999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

L-R-Smash Products for Hopf Quasigroups

2014-08-07 11:38:14LIShihongLIGuanghu

LI Shihong, LI Guanghu

(College of Science,Nanjing Agricultural University,Nanjing 210095,Jiangsu)

1 Introduction and preliminaries

It is well-known that the only parallelizable spheres areS1,S3,S7.The first two are groups andS7is something weaker(a Moufang loop or Moufang Quasigroup).Recently Klim and Majid in[1]introduced the concept of Hopf quasigroup and Hopf coquasigroup in order to capture the quasigroup features of the(algebraic)7-sphere.These are generalizations of Hopf algebras that are not required to be(co)associative.The lack of(co)associativity is compensated by conditions involving the antipode.

In this paper,we first introduce the concept of LR-smash products for Hopf quasigroups.Then we give a necessary and sufficient condition making L-R-smash product into Hopf quasigroups.

We work over a fixed fieldk.Unadorned tensor product symbol represents the tensor product ofk-vector spaces(see[2-11]).In what follows,we recall some definitions for Hopf quasigroups and Hopf coquasigroups used in this paper from[1,12-19].

Definition 1.1A Hopf quasigroup is a possibly-nonassociative but unital algebraHwith productμ:HH?Hand unit 1:k?Hequipped with algebra homomorphismsΔ:H?HH,ε:H?kforming a coassociative coalgebra and a linear mapS:H?Hsuch that

Definition 1.2A Hopf coquasigroup is a unital associative algebraAwith counital algebra homomorphismsΔ:A?AA,ε:A?kand a linear mapS:A?Asuch that

We use Sweedler notation for coproduct:for allh∈H,Δ(h)=h1h2(summation implicit).Thus,in terms of the Sweedler notation,the Hopf quasigroup condition(1)and(2)can be expressed by

for allg,h,h1,h2∈H.Dually,the Hopf coquasigroup conditions(3)and(4)come out as

In this paper,the above mapSin Definition 1.1 or Definition 1.2 is called an antipode.A Hopf quasigroupHis flexible if for allg,h,h1,h2∈H,h1(gh2)=(h1g)h2;and alternative if also for allg,h,h1,h2∈H,h1(h2g)=(h1h2)g,h(g1g2)=(hg1)g2;and Moufang if for allf,g,h∈H,h1(g(h2f))=((h1g)h2)f.

Definition 1.3LetHbe a Hopf quasigroup.A vector spaceVis called a leftH-quasimodule if there is a linear mapα:HV?Vwritten asα(hv)=h?vsuch that

for allh∈H,v∈V.

Similarly,we can define a rightH-quasimodule,that is,there is a linear mapβ:VH?Vwritten asβ(vh)=v?hsuch that

for allh∈H,v∈V.If a vector spaceVis both a leftH-quasimodule and rightH-quasimodule,and for allh,g∈H,v∈V,the following condition

holds,then we call it anH-biquasimodule.

Definition 1.4An algebraA(not necessarily associative)is a leftH-quasimodule algebra ifAis a leftH-quasimodule and the following conditions hold:

for allh∈H,a,b∈A.

Similarly,we give the concept of a rightH-quasimodule algebra,that is,Ais a rightH-quasimodule and the following conditions hold:

for allh∈H,a,b∈A.

LetHbe a Hopf quasigroup with antipodeS,andAan(not necessarily associative)algebra.ThenAis called anH-biquasimodule algebra if the following conditions hold:

1)Ais anH-biquasimodule with the leftH-quasimodule structure map“?”and the rightH-quasimodule structure map“?”;

2)Ais not only a leftH-quasimodule algebra with the leftH-quasimodule action“?”but also a rightH-quasimodule algebra with the rightH-quasimodule action“?”.

Definition 1.5A coalgebraCis a leftH-quasimodule coalgebra ifCis a leftH-quasimodule and

for allh∈H,c∈C.

Similarly,we give the concept of a rightH-quasimodule coalgebra,that is,Cis a coalgebra and a rightH-quasimodule and the following conditions hold:

for allh∈H,c∈C.

LetHbe a Hopf quasigroup with antipodeS,andCa coalgebra.ThenCis called anH-biquasimodule coalgebra if the following conditions hold:

1)Cis anH-biquasimodule with the leftH-quasimodule structure map“?”and the rightH-quasimodule structure map“?”;

2)Cis not only a leftH-quasimodule coalgebra via the action“?”but also a rightH-quasimodule coalgebra via the action“?”.

AnH-biquasimodule Hopf quasigroup is a Hopf quasigroup which is anH-biquasimodule algebra and anH-biquasimodule coalgebra.In a similar way,we can give the conception ofH-biquasimodule Hopf coquasigroups.

2 L-R-Smash products for Hopf quasigroups

In this section,we introduce L-R-smash products for Hopf quasigroups,and give a necessary and sufficient condition making the L-R-smash product into Hopf quasigroups,which generalizes some important results in several references.

Lemma 2.1For any Hopf quasigroupH,Δ,εare the coproduct and counit ofHrespectively,andS:H?His a linear map satisfying(1)and(2).Then

1)εS=ε;

2)m(Sid)Δ=ε(h)1=m(idS)Δ;

3)Sis antimultiplicative:S(hg)=S(g)S(h)for allh,g∈H;

4)Sis anticomultiplicative:Δ(S(h))=S(h2)S(h1)for allh∈H.

ProofSimilar to the standard Hopf algebras,we can easily prove 1).From[1],we can got the proof of 2)~4).

In what follows,we always assume thatHis a Hopf quasigroup,andAanH-biquasimodule Hopf quasigroup,such that the following conditions hold:for allg,h∈Handa∈A,

Theorem 2.2LetHbe a Hopf quasigroup,andAan alternativeH-biquasimodule Hopf quasigroup.Then the L-R-smash productA#Hbuilt onAHwith tensor coproduct and unit and for allg,h∈H,a,b∈A,

is a Hopf quasigroup if and only if the following conditions hold:

ProofSuppose(16)and(17)hold.To see thatΔis an algebra homomorphism,for alla,b∈A,h,l∈H,we compute

It is easy to prove that the counitεA#HofA#His an algebra homomorphism.It remains to check the Hopf quasigroup identities(1)and(2)hold.For alla,b∈A,h,l∈H,we compute

In the above equalities(?),(??)and(???)come from the conditions(16)and(17).Next,in a similar way,we have

So,the relation(1)for the L-R-smash productA#Hholds.In a similar way,we can show the equality(2).

Conversely,ifA#His a Hopf quasigroup,then from the fact thatΔis an algebra homomorphism,we have

In the above equality(18),if takingh=1Handb=1A,then

By applyingidAεHεAidHto both sides of(19),we have(17).

In the above equality(18),if takingl=1Handa=1A,then

By applyingεAidHidAεHto both sides of(20),we obtain(16).This completes the proof.

In the above theorem,if the right quasiaction is trivial,then(17)holds.Hence we have the following corollary which is the main theorem in[13].

Corollary 2.3LetHbe a Hopf quasigroup,Aa leftH-quasimodule Hopf quasigroup.Then a smash productA#Hbuilt onAHwith tensor coproduct,counit and unit,whose multiplication and antipode are given by

is a Hopf quasigroup if and only if the conditions(12)and(16)hold.

In particular,ifHis cocommutative and the quasimodule ofAis exactly a module,then(12)and(16)hold.So,A#His a Hopf quasigroup in[1].

IfAandHin Theorem 2.2 are associative,they are usual Hopf algebras.Then we get the main result in[2].

Corollary 2.4Let(A,?,?)be anH-bimodule bialgebra andA#Hthe L-R-smash product.ThenA#His a bialgebra if and only if(16)and(17)hold.

In this case,ifAandHare Hopf algebras,thenA#His a Hopf algebra.

Remark 2.5By the above duality,we can also give a necessary and sufficient condition making the LR-smash coproduct into a Hopf coquasigroup.

[1]Klim J,Majid S.Hopf quasigroups and the algebraic 7-sphere[J].J Algebra,2010,323(11):3067-3110.

[2]Zhang L Y.L-R smash products for bimodule algebras[J].Prog Nat Sci,2006,16(6):580-587.

[3]Sweedler M E.Hopf Algebras[M].New York:Benjamin,1969.

[4]蔡芝敏,張良云.Hopf模余代數(shù)結(jié)構(gòu)定理[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2007,30(4):485-487.

[5]黃輝,牛瑞芳,張良云.弱Hopf代數(shù)與(s,i)雙代數(shù)的自由積[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2010,33(4):443-446.

[6]李菲菲,陳園園,張良云.關(guān)于余模余代數(shù)的L-R-smash余積和L-R扭曲余積[J].浙江大學(xué)學(xué)報(bào):理學(xué)版,2012,39(2):123-129.

[7]張鵬,張良云,牛瑞芳.扭Smash積的整體維數(shù)[J].浙江大學(xué)學(xué)報(bào):理學(xué)版,2011,38(1):1-3.

[8]張良云.Lie余模和Lie雙代數(shù)的構(gòu)造[J].中國(guó)科學(xué),2008,38(3):249-259.

[9]魏波,張良云.弱Hopf代數(shù)上的R-Smash積[J].數(shù)學(xué)半年刊,2008,25(1):67-75.

[10]楊沖,王勇,張良云.由Lazy 2-余循環(huán)誘導(dǎo)的扭曲Hopf模的基本結(jié)構(gòu)定理[J].數(shù)學(xué)半年刊,2009,6(2):225-231.

[11]李彥超,王勇,張良云.弱Hopf代數(shù)上的β-特征代數(shù)[J].南京師范大學(xué)學(xué)報(bào):自然科學(xué)版,2009,32(4):36-41.

[12]López M P,Nóvoa E V.The antipode and the(co)invariants of a finite Hopf(co)quasigroup[J].Appl Categor Stru,2013,21(3):237-247.

[13]Brzeziński T,Jiao Z M.Actions of Hopf quasigroups[J].Commun Algebra,2012,4(2):681-696.

[14]Brzeziński T,Jiao Z M.R-smash products of Hopf quasigroups[J].Arab J Math,2012,1(1):39-46.

[15]Jiao Z M,Wang Y L.The smash coproduct for Hopf quasigroups[J].Inter Elect J Algebra,2012,12:94-102.

[16]焦?fàn)庿Q,趙曉凡.幾乎余交換和擬三角Hopf余擬群[J].河南師范大學(xué)學(xué)報(bào):自然科學(xué)版,2012,40(5):1-2.

[17]Brzeziński T.Hopf modules and the fundamental theorem for Hopf(co)quasigroups[J].Inter Elect J Algebra,2010,8:114-128.

[18]Klim J,Majid S.Bicrossproduct Hopf quasigroups[J].Commun Math Univ Carolinae,2011,51(2):287-304.

[19]Fang S H,Wang S H.Twisted smash product for Hopf quasigroups[J].J Southeast University:Eng Ed,2011,27(3):343-346.

主站蜘蛛池模板: 国产在线无码av完整版在线观看| 亚洲天堂网视频| 亚洲丝袜中文字幕| 国产成人高清精品免费| 狠狠综合久久| 亚洲美女一级毛片| 2021天堂在线亚洲精品专区| 亚洲av综合网| 一本大道东京热无码av| 亚洲浓毛av| 日本在线国产| 国产精品青青| 中文字幕亚洲精品2页| 国产欧美日本在线观看| 欧洲亚洲一区| 国产在线观看第二页| 亚洲精品人成网线在线 | 精品无码一区二区三区在线视频| 国产欧美精品一区aⅴ影院| 欧美国产日韩在线| 色综合激情网| 国产网站在线看| 亚洲美女AV免费一区| 国产福利影院在线观看| 国产在线精品美女观看| 色婷婷亚洲综合五月| 国产99在线| 亚洲视频无码| 99久久国产综合精品2023 | 五月激情综合网| 露脸国产精品自产在线播| av性天堂网| 狠狠ⅴ日韩v欧美v天堂| 伊人激情久久综合中文字幕| 国产在线自揄拍揄视频网站| 亚洲无码四虎黄色网站| 九色视频最新网址| 四虎永久在线| 久草中文网| v天堂中文在线| 操国产美女| 亚洲国产精品无码久久一线| 青青热久麻豆精品视频在线观看| 91视频国产高清| 色悠久久久| аⅴ资源中文在线天堂| 日韩视频福利| 精品少妇人妻av无码久久| 日本高清在线看免费观看| 国产精品va| 亚洲欧美日本国产综合在线| 18禁色诱爆乳网站| 国产91小视频| 曰韩人妻一区二区三区| 色香蕉影院| 精品视频一区在线观看| 中文字幕欧美日韩| 欧美色伊人| 国产精品林美惠子在线播放| 四虎成人免费毛片| 日本爱爱精品一区二区| 人禽伦免费交视频网页播放| 国产福利拍拍拍| 这里只有精品在线播放| 国产精品丝袜在线| 色男人的天堂久久综合| 日韩成人高清无码| 色综合热无码热国产| 性做久久久久久久免费看| 日韩视频精品在线| 97国内精品久久久久不卡| 国产本道久久一区二区三区| 黄色污网站在线观看| 青青极品在线| 欲色天天综合网| 亚洲一级色| 国产白浆在线| 色国产视频| 精品五夜婷香蕉国产线看观看| 精品无码国产一区二区三区AV| 久久黄色免费电影| 午夜福利视频一区|