō)明在砷誘導(dǎo)細(xì)胞死亡的過(guò)程中,胞外Ca2+內(nèi)流對(duì)胞內(nèi)Ca2+水平升高和繼發(fā)細(xì)胞死亡發(fā)揮了重要作用。

3 討論

在砷的毒理學(xué)研究中以動(dòng)物為材料的居多,砷對(duì)植物細(xì)胞的毒性效應(yīng)研究較少,相關(guān)毒理學(xué)機(jī)制的研究更是少見(jiàn)。本文以蠶豆氣孔保衛(wèi)細(xì)胞為實(shí)驗(yàn)?zāi)P停峁┝酥参锛?xì)胞中砷的毒性作用證據(jù)。用亞砷酸鈉處理后蠶豆氣孔保衛(wèi)細(xì)胞活性降低并出現(xiàn)典型的程序性死亡特征,且泛caspase蛋白酶抑制劑Z-Asp-CH2-DCB能阻止砷誘發(fā)的細(xì)胞死亡,表明砷誘發(fā)的蠶豆保衛(wèi)細(xì)胞死亡過(guò)程存在程序性細(xì)胞死亡。通過(guò)檢測(cè)抗氧化劑CAT和鈣離子特異性螯合劑EGTA對(duì)砷毒性作用的抑制效應(yīng),證實(shí)砷脅迫組胞內(nèi)ROS和Ca2+水平的提高是砷誘發(fā)植物細(xì)胞程序性死亡的誘因,該結(jié)果與砷誘發(fā)的多種動(dòng)物細(xì)胞的凋亡途徑類似[17- 18],表明植物細(xì)胞與動(dòng)物細(xì)胞中可能存在著相似的機(jī)制。

圖5 砷對(duì)蠶豆保衛(wèi)細(xì)胞內(nèi)ROS和Ca2+水平的影響Fig.5 Changes of ROS and Ca2+ fluorescence in V. faba guard cells exposed to arsenic

圖6 CAT對(duì)砷致蠶豆保衛(wèi)細(xì)胞程序性死亡的抑制效應(yīng)Fig.6 Inhibition of CAT on PCD in V. faba guard cells exposed to arsenic

植物細(xì)胞可通過(guò)ROS介導(dǎo)的鈣信號(hào)途徑而致死,過(guò)氧化氫能激活質(zhì)膜上的鈣離子通道,使胞外Ca2+內(nèi)流,胞內(nèi)Ca2+水平升高[19],胞內(nèi)Ca2+濃度升高可激活Ca2+依賴性核酸內(nèi)切酶,使細(xì)胞核DNA在核小體連接處被切割,從而引發(fā)細(xì)胞程序性死亡。本研究發(fā)現(xiàn),砷處理組ROS水平對(duì)胞內(nèi)Ca2+水平具正向調(diào)節(jié)作用,減少胞外Ca2+內(nèi)流后砷處理組死亡率下降,由此推測(cè),砷脅迫產(chǎn)生的ROS可能通過(guò)激活質(zhì)膜Ca2+通道,使Ca2+內(nèi)流導(dǎo)致胞內(nèi)Ca2+水平升高,從而介導(dǎo)了細(xì)胞死亡。研究發(fā)現(xiàn),砷脅迫能引起酵母細(xì)胞核崩解,蠶豆和洋蔥根尖細(xì)胞氧化損傷、微核率升高,這些結(jié)果的產(chǎn)生與砷脅迫組ROS升高有關(guān)[8,20];ROS可直接攻擊DNA、蛋白質(zhì)等生物大分子,使DNA 分子斷裂、修復(fù)酶活性降低,DNA損傷無(wú)法及時(shí)修復(fù)。DNA損傷能激活細(xì)胞死亡程序,引發(fā)細(xì)胞死亡[21- 22],因此,砷脅迫組蠶豆保衛(wèi)細(xì)胞內(nèi)ROS升高可能通過(guò)類似途徑誘發(fā)細(xì)胞死亡。

研究表明,砷脅迫可致酵母細(xì)胞內(nèi)ROS和Ca2+水平升高,線粒體膜完整性破壞,細(xì)胞色素c釋放,類caspase蛋白酶激活,引發(fā)程序性細(xì)胞死亡[20]。因此,砷脅迫組蠶豆保衛(wèi)細(xì)胞內(nèi)ROS和Ca2+水平升高也可能通過(guò)線粒體途徑完成細(xì)胞死亡過(guò)程,通過(guò)破壞線粒體膜完整性釋放細(xì)胞色素c、凋亡誘導(dǎo)因子,并于胞質(zhì)中形成凋亡復(fù)合體,激活類caspase蛋白酶,進(jìn)而特異性切割下游底物,引發(fā)細(xì)胞凋亡。

氣孔調(diào)節(jié)著植物和外界環(huán)境間氣體與水分的交換,砷脅迫導(dǎo)致氣孔保衛(wèi)細(xì)胞活性降低或死亡會(huì)干擾氣孔正常的調(diào)節(jié)功能,影響植物的光合作用和呼吸代謝,從而干擾植株生理生化過(guò)程。但本研究觀察到砷脅迫誘發(fā)的植物細(xì)胞程序性死亡,可能在植株對(duì)環(huán)境脅迫和刺激的應(yīng)答過(guò)程中具有積極的意義,具體效應(yīng)機(jī)制有待進(jìn)一步深入研究。

[1] Garelick H, Jones H, Dybowska A, Valsami-Jones E. Arsenic pollution sources. Reviews of Environmental Contamination and Toxicology, 2008, 197: 17- 60.

[2] Singh N, Ma L Q, Srivastava M, Rathinasabapathi B. Metabolic adaptations to arsenic- induced oxidative stress inPterisvittataL andPterisensiformisL. Plant Science, 2006, 170: 274- 282.

[3] Li W X, Chen T B, Huang Z C, Lei M, Liao X Y. Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulatorPterisvittataL. Chemosphere, 2006, 62(5): 803- 809.

[4] Stoeva N, Berova M, Zlatev Z. Effect of arsenic on some physiological parameters in bean plants. Plantarum Biologia, 2005, 49(2): 293- 296.

[5] Titah H S, Abdullah S R S, Idris M, Anuar N, Basri H, Mukhlisin M. Arsenic range finding phytotoxicity test againstLudwigiaoctovalvisas first step in phytoremediation. Research Journal of Environmental Toxicology, 2012, 6(4): 151- 159.

[6] Malik J A, Goel S, Kaur N, Sharma S, Singh I, Nayyar H. Selenium antagonises the toxic effects of arsenic on mungbean (PhaseolusaureusRoxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environmental and Experimental Botany, 2012, 77: 242- 248.

[7] Sharma I. Arsenic induced oxidative stress in plants. Biologia, 2012, 67(3): 447- 453.

[8] Wu L H, Yi H L, Yi M. Assessment of arsenic toxicity usingAllium/Viciaroot tip micronucleus assays. Journal of Hazardous Materials, 2010, 176(1/3): 952- 956.

[9] Hetherington A M. Guard cell signaling. Cell, 2001, 107(6): 711- 714.

[10] Schroeder J I, Allen G J, Hugouvieux V, Kwak J M, Waner D. Guard cell signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 627- 658.

[11] Samuilov V D, Kiselevshy D B, Sinitsyn S V, Shestak A A, Lagunova E M, Nesov A V. H2O2intensifies CN--induced apoptosis in pea leaves. Biochemistry, 2006, 71(4): 384- 394.

[12] Liu X, Yi H L. Aluminum induces apoptosis inViciafabaguard cells. Journal of Agro-Environment Science, 2010, 29(9): 1659- 1664.

[13] Yi H L, Yin J J, Liu X, Jing X Q, Fan S H, Zhang H F. Sulfur dioxide induced programmed cell death inViciaguard cells. Ecotoxicology and Environmental Safety, 2012, 78: 281- 286.

[14] Zhu Y G, Rosen B P. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality? Current Opinion in Biotechnology, 2009, 20(2): 220- 224.

[15] Yang H M. Experiment of Cell Biology. 2nd ed. Beijing: Higher Education Press, 1997: 75- 76.

[16] González A, de los Cabrera M, Henríquez M J, Contreras R A, Morales B, Moenne A. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases inUlvacompressaexposed to copper excess. Plant Physiology, 2012, 158(3): 1451- 1462.

[17] Han Y H, Moon H J, You B R, Kim S Z, Kim S H, Park W H. Effects of arsenic trioxide on cell death, reactive oxygen species and glutathione levels in different cell types. International Journal of Molecular Medicine, 2010, 25(1): 121- 128.

[18] Das J, Ghosh J, Manna P, Sil P C. Protective role of taurine against arsenic-induced mitochondria-dependent hepatic apoptosis via the inhibition of PKCδ-JNK pathway. PLos One, 2010, 5(9): e12602.

[19] Pei Z M, Murata Y, Benning G, Thomine S, Allen G J, Grill E, Schroeder J I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 2000, 406(6797): 731- 734.

[20] Wu L H. Mechanism of Sodium Arsenite-Induced Cell Death[D]. Shanxi: Shanxi University, 2011.

[21] Pan J W, Zhu M Y, Chen H. Aluminum-induced cell death in root-tip cells of barley. Environmental and Experimental Botany, 2001, 46(1): 71- 79.

[22] Fleury C, Mignotte B, Vayssière J L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 2002, 84(2/3): 131- 141.

參考文獻(xiàn):

[12] 劉鑫, 儀慧蘭. 鋁誘導(dǎo)蠶豆氣孔保衛(wèi)細(xì)胞凋亡研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2010, 29(9): 1659- 1664.

[15] 楊漢民. 細(xì)胞生物學(xué)實(shí)驗(yàn) (第二版). 北京: 高等教育出版社, 1997: 75- 76.

[20] 吳麗華. 亞砷酸鈉誘導(dǎo)細(xì)胞死亡的分子機(jī)制研究 [D]. 山西: 山西大學(xué), 2011.

Arsenic induces guard cell death in leaf epidermis ofViciafaba

XUE Meizhao, YI Huilan*

SchoolofLifeScience,ShanxiUniversity,Taiyuan030006,China

Arsenic is a highly toxic metalloid for all forms of life including plants. Arsenic enters in plants through phosphate transporters as a phosphate analogue or through aquaglycoporins. Uptake of arsenic in plant tissues can affect plant metabolism, causing various physiological disorders, structural abnormalities and even plant death. Oxidative stress is considered to be a key mechanism of arsenic toxicity.

In this study, the effect of sodium arsenite (NaAsO2) on guard cell viability was investigated in detached epidermis ofV.fabaleaves. Epidermal strips were obtained from 4-week-old plants by peeling off the lower epidermis ofV.fabaleaves and incubated in 2-(N-morpholino) ethanesulfonic acid (MES) buffer containing some chemicals (NaAsO2with or without some antagonists) for 3 h in white light at 23 ℃ as the treatments. After treatment, the epidermal strips were stained with fluorescein diacetate (FDA) to show cell viability, or with 2′,7′-dichlorofluorescein diacetate (DCFH-DA) and fluo-3 acetomethoxyester (Fluo-3AM) respectively to indicate intracellular reactive oxygen species (ROS) and calcium ion (Ca2+) levels.

The results of our experiments showed that NaAsO2treatment significantly decreased cell viability and induced cell death in the concentration range of 0.3 to 10 mg/L. Arsenic provokes synchronous increases in cell death rate and intracellular levels of ROS and Ca2+inV.fabaguard cells. The typical nuclear morphological changes including nuclear fragmentation and nuclear condensation were observed in As-treated guard cells, while Z-Asp-2,6-dichlorobenzoyloxymethylketone (Z-Asp-CH2-DCB), a specific inhibitor of mammalian caspases, significantly blocked As-induced cell death. The occurrence of characteristic features of programmed cell death (PCD) and the inhibitory effect of caspase inhibitor Z-Asp-CH2-DCB on As-induced cell death suggest the activation of a PCD pathway evoked by arsenic exposure. Application of antioxidant catalase significantly inhibited As-induced cell death, PCD-to-total-cells ratio and intracellular Ca2+increase provoked by arsenic. A specific Ca2+chelator ethylene glycol tetraacetic acid also significantly decreased the cell death caused by arsenic. These results clearly demonstrated that arsenic induced cell death associated with obvious increases in intracellular ROS and Ca2+levels, in which ROS positively regulated intracellular Ca2+level.ROS generation and intracellular Ca2+level increase in As-treated stomatal guard cells were involved in the process of As-induced cell death. The results of the present study indicate that arsenite induced guard cell death via a PCD pathway through ROS mediating Ca2+elevation.

V.fabaguard cells; NaAsO2; programmed cell death; ROS; Ca2+

國(guó)家自然科學(xué)基金項(xiàng)目(30870454, 30470318); 教育部高等學(xué)校博士學(xué)科點(diǎn)基金項(xiàng)目(20070108007, 20121401110007); 山西省回國(guó)留學(xué)人員科研資助項(xiàng)目(2012013)

2012- 10- 17;

2013- 04- 18

10.5846/stxb201210171445

*通訊作者Corresponding author.E-mail: yihl@sxu.edu.cn

薛美昭, 儀慧蘭.砷誘導(dǎo)蠶豆氣孔保衛(wèi)細(xì)胞死亡的毒性效應(yīng).生態(tài)學(xué)報(bào),2014,34(5):1134- 1139.

Xue M Z, Yi H L.Arsenic induces guard cell death in leaf epidermis ofViciafaba.ActaEcologicaSinica,2014,34(5):1134- 1139.

猜你喜歡
水平
張水平作品
作家葛水平
火花(2019年12期)2019-12-26 01:00:28
深化精神文明創(chuàng)建 提升人大工作水平
加強(qiáng)上下聯(lián)動(dòng) 提升人大履職水平
水平有限
雜文月刊(2018年21期)2019-01-05 05:55:28
加強(qiáng)自身建設(shè) 提升人大履職水平
老虎獻(xiàn)臀
中俄經(jīng)貿(mào)合作再上新水平的戰(zhàn)略思考
建機(jī)制 抓落實(shí) 上水平
做到三到位 提升新水平
主站蜘蛛池模板: 日韩最新中文字幕| 国产精品久久久久婷婷五月| 成人福利在线视频免费观看| 538国产视频| 波多野结衣第一页| 欧美亚洲香蕉| 香蕉精品在线| 国产三级国产精品国产普男人 | Jizz国产色系免费| 国产精品自在在线午夜 | 一本久道热中字伊人| 在线观看免费黄色网址| 国产精品三级专区| 亚洲首页在线观看| 国产成人免费| 亚洲不卡网| 亚洲国产精品日韩欧美一区| 免费无码一区二区| 国产精品亚洲天堂| 日本精品αv中文字幕| 成人av手机在线观看| 丝袜高跟美脚国产1区| 伊人精品成人久久综合| 亚洲中久无码永久在线观看软件| 国产丝袜无码一区二区视频| 狠狠色噜噜狠狠狠狠色综合久| 欧美成人A视频| 99国产精品一区二区| 98超碰在线观看| 国产激情在线视频| 日韩在线视频网站| 婷婷伊人五月| 亚洲精品午夜天堂网页| 欧美一级99在线观看国产| 成人看片欧美一区二区| 欧美精品亚洲二区| 夜夜操国产| 少妇精品网站| 亚洲精品中文字幕无乱码| 国产亚洲精久久久久久无码AV| 亚洲国产综合自在线另类| 91精品国产丝袜| 岛国精品一区免费视频在线观看| 成人在线第一页| 色亚洲成人| 毛片免费网址| 日韩午夜片| 国产电话自拍伊人| 国产在线自乱拍播放| 亚洲日本一本dvd高清| 久久人搡人人玩人妻精品一| P尤物久久99国产综合精品| 凹凸精品免费精品视频| 中文字幕啪啪| 99久久免费精品特色大片| 欧美成人影院亚洲综合图| 日韩欧美国产三级| 亚洲人成在线精品| 999精品免费视频| 国产高清在线观看| 亚洲精品自在线拍| 国产成人无码综合亚洲日韩不卡| 国产精品lululu在线观看| 国产三区二区| 2020国产精品视频| 久久这里只有精品国产99| 国产va欧美va在线观看| 91偷拍一区| 久久精品国产精品一区二区| 久久青草视频| 国产99视频免费精品是看6| 亚洲床戏一区| 免费网站成人亚洲| 2019国产在线| 欧美区一区| 无码中文AⅤ在线观看| 日韩欧美国产成人| 亚洲欧美另类日本| 性网站在线观看| 97精品伊人久久大香线蕉| 亚洲成人免费看| 五月婷婷导航|